1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits subtarget enumerations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenTarget.h"
14 #include "CodeGenSchedule.h"
15 #include "PredicateExpander.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/MC/MCInstrItineraries.h"
21 #include "llvm/MC/MCSchedule.h"
22 #include "llvm/MC/SubtargetFeature.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include "llvm/TableGen/TableGenBackend.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstdint>
32 #include <iterator>
33 #include <map>
34 #include <string>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "subtarget-emitter"
40 
41 namespace {
42 
43 class SubtargetEmitter {
44   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
45   // The SchedClassDesc table indexes into a global write resource table, write
46   // latency table, and read advance table.
47   struct SchedClassTables {
48     std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
49     std::vector<MCWriteProcResEntry> WriteProcResources;
50     std::vector<MCWriteLatencyEntry> WriteLatencies;
51     std::vector<std::string> WriterNames;
52     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
53 
54     // Reserve an invalid entry at index 0
55     SchedClassTables() {
56       ProcSchedClasses.resize(1);
57       WriteProcResources.resize(1);
58       WriteLatencies.resize(1);
59       WriterNames.push_back("InvalidWrite");
60       ReadAdvanceEntries.resize(1);
61     }
62   };
63 
64   struct LessWriteProcResources {
65     bool operator()(const MCWriteProcResEntry &LHS,
66                     const MCWriteProcResEntry &RHS) {
67       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
68     }
69   };
70 
71   const CodeGenTarget &TGT;
72   RecordKeeper &Records;
73   CodeGenSchedModels &SchedModels;
74   std::string Target;
75 
76   void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap);
77   void EmitSubtargetInfoMacroCalls(raw_ostream &OS);
78   unsigned FeatureKeyValues(raw_ostream &OS,
79                             const DenseMap<Record *, unsigned> &FeatureMap);
80   unsigned CPUKeyValues(raw_ostream &OS,
81                         const DenseMap<Record *, unsigned> &FeatureMap);
82   void FormItineraryStageString(const std::string &Names,
83                                 Record *ItinData, std::string &ItinString,
84                                 unsigned &NStages);
85   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
86                                        unsigned &NOperandCycles);
87   void FormItineraryBypassString(const std::string &Names,
88                                  Record *ItinData,
89                                  std::string &ItinString, unsigned NOperandCycles);
90   void EmitStageAndOperandCycleData(raw_ostream &OS,
91                                     std::vector<std::vector<InstrItinerary>>
92                                       &ProcItinLists);
93   void EmitItineraries(raw_ostream &OS,
94                        std::vector<std::vector<InstrItinerary>>
95                          &ProcItinLists);
96   unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
97                                   raw_ostream &OS);
98   void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
99                               raw_ostream &OS);
100   void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
101                               raw_ostream &OS);
102   void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
103                          char Separator);
104   void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
105                                      raw_ostream &OS);
106   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
107                               raw_ostream &OS);
108   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
109                              const CodeGenProcModel &ProcModel);
110   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
111                           const CodeGenProcModel &ProcModel);
112   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
113                            const CodeGenProcModel &ProcModel);
114   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
115                            SchedClassTables &SchedTables);
116   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
117   void EmitProcessorModels(raw_ostream &OS);
118   void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
119   void emitSchedModelHelpersImpl(raw_ostream &OS,
120                                  bool OnlyExpandMCInstPredicates = false);
121   void emitGenMCSubtargetInfo(raw_ostream &OS);
122   void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS);
123 
124   void EmitSchedModel(raw_ostream &OS);
125   void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
126   void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
127                              unsigned NumProcs);
128 
129 public:
130   SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT)
131       : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()),
132         Target(TGT.getName()) {}
133 
134   void run(raw_ostream &o);
135 };
136 
137 } // end anonymous namespace
138 
139 //
140 // Enumeration - Emit the specified class as an enumeration.
141 //
142 void SubtargetEmitter::Enumeration(raw_ostream &OS,
143                                    DenseMap<Record *, unsigned> &FeatureMap) {
144   // Get all records of class and sort
145   std::vector<Record*> DefList =
146     Records.getAllDerivedDefinitions("SubtargetFeature");
147   llvm::sort(DefList, LessRecord());
148 
149   unsigned N = DefList.size();
150   if (N == 0)
151     return;
152   if (N + 1 > MAX_SUBTARGET_FEATURES)
153     PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
154 
155   OS << "namespace " << Target << " {\n";
156 
157   // Open enumeration.
158   OS << "enum {\n";
159 
160   // For each record
161   for (unsigned i = 0; i < N; ++i) {
162     // Next record
163     Record *Def = DefList[i];
164 
165     // Get and emit name
166     OS << "  " << Def->getName() << " = " << i << ",\n";
167 
168     // Save the index for this feature.
169     FeatureMap[Def] = i;
170   }
171 
172   OS << "  "
173      << "NumSubtargetFeatures = " << N << "\n";
174 
175   // Close enumeration and namespace
176   OS << "};\n";
177   OS << "} // end namespace " << Target << "\n";
178 }
179 
180 static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList,
181                              const DenseMap<Record *, unsigned> &FeatureMap) {
182   std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
183   for (const Record *Feature : FeatureList) {
184     unsigned Bit = FeatureMap.lookup(Feature);
185     Mask[Bit / 64] |= 1ULL << (Bit % 64);
186   }
187 
188   OS << "{ { { ";
189   for (unsigned i = 0; i != Mask.size(); ++i) {
190     OS << "0x";
191     OS.write_hex(Mask[i]);
192     OS << "ULL, ";
193   }
194   OS << "} } }";
195 }
196 
197 /// Emit some information about the SubtargetFeature as calls to a macro so
198 /// that they can be used from C++.
199 void SubtargetEmitter::EmitSubtargetInfoMacroCalls(raw_ostream &OS) {
200   OS << "\n#ifdef GET_SUBTARGETINFO_MACRO\n";
201 
202   std::vector<Record *> FeatureList =
203       Records.getAllDerivedDefinitions("SubtargetFeature");
204   llvm::sort(FeatureList, LessRecordFieldName());
205 
206   for (const Record *Feature : FeatureList) {
207     const StringRef Attribute = Feature->getValueAsString("Attribute");
208     const StringRef Value = Feature->getValueAsString("Value");
209 
210     // Only handle boolean features for now, excluding BitVectors and enums.
211     const bool IsBool = (Value == "false" || Value == "true") &&
212                         !StringRef(Attribute).contains('[');
213     if (!IsBool)
214       continue;
215 
216     // Some features default to true, with values set to false if enabled.
217     const char *Default = Value == "false" ? "true" : "false";
218 
219     // Define the getter with lowercased first char: xxxYyy() { return XxxYyy; }
220     const std::string Getter =
221         Attribute.substr(0, 1).lower() + Attribute.substr(1).str();
222 
223     OS << "GET_SUBTARGETINFO_MACRO(" << Attribute << ", " << Default << ", "
224        << Getter << ")\n";
225   }
226   OS << "#undef GET_SUBTARGETINFO_MACRO\n";
227   OS << "#endif // GET_SUBTARGETINFO_MACRO\n\n";
228 
229   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
230   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
231 }
232 
233 //
234 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
235 // command line.
236 //
237 unsigned SubtargetEmitter::FeatureKeyValues(
238     raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) {
239   // Gather and sort all the features
240   std::vector<Record*> FeatureList =
241                            Records.getAllDerivedDefinitions("SubtargetFeature");
242 
243   if (FeatureList.empty())
244     return 0;
245 
246   llvm::sort(FeatureList, LessRecordFieldName());
247 
248   // Begin feature table
249   OS << "// Sorted (by key) array of values for CPU features.\n"
250      << "extern const llvm::SubtargetFeatureKV " << Target
251      << "FeatureKV[] = {\n";
252 
253   // For each feature
254   unsigned NumFeatures = 0;
255   for (const Record *Feature : FeatureList) {
256     // Next feature
257     StringRef Name = Feature->getName();
258     StringRef CommandLineName = Feature->getValueAsString("Name");
259     StringRef Desc = Feature->getValueAsString("Desc");
260 
261     if (CommandLineName.empty()) continue;
262 
263     // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
264     OS << "  { "
265        << "\"" << CommandLineName << "\", "
266        << "\"" << Desc << "\", "
267        << Target << "::" << Name << ", ";
268 
269     RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
270 
271     printFeatureMask(OS, ImpliesList, FeatureMap);
272 
273     OS << " },\n";
274     ++NumFeatures;
275   }
276 
277   // End feature table
278   OS << "};\n";
279 
280   return NumFeatures;
281 }
282 
283 //
284 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
285 // line.
286 //
287 unsigned
288 SubtargetEmitter::CPUKeyValues(raw_ostream &OS,
289                                const DenseMap<Record *, unsigned> &FeatureMap) {
290   // Gather and sort processor information
291   std::vector<Record*> ProcessorList =
292                           Records.getAllDerivedDefinitions("Processor");
293   llvm::sort(ProcessorList, LessRecordFieldName());
294 
295   // Begin processor table
296   OS << "// Sorted (by key) array of values for CPU subtype.\n"
297      << "extern const llvm::SubtargetSubTypeKV " << Target
298      << "SubTypeKV[] = {\n";
299 
300   // For each processor
301   for (Record *Processor : ProcessorList) {
302     StringRef Name = Processor->getValueAsString("Name");
303     RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
304     RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures");
305 
306     // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } },
307     OS << " { "
308        << "\"" << Name << "\", ";
309 
310     printFeatureMask(OS, FeatureList, FeatureMap);
311     OS << ", ";
312     printFeatureMask(OS, TuneFeatureList, FeatureMap);
313 
314     // Emit the scheduler model pointer.
315     const std::string &ProcModelName =
316       SchedModels.getModelForProc(Processor).ModelName;
317     OS << ", &" << ProcModelName << " },\n";
318   }
319 
320   // End processor table
321   OS << "};\n";
322 
323   return ProcessorList.size();
324 }
325 
326 //
327 // FormItineraryStageString - Compose a string containing the stage
328 // data initialization for the specified itinerary.  N is the number
329 // of stages.
330 //
331 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
332                                                 Record *ItinData,
333                                                 std::string &ItinString,
334                                                 unsigned &NStages) {
335   // Get states list
336   RecVec StageList = ItinData->getValueAsListOfDefs("Stages");
337 
338   // For each stage
339   unsigned N = NStages = StageList.size();
340   for (unsigned i = 0; i < N;) {
341     // Next stage
342     const Record *Stage = StageList[i];
343 
344     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
345     int Cycles = Stage->getValueAsInt("Cycles");
346     ItinString += "  { " + itostr(Cycles) + ", ";
347 
348     // Get unit list
349     RecVec UnitList = Stage->getValueAsListOfDefs("Units");
350 
351     // For each unit
352     for (unsigned j = 0, M = UnitList.size(); j < M;) {
353       // Add name and bitwise or
354       ItinString += Name + "FU::" + UnitList[j]->getName().str();
355       if (++j < M) ItinString += " | ";
356     }
357 
358     int TimeInc = Stage->getValueAsInt("TimeInc");
359     ItinString += ", " + itostr(TimeInc);
360 
361     int Kind = Stage->getValueAsInt("Kind");
362     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
363 
364     // Close off stage
365     ItinString += " }";
366     if (++i < N) ItinString += ", ";
367   }
368 }
369 
370 //
371 // FormItineraryOperandCycleString - Compose a string containing the
372 // operand cycle initialization for the specified itinerary.  N is the
373 // number of operands that has cycles specified.
374 //
375 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
376                          std::string &ItinString, unsigned &NOperandCycles) {
377   // Get operand cycle list
378   std::vector<int64_t> OperandCycleList =
379     ItinData->getValueAsListOfInts("OperandCycles");
380 
381   // For each operand cycle
382   NOperandCycles = OperandCycleList.size();
383   ListSeparator LS;
384   for (int OCycle : OperandCycleList) {
385     // Next operand cycle
386     ItinString += LS;
387     ItinString += "  " + itostr(OCycle);
388   }
389 }
390 
391 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
392                                                  Record *ItinData,
393                                                  std::string &ItinString,
394                                                  unsigned NOperandCycles) {
395   RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
396   unsigned N = BypassList.size();
397   unsigned i = 0;
398   ListSeparator LS;
399   for (; i < N; ++i) {
400     ItinString += LS;
401     ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
402   }
403   for (; i < NOperandCycles; ++i) {
404     ItinString += LS;
405     ItinString += " 0";
406   }
407 }
408 
409 //
410 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
411 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
412 // by CodeGenSchedClass::Index.
413 //
414 void SubtargetEmitter::
415 EmitStageAndOperandCycleData(raw_ostream &OS,
416                              std::vector<std::vector<InstrItinerary>>
417                                &ProcItinLists) {
418   // Multiple processor models may share an itinerary record. Emit it once.
419   SmallPtrSet<Record*, 8> ItinsDefSet;
420 
421   // Emit functional units for all the itineraries.
422   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
423 
424     if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
425       continue;
426 
427     RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
428     if (FUs.empty())
429       continue;
430 
431     StringRef Name = ProcModel.ItinsDef->getName();
432     OS << "\n// Functional units for \"" << Name << "\"\n"
433        << "namespace " << Name << "FU {\n";
434 
435     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
436       OS << "  const InstrStage::FuncUnits " << FUs[j]->getName()
437          << " = 1ULL << " << j << ";\n";
438 
439     OS << "} // end namespace " << Name << "FU\n";
440 
441     RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
442     if (!BPs.empty()) {
443       OS << "\n// Pipeline forwarding paths for itineraries \"" << Name
444          << "\"\n" << "namespace " << Name << "Bypass {\n";
445 
446       OS << "  const unsigned NoBypass = 0;\n";
447       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
448         OS << "  const unsigned " << BPs[j]->getName()
449            << " = 1 << " << j << ";\n";
450 
451       OS << "} // end namespace " << Name << "Bypass\n";
452     }
453   }
454 
455   // Begin stages table
456   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
457                            "Stages[] = {\n";
458   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
459 
460   // Begin operand cycle table
461   std::string OperandCycleTable = "extern const unsigned " + Target +
462     "OperandCycles[] = {\n";
463   OperandCycleTable += "  0, // No itinerary\n";
464 
465   // Begin pipeline bypass table
466   std::string BypassTable = "extern const unsigned " + Target +
467     "ForwardingPaths[] = {\n";
468   BypassTable += " 0, // No itinerary\n";
469 
470   // For each Itinerary across all processors, add a unique entry to the stages,
471   // operand cycles, and pipeline bypass tables. Then add the new Itinerary
472   // object with computed offsets to the ProcItinLists result.
473   unsigned StageCount = 1, OperandCycleCount = 1;
474   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
475   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
476     // Add process itinerary to the list.
477     ProcItinLists.resize(ProcItinLists.size()+1);
478 
479     // If this processor defines no itineraries, then leave the itinerary list
480     // empty.
481     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
482     if (!ProcModel.hasItineraries())
483       continue;
484 
485     StringRef Name = ProcModel.ItinsDef->getName();
486 
487     ItinList.resize(SchedModels.numInstrSchedClasses());
488     assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
489 
490     for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
491          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
492 
493       // Next itinerary data
494       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
495 
496       // Get string and stage count
497       std::string ItinStageString;
498       unsigned NStages = 0;
499       if (ItinData)
500         FormItineraryStageString(std::string(Name), ItinData, ItinStageString,
501                                  NStages);
502 
503       // Get string and operand cycle count
504       std::string ItinOperandCycleString;
505       unsigned NOperandCycles = 0;
506       std::string ItinBypassString;
507       if (ItinData) {
508         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
509                                         NOperandCycles);
510 
511         FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString,
512                                   NOperandCycles);
513       }
514 
515       // Check to see if stage already exists and create if it doesn't
516       uint16_t FindStage = 0;
517       if (NStages > 0) {
518         FindStage = ItinStageMap[ItinStageString];
519         if (FindStage == 0) {
520           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
521           StageTable += ItinStageString + ", // " + itostr(StageCount);
522           if (NStages > 1)
523             StageTable += "-" + itostr(StageCount + NStages - 1);
524           StageTable += "\n";
525           // Record Itin class number.
526           ItinStageMap[ItinStageString] = FindStage = StageCount;
527           StageCount += NStages;
528         }
529       }
530 
531       // Check to see if operand cycle already exists and create if it doesn't
532       uint16_t FindOperandCycle = 0;
533       if (NOperandCycles > 0) {
534         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
535         FindOperandCycle = ItinOperandMap[ItinOperandString];
536         if (FindOperandCycle == 0) {
537           // Emit as  cycle, // index
538           OperandCycleTable += ItinOperandCycleString + ", // ";
539           std::string OperandIdxComment = itostr(OperandCycleCount);
540           if (NOperandCycles > 1)
541             OperandIdxComment += "-"
542               + itostr(OperandCycleCount + NOperandCycles - 1);
543           OperandCycleTable += OperandIdxComment + "\n";
544           // Record Itin class number.
545           ItinOperandMap[ItinOperandCycleString] =
546             FindOperandCycle = OperandCycleCount;
547           // Emit as bypass, // index
548           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
549           OperandCycleCount += NOperandCycles;
550         }
551       }
552 
553       // Set up itinerary as location and location + stage count
554       int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
555       InstrItinerary Intinerary = {
556           NumUOps,
557           FindStage,
558           uint16_t(FindStage + NStages),
559           FindOperandCycle,
560           uint16_t(FindOperandCycle + NOperandCycles),
561       };
562 
563       // Inject - empty slots will be 0, 0
564       ItinList[SchedClassIdx] = Intinerary;
565     }
566   }
567 
568   // Closing stage
569   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
570   StageTable += "};\n";
571 
572   // Closing operand cycles
573   OperandCycleTable += "  0 // End operand cycles\n";
574   OperandCycleTable += "};\n";
575 
576   BypassTable += " 0 // End bypass tables\n";
577   BypassTable += "};\n";
578 
579   // Emit tables.
580   OS << StageTable;
581   OS << OperandCycleTable;
582   OS << BypassTable;
583 }
584 
585 //
586 // EmitProcessorData - Generate data for processor itineraries that were
587 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
588 // Itineraries for each processor. The Itinerary lists are indexed on
589 // CodeGenSchedClass::Index.
590 //
591 void SubtargetEmitter::
592 EmitItineraries(raw_ostream &OS,
593                 std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
594   // Multiple processor models may share an itinerary record. Emit it once.
595   SmallPtrSet<Record*, 8> ItinsDefSet;
596 
597   // For each processor's machine model
598   std::vector<std::vector<InstrItinerary>>::iterator
599       ProcItinListsIter = ProcItinLists.begin();
600   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
601          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
602 
603     Record *ItinsDef = PI->ItinsDef;
604     if (!ItinsDefSet.insert(ItinsDef).second)
605       continue;
606 
607     // Get the itinerary list for the processor.
608     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
609     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
610 
611     // Empty itineraries aren't referenced anywhere in the tablegen output
612     // so don't emit them.
613     if (ItinList.empty())
614       continue;
615 
616     OS << "\n";
617     OS << "static const llvm::InstrItinerary ";
618 
619     // Begin processor itinerary table
620     OS << ItinsDef->getName() << "[] = {\n";
621 
622     // For each itinerary class in CodeGenSchedClass::Index order.
623     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
624       InstrItinerary &Intinerary = ItinList[j];
625 
626       // Emit Itinerary in the form of
627       // { firstStage, lastStage, firstCycle, lastCycle } // index
628       OS << "  { " <<
629         Intinerary.NumMicroOps << ", " <<
630         Intinerary.FirstStage << ", " <<
631         Intinerary.LastStage << ", " <<
632         Intinerary.FirstOperandCycle << ", " <<
633         Intinerary.LastOperandCycle << " }" <<
634         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
635     }
636     // End processor itinerary table
637     OS << "  { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
638           "// end marker\n";
639     OS << "};\n";
640   }
641 }
642 
643 // Emit either the value defined in the TableGen Record, or the default
644 // value defined in the C++ header. The Record is null if the processor does not
645 // define a model.
646 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
647                                          StringRef Name, char Separator) {
648   OS << "  ";
649   int V = R ? R->getValueAsInt(Name) : -1;
650   if (V >= 0)
651     OS << V << Separator << " // " << Name;
652   else
653     OS << "MCSchedModel::Default" << Name << Separator;
654   OS << '\n';
655 }
656 
657 void SubtargetEmitter::EmitProcessorResourceSubUnits(
658     const CodeGenProcModel &ProcModel, raw_ostream &OS) {
659   OS << "\nstatic const unsigned " << ProcModel.ModelName
660      << "ProcResourceSubUnits[] = {\n"
661      << "  0,  // Invalid\n";
662 
663   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
664     Record *PRDef = ProcModel.ProcResourceDefs[i];
665     if (!PRDef->isSubClassOf("ProcResGroup"))
666       continue;
667     RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
668     for (Record *RUDef : ResUnits) {
669       Record *const RU =
670           SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
671       for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
672         OS << "  " << ProcModel.getProcResourceIdx(RU) << ", ";
673       }
674     }
675     OS << "  // " << PRDef->getName() << "\n";
676   }
677   OS << "};\n";
678 }
679 
680 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
681                                       raw_ostream &OS) {
682   int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
683   if (Record *RCU = ProcModel.RetireControlUnit) {
684     ReorderBufferSize =
685         std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
686     MaxRetirePerCycle =
687         std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
688   }
689 
690   OS << ReorderBufferSize << ", // ReorderBufferSize\n  ";
691   OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n  ";
692 }
693 
694 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel,
695                                  unsigned NumRegisterFiles,
696                                  unsigned NumCostEntries, raw_ostream &OS) {
697   if (NumRegisterFiles)
698     OS << ProcModel.ModelName << "RegisterFiles,\n  " << (1 + NumRegisterFiles);
699   else
700     OS << "nullptr,\n  0";
701 
702   OS << ", // Number of register files.\n  ";
703   if (NumCostEntries)
704     OS << ProcModel.ModelName << "RegisterCosts,\n  ";
705   else
706     OS << "nullptr,\n  ";
707   OS << NumCostEntries << ", // Number of register cost entries.\n";
708 }
709 
710 unsigned
711 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
712                                          raw_ostream &OS) {
713   if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
714         return RF.hasDefaultCosts();
715       }))
716     return 0;
717 
718   // Print the RegisterCost table first.
719   OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
720   OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
721      << "RegisterCosts"
722      << "[] = {\n";
723 
724   for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
725     // Skip register files with a default cost table.
726     if (RF.hasDefaultCosts())
727       continue;
728     // Add entries to the cost table.
729     for (const CodeGenRegisterCost &RC : RF.Costs) {
730       OS << "  { ";
731       Record *Rec = RC.RCDef;
732       if (Rec->getValue("Namespace"))
733         OS << Rec->getValueAsString("Namespace") << "::";
734       OS << Rec->getName() << "RegClassID, " << RC.Cost << ", "
735          << RC.AllowMoveElimination << "},\n";
736     }
737   }
738   OS << "};\n";
739 
740   // Now generate a table with register file info.
741   OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
742      << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
743   OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
744      << "RegisterFiles"
745      << "[] = {\n"
746      << "  { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
747   unsigned CostTblIndex = 0;
748 
749   for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
750     OS << "  { ";
751     OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
752     unsigned NumCostEntries = RD.Costs.size();
753     OS << NumCostEntries << ", " << CostTblIndex << ", "
754        << RD.MaxMovesEliminatedPerCycle << ", "
755        << RD.AllowZeroMoveEliminationOnly << "},\n";
756     CostTblIndex += NumCostEntries;
757   }
758   OS << "};\n";
759 
760   return CostTblIndex;
761 }
762 
763 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
764                                               raw_ostream &OS) {
765   unsigned QueueID = 0;
766   if (ProcModel.LoadQueue) {
767     const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
768     QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
769                                 find(ProcModel.ProcResourceDefs, Queue));
770   }
771   OS << "  " << QueueID << ", // Resource Descriptor for the Load Queue\n";
772 
773   QueueID = 0;
774   if (ProcModel.StoreQueue) {
775     const Record *Queue =
776         ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
777     QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
778                                 find(ProcModel.ProcResourceDefs, Queue));
779   }
780   OS << "  " << QueueID << ", // Resource Descriptor for the Store Queue\n";
781 }
782 
783 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
784                                               raw_ostream &OS) {
785   // Generate a table of register file descriptors (one entry per each user
786   // defined register file), and a table of register costs.
787   unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS);
788 
789   // Now generate a table for the extra processor info.
790   OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
791      << "ExtraInfo = {\n  ";
792 
793   // Add information related to the retire control unit.
794   EmitRetireControlUnitInfo(ProcModel, OS);
795 
796   // Add information related to the register files (i.e. where to find register
797   // file descriptors and register costs).
798   EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
799                        NumCostEntries, OS);
800 
801   // Add information about load/store queues.
802   EmitLoadStoreQueueInfo(ProcModel, OS);
803 
804   OS << "};\n";
805 }
806 
807 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
808                                               raw_ostream &OS) {
809   EmitProcessorResourceSubUnits(ProcModel, OS);
810 
811   OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
812   OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
813      << "ProcResources"
814      << "[] = {\n"
815      << "  {\"InvalidUnit\", 0, 0, 0, 0},\n";
816 
817   unsigned SubUnitsOffset = 1;
818   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
819     Record *PRDef = ProcModel.ProcResourceDefs[i];
820 
821     Record *SuperDef = nullptr;
822     unsigned SuperIdx = 0;
823     unsigned NumUnits = 0;
824     const unsigned SubUnitsBeginOffset = SubUnitsOffset;
825     int BufferSize = PRDef->getValueAsInt("BufferSize");
826     if (PRDef->isSubClassOf("ProcResGroup")) {
827       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
828       for (Record *RU : ResUnits) {
829         NumUnits += RU->getValueAsInt("NumUnits");
830         SubUnitsOffset += RU->getValueAsInt("NumUnits");
831       }
832     }
833     else {
834       // Find the SuperIdx
835       if (PRDef->getValueInit("Super")->isComplete()) {
836         SuperDef =
837             SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
838                                          ProcModel, PRDef->getLoc());
839         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
840       }
841       NumUnits = PRDef->getValueAsInt("NumUnits");
842     }
843     // Emit the ProcResourceDesc
844     OS << "  {\"" << PRDef->getName() << "\", ";
845     if (PRDef->getName().size() < 15)
846       OS.indent(15 - PRDef->getName().size());
847     OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
848     if (SubUnitsBeginOffset != SubUnitsOffset) {
849       OS << ProcModel.ModelName << "ProcResourceSubUnits + "
850          << SubUnitsBeginOffset;
851     } else {
852       OS << "nullptr";
853     }
854     OS << "}, // #" << i+1;
855     if (SuperDef)
856       OS << ", Super=" << SuperDef->getName();
857     OS << "\n";
858   }
859   OS << "};\n";
860 }
861 
862 // Find the WriteRes Record that defines processor resources for this
863 // SchedWrite.
864 Record *SubtargetEmitter::FindWriteResources(
865   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
866 
867   // Check if the SchedWrite is already subtarget-specific and directly
868   // specifies a set of processor resources.
869   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
870     return SchedWrite.TheDef;
871 
872   Record *AliasDef = nullptr;
873   for (Record *A : SchedWrite.Aliases) {
874     const CodeGenSchedRW &AliasRW =
875       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
876     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
877       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
878       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
879         continue;
880     }
881     if (AliasDef)
882       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
883                     "defined for processor " + ProcModel.ModelName +
884                     " Ensure only one SchedAlias exists per RW.");
885     AliasDef = AliasRW.TheDef;
886   }
887   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
888     return AliasDef;
889 
890   // Check this processor's list of write resources.
891   Record *ResDef = nullptr;
892   for (Record *WR : ProcModel.WriteResDefs) {
893     if (!WR->isSubClassOf("WriteRes"))
894       continue;
895     if (AliasDef == WR->getValueAsDef("WriteType")
896         || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
897       if (ResDef) {
898         PrintFatalError(WR->getLoc(), "Resources are defined for both "
899                       "SchedWrite and its alias on processor " +
900                       ProcModel.ModelName);
901       }
902       ResDef = WR;
903     }
904   }
905   // TODO: If ProcModel has a base model (previous generation processor),
906   // then call FindWriteResources recursively with that model here.
907   if (!ResDef) {
908     PrintFatalError(ProcModel.ModelDef->getLoc(),
909                     Twine("Processor does not define resources for ") +
910                     SchedWrite.TheDef->getName());
911   }
912   return ResDef;
913 }
914 
915 /// Find the ReadAdvance record for the given SchedRead on this processor or
916 /// return NULL.
917 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
918                                           const CodeGenProcModel &ProcModel) {
919   // Check for SchedReads that directly specify a ReadAdvance.
920   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
921     return SchedRead.TheDef;
922 
923   // Check this processor's list of aliases for SchedRead.
924   Record *AliasDef = nullptr;
925   for (Record *A : SchedRead.Aliases) {
926     const CodeGenSchedRW &AliasRW =
927       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
928     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
929       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
930       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
931         continue;
932     }
933     if (AliasDef)
934       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
935                     "defined for processor " + ProcModel.ModelName +
936                     " Ensure only one SchedAlias exists per RW.");
937     AliasDef = AliasRW.TheDef;
938   }
939   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
940     return AliasDef;
941 
942   // Check this processor's ReadAdvanceList.
943   Record *ResDef = nullptr;
944   for (Record *RA : ProcModel.ReadAdvanceDefs) {
945     if (!RA->isSubClassOf("ReadAdvance"))
946       continue;
947     if (AliasDef == RA->getValueAsDef("ReadType")
948         || SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
949       if (ResDef) {
950         PrintFatalError(RA->getLoc(), "Resources are defined for both "
951                       "SchedRead and its alias on processor " +
952                       ProcModel.ModelName);
953       }
954       ResDef = RA;
955     }
956   }
957   // TODO: If ProcModel has a base model (previous generation processor),
958   // then call FindReadAdvance recursively with that model here.
959   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
960     PrintFatalError(ProcModel.ModelDef->getLoc(),
961                     Twine("Processor does not define resources for ") +
962                     SchedRead.TheDef->getName());
963   }
964   return ResDef;
965 }
966 
967 // Expand an explicit list of processor resources into a full list of implied
968 // resource groups and super resources that cover them.
969 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
970                                            std::vector<int64_t> &Cycles,
971                                            const CodeGenProcModel &PM) {
972   assert(PRVec.size() == Cycles.size() && "failed precondition");
973   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
974     Record *PRDef = PRVec[i];
975     RecVec SubResources;
976     if (PRDef->isSubClassOf("ProcResGroup"))
977       SubResources = PRDef->getValueAsListOfDefs("Resources");
978     else {
979       SubResources.push_back(PRDef);
980       PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
981       for (Record *SubDef = PRDef;
982            SubDef->getValueInit("Super")->isComplete();) {
983         if (SubDef->isSubClassOf("ProcResGroup")) {
984           // Disallow this for simplicitly.
985           PrintFatalError(SubDef->getLoc(), "Processor resource group "
986                           " cannot be a super resources.");
987         }
988         Record *SuperDef =
989             SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
990                                          SubDef->getLoc());
991         PRVec.push_back(SuperDef);
992         Cycles.push_back(Cycles[i]);
993         SubDef = SuperDef;
994       }
995     }
996     for (Record *PR : PM.ProcResourceDefs) {
997       if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
998         continue;
999       RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
1000       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
1001       for( ; SubI != SubE; ++SubI) {
1002         if (!is_contained(SuperResources, *SubI)) {
1003           break;
1004         }
1005       }
1006       if (SubI == SubE) {
1007         PRVec.push_back(PR);
1008         Cycles.push_back(Cycles[i]);
1009       }
1010     }
1011   }
1012 }
1013 
1014 // Generate the SchedClass table for this processor and update global
1015 // tables. Must be called for each processor in order.
1016 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
1017                                            SchedClassTables &SchedTables) {
1018   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
1019   if (!ProcModel.hasInstrSchedModel())
1020     return;
1021 
1022   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
1023   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
1024   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1025     LLVM_DEBUG(SC.dump(&SchedModels));
1026 
1027     SCTab.resize(SCTab.size() + 1);
1028     MCSchedClassDesc &SCDesc = SCTab.back();
1029     // SCDesc.Name is guarded by NDEBUG
1030     SCDesc.NumMicroOps = 0;
1031     SCDesc.BeginGroup = false;
1032     SCDesc.EndGroup = false;
1033     SCDesc.RetireOOO = false;
1034     SCDesc.WriteProcResIdx = 0;
1035     SCDesc.WriteLatencyIdx = 0;
1036     SCDesc.ReadAdvanceIdx = 0;
1037 
1038     // A Variant SchedClass has no resources of its own.
1039     bool HasVariants = false;
1040     for (const CodeGenSchedTransition &CGT :
1041            make_range(SC.Transitions.begin(), SC.Transitions.end())) {
1042       if (CGT.ProcIndex == ProcModel.Index) {
1043         HasVariants = true;
1044         break;
1045       }
1046     }
1047     if (HasVariants) {
1048       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
1049       continue;
1050     }
1051 
1052     // Determine if the SchedClass is actually reachable on this processor. If
1053     // not don't try to locate the processor resources, it will fail.
1054     // If ProcIndices contains 0, this class applies to all processors.
1055     assert(!SC.ProcIndices.empty() && "expect at least one procidx");
1056     if (SC.ProcIndices[0] != 0) {
1057       if (!is_contained(SC.ProcIndices, ProcModel.Index))
1058         continue;
1059     }
1060     IdxVec Writes = SC.Writes;
1061     IdxVec Reads = SC.Reads;
1062     if (!SC.InstRWs.empty()) {
1063       // This class has a default ReadWrite list which can be overridden by
1064       // InstRW definitions.
1065       Record *RWDef = nullptr;
1066       for (Record *RW : SC.InstRWs) {
1067         Record *RWModelDef = RW->getValueAsDef("SchedModel");
1068         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
1069           RWDef = RW;
1070           break;
1071         }
1072       }
1073       if (RWDef) {
1074         Writes.clear();
1075         Reads.clear();
1076         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
1077                             Writes, Reads);
1078       }
1079     }
1080     if (Writes.empty()) {
1081       // Check this processor's itinerary class resources.
1082       for (Record *I : ProcModel.ItinRWDefs) {
1083         RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
1084         if (is_contained(Matched, SC.ItinClassDef)) {
1085           SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
1086                               Writes, Reads);
1087           break;
1088         }
1089       }
1090       if (Writes.empty()) {
1091         LLVM_DEBUG(dbgs() << ProcModel.ModelName
1092                           << " does not have resources for class " << SC.Name
1093                           << '\n');
1094         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1095       }
1096     }
1097     // Sum resources across all operand writes.
1098     std::vector<MCWriteProcResEntry> WriteProcResources;
1099     std::vector<MCWriteLatencyEntry> WriteLatencies;
1100     std::vector<std::string> WriterNames;
1101     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
1102     for (unsigned W : Writes) {
1103       IdxVec WriteSeq;
1104       SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
1105                                      ProcModel);
1106 
1107       // For each operand, create a latency entry.
1108       MCWriteLatencyEntry WLEntry;
1109       WLEntry.Cycles = 0;
1110       unsigned WriteID = WriteSeq.back();
1111       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
1112       // If this Write is not referenced by a ReadAdvance, don't distinguish it
1113       // from other WriteLatency entries.
1114       if (!SchedModels.hasReadOfWrite(
1115             SchedModels.getSchedWrite(WriteID).TheDef)) {
1116         WriteID = 0;
1117       }
1118       WLEntry.WriteResourceID = WriteID;
1119 
1120       for (unsigned WS : WriteSeq) {
1121 
1122         Record *WriteRes =
1123           FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
1124 
1125         // Mark the parent class as invalid for unsupported write types.
1126         if (WriteRes->getValueAsBit("Unsupported")) {
1127           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1128           break;
1129         }
1130         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
1131         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
1132         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
1133         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
1134         SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
1135         SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
1136         SCDesc.RetireOOO |= WriteRes->getValueAsBit("RetireOOO");
1137 
1138         // Create an entry for each ProcResource listed in WriteRes.
1139         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
1140         std::vector<int64_t> Cycles =
1141           WriteRes->getValueAsListOfInts("ResourceCycles");
1142 
1143         if (Cycles.empty()) {
1144           // If ResourceCycles is not provided, default to one cycle per
1145           // resource.
1146           Cycles.resize(PRVec.size(), 1);
1147         } else if (Cycles.size() != PRVec.size()) {
1148           // If ResourceCycles is provided, check consistency.
1149           PrintFatalError(
1150               WriteRes->getLoc(),
1151               Twine("Inconsistent resource cycles: !size(ResourceCycles) != "
1152                     "!size(ProcResources): ")
1153                   .concat(Twine(PRVec.size()))
1154                   .concat(" vs ")
1155                   .concat(Twine(Cycles.size())));
1156         }
1157 
1158         ExpandProcResources(PRVec, Cycles, ProcModel);
1159 
1160         for (unsigned PRIdx = 0, PREnd = PRVec.size();
1161              PRIdx != PREnd; ++PRIdx) {
1162           MCWriteProcResEntry WPREntry;
1163           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
1164           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
1165           WPREntry.Cycles = Cycles[PRIdx];
1166           // If this resource is already used in this sequence, add the current
1167           // entry's cycles so that the same resource appears to be used
1168           // serially, rather than multiple parallel uses. This is important for
1169           // in-order machine where the resource consumption is a hazard.
1170           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
1171           for( ; WPRIdx != WPREnd; ++WPRIdx) {
1172             if (WriteProcResources[WPRIdx].ProcResourceIdx
1173                 == WPREntry.ProcResourceIdx) {
1174               WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
1175               break;
1176             }
1177           }
1178           if (WPRIdx == WPREnd)
1179             WriteProcResources.push_back(WPREntry);
1180         }
1181       }
1182       WriteLatencies.push_back(WLEntry);
1183     }
1184     // Create an entry for each operand Read in this SchedClass.
1185     // Entries must be sorted first by UseIdx then by WriteResourceID.
1186     for (unsigned UseIdx = 0, EndIdx = Reads.size();
1187          UseIdx != EndIdx; ++UseIdx) {
1188       Record *ReadAdvance =
1189         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
1190       if (!ReadAdvance)
1191         continue;
1192 
1193       // Mark the parent class as invalid for unsupported write types.
1194       if (ReadAdvance->getValueAsBit("Unsupported")) {
1195         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1196         break;
1197       }
1198       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
1199       IdxVec WriteIDs;
1200       if (ValidWrites.empty())
1201         WriteIDs.push_back(0);
1202       else {
1203         for (Record *VW : ValidWrites) {
1204           WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
1205         }
1206       }
1207       llvm::sort(WriteIDs);
1208       for(unsigned W : WriteIDs) {
1209         MCReadAdvanceEntry RAEntry;
1210         RAEntry.UseIdx = UseIdx;
1211         RAEntry.WriteResourceID = W;
1212         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1213         ReadAdvanceEntries.push_back(RAEntry);
1214       }
1215     }
1216     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1217       WriteProcResources.clear();
1218       WriteLatencies.clear();
1219       ReadAdvanceEntries.clear();
1220     }
1221     // Add the information for this SchedClass to the global tables using basic
1222     // compression.
1223     //
1224     // WritePrecRes entries are sorted by ProcResIdx.
1225     llvm::sort(WriteProcResources, LessWriteProcResources());
1226 
1227     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1228     std::vector<MCWriteProcResEntry>::iterator WPRPos =
1229       std::search(SchedTables.WriteProcResources.begin(),
1230                   SchedTables.WriteProcResources.end(),
1231                   WriteProcResources.begin(), WriteProcResources.end());
1232     if (WPRPos != SchedTables.WriteProcResources.end())
1233       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1234     else {
1235       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1236       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1237                                             WriteProcResources.end());
1238     }
1239     // Latency entries must remain in operand order.
1240     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1241     std::vector<MCWriteLatencyEntry>::iterator WLPos =
1242       std::search(SchedTables.WriteLatencies.begin(),
1243                   SchedTables.WriteLatencies.end(),
1244                   WriteLatencies.begin(), WriteLatencies.end());
1245     if (WLPos != SchedTables.WriteLatencies.end()) {
1246       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1247       SCDesc.WriteLatencyIdx = idx;
1248       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1249         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1250             std::string::npos) {
1251           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1252         }
1253     }
1254     else {
1255       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1256       llvm::append_range(SchedTables.WriteLatencies, WriteLatencies);
1257       llvm::append_range(SchedTables.WriterNames, WriterNames);
1258     }
1259     // ReadAdvanceEntries must remain in operand order.
1260     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1261     std::vector<MCReadAdvanceEntry>::iterator RAPos =
1262       std::search(SchedTables.ReadAdvanceEntries.begin(),
1263                   SchedTables.ReadAdvanceEntries.end(),
1264                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1265     if (RAPos != SchedTables.ReadAdvanceEntries.end())
1266       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1267     else {
1268       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1269       llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries);
1270     }
1271   }
1272 }
1273 
1274 // Emit SchedClass tables for all processors and associated global tables.
1275 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1276                                             raw_ostream &OS) {
1277   // Emit global WriteProcResTable.
1278   OS << "\n// {ProcResourceIdx, Cycles}\n"
1279      << "extern const llvm::MCWriteProcResEntry "
1280      << Target << "WriteProcResTable[] = {\n"
1281      << "  { 0,  0}, // Invalid\n";
1282   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1283        WPRIdx != WPREnd; ++WPRIdx) {
1284     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1285     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1286        << format("%2d", WPREntry.Cycles) << "}";
1287     if (WPRIdx + 1 < WPREnd)
1288       OS << ',';
1289     OS << " // #" << WPRIdx << '\n';
1290   }
1291   OS << "}; // " << Target << "WriteProcResTable\n";
1292 
1293   // Emit global WriteLatencyTable.
1294   OS << "\n// {Cycles, WriteResourceID}\n"
1295      << "extern const llvm::MCWriteLatencyEntry "
1296      << Target << "WriteLatencyTable[] = {\n"
1297      << "  { 0,  0}, // Invalid\n";
1298   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1299        WLIdx != WLEnd; ++WLIdx) {
1300     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1301     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1302        << format("%2d", WLEntry.WriteResourceID) << "}";
1303     if (WLIdx + 1 < WLEnd)
1304       OS << ',';
1305     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1306   }
1307   OS << "}; // " << Target << "WriteLatencyTable\n";
1308 
1309   // Emit global ReadAdvanceTable.
1310   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1311      << "extern const llvm::MCReadAdvanceEntry "
1312      << Target << "ReadAdvanceTable[] = {\n"
1313      << "  {0,  0,  0}, // Invalid\n";
1314   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1315        RAIdx != RAEnd; ++RAIdx) {
1316     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1317     OS << "  {" << RAEntry.UseIdx << ", "
1318        << format("%2d", RAEntry.WriteResourceID) << ", "
1319        << format("%2d", RAEntry.Cycles) << "}";
1320     if (RAIdx + 1 < RAEnd)
1321       OS << ',';
1322     OS << " // #" << RAIdx << '\n';
1323   }
1324   OS << "}; // " << Target << "ReadAdvanceTable\n";
1325 
1326   // Emit a SchedClass table for each processor.
1327   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1328          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1329     if (!PI->hasInstrSchedModel())
1330       continue;
1331 
1332     std::vector<MCSchedClassDesc> &SCTab =
1333       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1334 
1335     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup, RetireOOO,"
1336        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1337     OS << "static const llvm::MCSchedClassDesc "
1338        << PI->ModelName << "SchedClasses[] = {\n";
1339 
1340     // The first class is always invalid. We no way to distinguish it except by
1341     // name and position.
1342     assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1343            && "invalid class not first");
1344     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1345        << MCSchedClassDesc::InvalidNumMicroOps
1346        << ", false, false, false, 0, 0,  0, 0,  0, 0},\n";
1347 
1348     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1349       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1350       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1351       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1352       if (SchedClass.Name.size() < 18)
1353         OS.indent(18 - SchedClass.Name.size());
1354       OS << MCDesc.NumMicroOps
1355          << ", " << ( MCDesc.BeginGroup ? "true" : "false" )
1356          << ", " << ( MCDesc.EndGroup ? "true" : "false" )
1357          << ", " << ( MCDesc.RetireOOO ? "true" : "false" )
1358          << ", " << format("%2d", MCDesc.WriteProcResIdx)
1359          << ", " << MCDesc.NumWriteProcResEntries
1360          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1361          << ", " << MCDesc.NumWriteLatencyEntries
1362          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1363          << ", " << MCDesc.NumReadAdvanceEntries
1364          << "}, // #" << SCIdx << '\n';
1365     }
1366     OS << "}; // " << PI->ModelName << "SchedClasses\n";
1367   }
1368 }
1369 
1370 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1371   // For each processor model.
1372   for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1373     // Emit extra processor info if available.
1374     if (PM.hasExtraProcessorInfo())
1375       EmitExtraProcessorInfo(PM, OS);
1376     // Emit processor resource table.
1377     if (PM.hasInstrSchedModel())
1378       EmitProcessorResources(PM, OS);
1379     else if(!PM.ProcResourceDefs.empty())
1380       PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
1381                     "ProcResources without defining WriteRes SchedWriteRes");
1382 
1383     // Begin processor itinerary properties
1384     OS << "\n";
1385     OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1386     EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1387     EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1388     EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1389     EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1390     EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1391     EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1392 
1393     bool PostRAScheduler =
1394       (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1395 
1396     OS << "  " << (PostRAScheduler ? "true" : "false")  << ", // "
1397        << "PostRAScheduler\n";
1398 
1399     bool CompleteModel =
1400       (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1401 
1402     OS << "  " << (CompleteModel ? "true" : "false") << ", // "
1403        << "CompleteModel\n";
1404 
1405     OS << "  " << PM.Index << ", // Processor ID\n";
1406     if (PM.hasInstrSchedModel())
1407       OS << "  " << PM.ModelName << "ProcResources" << ",\n"
1408          << "  " << PM.ModelName << "SchedClasses" << ",\n"
1409          << "  " << PM.ProcResourceDefs.size()+1 << ",\n"
1410          << "  " << (SchedModels.schedClassEnd()
1411                      - SchedModels.schedClassBegin()) << ",\n";
1412     else
1413       OS << "  nullptr, nullptr, 0, 0,"
1414          << " // No instruction-level machine model.\n";
1415     if (PM.hasItineraries())
1416       OS << "  " << PM.ItinsDef->getName() << ",\n";
1417     else
1418       OS << "  nullptr, // No Itinerary\n";
1419     if (PM.hasExtraProcessorInfo())
1420       OS << "  &" << PM.ModelName << "ExtraInfo,\n";
1421     else
1422       OS << "  nullptr // No extra processor descriptor\n";
1423     OS << "};\n";
1424   }
1425 }
1426 
1427 //
1428 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1429 //
1430 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1431   OS << "#ifdef DBGFIELD\n"
1432      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1433      << "#endif\n"
1434      << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1435      << "#define DBGFIELD(x) x,\n"
1436      << "#else\n"
1437      << "#define DBGFIELD(x)\n"
1438      << "#endif\n";
1439 
1440   if (SchedModels.hasItineraries()) {
1441     std::vector<std::vector<InstrItinerary>> ProcItinLists;
1442     // Emit the stage data
1443     EmitStageAndOperandCycleData(OS, ProcItinLists);
1444     EmitItineraries(OS, ProcItinLists);
1445   }
1446   OS << "\n// ===============================================================\n"
1447      << "// Data tables for the new per-operand machine model.\n";
1448 
1449   SchedClassTables SchedTables;
1450   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1451     GenSchedClassTables(ProcModel, SchedTables);
1452   }
1453   EmitSchedClassTables(SchedTables, OS);
1454 
1455   OS << "\n#undef DBGFIELD\n";
1456 
1457   // Emit the processor machine model
1458   EmitProcessorModels(OS);
1459 }
1460 
1461 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
1462   std::string Buffer;
1463   raw_string_ostream Stream(Buffer);
1464 
1465   // Collect all the PredicateProlog records and print them to the output
1466   // stream.
1467   std::vector<Record *> Prologs =
1468       Records.getAllDerivedDefinitions("PredicateProlog");
1469   llvm::sort(Prologs, LessRecord());
1470   for (Record *P : Prologs)
1471     Stream << P->getValueAsString("Code") << '\n';
1472 
1473   OS << Buffer;
1474 }
1475 
1476 static bool isTruePredicate(const Record *Rec) {
1477   return Rec->isSubClassOf("MCSchedPredicate") &&
1478          Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
1479 }
1480 
1481 static void emitPredicates(const CodeGenSchedTransition &T,
1482                            const CodeGenSchedClass &SC, PredicateExpander &PE,
1483                            raw_ostream &OS) {
1484   std::string Buffer;
1485   raw_string_ostream SS(Buffer);
1486 
1487   // If not all predicates are MCTrue, then we need an if-stmt.
1488   unsigned NumNonTruePreds =
1489       T.PredTerm.size() - count_if(T.PredTerm, isTruePredicate);
1490 
1491   SS.indent(PE.getIndentLevel() * 2);
1492 
1493   if (NumNonTruePreds) {
1494     bool FirstNonTruePredicate = true;
1495     SS << "if (";
1496 
1497     PE.setIndentLevel(PE.getIndentLevel() + 2);
1498 
1499     for (const Record *Rec : T.PredTerm) {
1500       // Skip predicates that evaluate to "true".
1501       if (isTruePredicate(Rec))
1502         continue;
1503 
1504       if (FirstNonTruePredicate) {
1505         FirstNonTruePredicate = false;
1506       } else {
1507         SS << "\n";
1508         SS.indent(PE.getIndentLevel() * 2);
1509         SS << "&& ";
1510       }
1511 
1512       if (Rec->isSubClassOf("MCSchedPredicate")) {
1513         PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
1514         continue;
1515       }
1516 
1517       // Expand this legacy predicate and wrap it around braces if there is more
1518       // than one predicate to expand.
1519       SS << ((NumNonTruePreds > 1) ? "(" : "")
1520          << Rec->getValueAsString("Predicate")
1521          << ((NumNonTruePreds > 1) ? ")" : "");
1522     }
1523 
1524     SS << ")\n"; // end of if-stmt
1525     PE.decreaseIndentLevel();
1526     SS.indent(PE.getIndentLevel() * 2);
1527     PE.decreaseIndentLevel();
1528   }
1529 
1530   SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
1531   OS << Buffer;
1532 }
1533 
1534 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
1535 // epilogue code for the auto-generated helper.
1536 static void emitSchedModelHelperEpilogue(raw_ostream &OS,
1537                                          bool ShouldReturnZero) {
1538   if (ShouldReturnZero) {
1539     OS << "  // Don't know how to resolve this scheduling class.\n"
1540        << "  return 0;\n";
1541     return;
1542   }
1543 
1544   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n";
1545 }
1546 
1547 static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
1548   return all_of(T.PredTerm, [](const Record *Rec) {
1549     return Rec->isSubClassOf("MCSchedPredicate");
1550   });
1551 }
1552 
1553 static void collectVariantClasses(const CodeGenSchedModels &SchedModels,
1554                                   IdxVec &VariantClasses,
1555                                   bool OnlyExpandMCInstPredicates) {
1556   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1557     // Ignore non-variant scheduling classes.
1558     if (SC.Transitions.empty())
1559       continue;
1560 
1561     if (OnlyExpandMCInstPredicates) {
1562       // Ignore this variant scheduling class no transitions use any meaningful
1563       // MCSchedPredicate definitions.
1564       if (llvm::none_of(SC.Transitions, hasMCSchedPredicates))
1565         continue;
1566     }
1567 
1568     VariantClasses.push_back(SC.Index);
1569   }
1570 }
1571 
1572 static void collectProcessorIndices(const CodeGenSchedClass &SC,
1573                                     IdxVec &ProcIndices) {
1574   // A variant scheduling class may define transitions for multiple
1575   // processors.  This function identifies wich processors are associated with
1576   // transition rules specified by variant class `SC`.
1577   for (const CodeGenSchedTransition &T : SC.Transitions) {
1578     IdxVec PI;
1579     std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(),
1580                    ProcIndices.end(), std::back_inserter(PI));
1581     ProcIndices.swap(PI);
1582   }
1583 }
1584 
1585 static bool isAlwaysTrue(const CodeGenSchedTransition &T) {
1586   return llvm::all_of(T.PredTerm, isTruePredicate);
1587 }
1588 
1589 void SubtargetEmitter::emitSchedModelHelpersImpl(
1590     raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
1591   IdxVec VariantClasses;
1592   collectVariantClasses(SchedModels, VariantClasses,
1593                         OnlyExpandMCInstPredicates);
1594 
1595   if (VariantClasses.empty()) {
1596     emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1597     return;
1598   }
1599 
1600   // Construct a switch statement where the condition is a check on the
1601   // scheduling class identifier. There is a `case` for every variant class
1602   // defined by the processor models of this target.
1603   // Each `case` implements a number of rules to resolve (i.e. to transition from)
1604   // a variant scheduling class to another scheduling class.  Rules are
1605   // described by instances of CodeGenSchedTransition. Note that transitions may
1606   // not be valid for all processors.
1607   OS << "  switch (SchedClass) {\n";
1608   for (unsigned VC : VariantClasses) {
1609     IdxVec ProcIndices;
1610     const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1611     collectProcessorIndices(SC, ProcIndices);
1612 
1613     OS << "  case " << VC << ": // " << SC.Name << '\n';
1614 
1615     PredicateExpander PE(Target);
1616     PE.setByRef(false);
1617     PE.setExpandForMC(OnlyExpandMCInstPredicates);
1618     for (unsigned PI : ProcIndices) {
1619       OS << "    ";
1620 
1621       // Emit a guard on the processor ID.
1622       if (PI != 0) {
1623         OS << (OnlyExpandMCInstPredicates
1624                    ? "if (CPUID == "
1625                    : "if (SchedModel->getProcessorID() == ");
1626         OS << PI << ") ";
1627         OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n';
1628       }
1629 
1630       // Now emit transitions associated with processor PI.
1631       const CodeGenSchedTransition *FinalT = nullptr;
1632       for (const CodeGenSchedTransition &T : SC.Transitions) {
1633         if (PI != 0 && T.ProcIndex != PI)
1634           continue;
1635 
1636         // Emit only transitions based on MCSchedPredicate, if it's the case.
1637         // At least the transition specified by NoSchedPred is emitted,
1638         // which becomes the default transition for those variants otherwise
1639         // not based on MCSchedPredicate.
1640         // FIXME: preferably, llvm-mca should instead assume a reasonable
1641         // default when a variant transition is not based on MCSchedPredicate
1642         // for a given processor.
1643         if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
1644           continue;
1645 
1646         // If transition is folded to 'return X' it should be the last one.
1647         if (isAlwaysTrue(T)) {
1648           FinalT = &T;
1649           continue;
1650         }
1651         PE.setIndentLevel(3);
1652         emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
1653       }
1654       if (FinalT)
1655         emitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx),
1656                        PE, OS);
1657 
1658       OS << "    }\n";
1659 
1660       if (PI == 0)
1661         break;
1662     }
1663 
1664     if (SC.isInferred())
1665       OS << "    return " << SC.Index << ";\n";
1666     OS << "    break;\n";
1667   }
1668 
1669   OS << "  };\n";
1670 
1671   emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1672 }
1673 
1674 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1675                                              raw_ostream &OS) {
1676   OS << "unsigned " << ClassName
1677      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1678      << " const TargetSchedModel *SchedModel) const {\n";
1679 
1680   // Emit the predicate prolog code.
1681   emitPredicateProlog(Records, OS);
1682 
1683   // Emit target predicates.
1684   emitSchedModelHelpersImpl(OS);
1685 
1686   OS << "} // " << ClassName << "::resolveSchedClass\n\n";
1687 
1688   OS << "unsigned " << ClassName
1689      << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
1690      << " const MCInstrInfo *MCII, unsigned CPUID) const {\n"
1691      << "  return " << Target << "_MC"
1692      << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"
1693      << "} // " << ClassName << "::resolveVariantSchedClass\n\n";
1694 
1695   STIPredicateExpander PE(Target);
1696   PE.setClassPrefix(ClassName);
1697   PE.setExpandDefinition(true);
1698   PE.setByRef(false);
1699   PE.setIndentLevel(0);
1700 
1701   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1702     PE.expandSTIPredicate(OS, Fn);
1703 }
1704 
1705 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
1706                                        raw_ostream &OS) {
1707   const CodeGenHwModes &CGH = TGT.getHwModes();
1708   assert(CGH.getNumModeIds() > 0);
1709   if (CGH.getNumModeIds() == 1)
1710     return;
1711 
1712   OS << "unsigned " << ClassName << "::getHwMode() const {\n";
1713   for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
1714     const HwMode &HM = CGH.getMode(M);
1715     OS << "  if (checkFeatures(\"" << HM.Features
1716        << "\")) return " << M << ";\n";
1717   }
1718   OS << "  return 0;\n}\n";
1719 }
1720 
1721 //
1722 // ParseFeaturesFunction - Produces a subtarget specific function for parsing
1723 // the subtarget features string.
1724 //
1725 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1726                                              unsigned NumFeatures,
1727                                              unsigned NumProcs) {
1728   std::vector<Record*> Features =
1729                        Records.getAllDerivedDefinitions("SubtargetFeature");
1730   llvm::sort(Features, LessRecord());
1731 
1732   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1733      << "// subtarget options.\n"
1734      << "void llvm::";
1735   OS << Target;
1736   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, "
1737      << "StringRef FS) {\n"
1738      << "  LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1739      << "  LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n"
1740      << "  LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n";
1741 
1742   if (Features.empty()) {
1743     OS << "}\n";
1744     return;
1745   }
1746 
1747   OS << "  InitMCProcessorInfo(CPU, TuneCPU, FS);\n"
1748      << "  const FeatureBitset &Bits = getFeatureBits();\n";
1749 
1750   for (Record *R : Features) {
1751     // Next record
1752     StringRef Instance = R->getName();
1753     StringRef Value = R->getValueAsString("Value");
1754     StringRef Attribute = R->getValueAsString("Attribute");
1755 
1756     if (Value=="true" || Value=="false")
1757       OS << "  if (Bits[" << Target << "::"
1758          << Instance << "]) "
1759          << Attribute << " = " << Value << ";\n";
1760     else
1761       OS << "  if (Bits[" << Target << "::"
1762          << Instance << "] && "
1763          << Attribute << " < " << Value << ") "
1764          << Attribute << " = " << Value << ";\n";
1765   }
1766 
1767   OS << "}\n";
1768 }
1769 
1770 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
1771   OS << "namespace " << Target << "_MC {\n"
1772      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
1773      << "    const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n";
1774   emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
1775   OS << "}\n";
1776   OS << "} // end namespace " << Target << "_MC\n\n";
1777 
1778   OS << "struct " << Target
1779      << "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
1780   OS << "  " << Target << "GenMCSubtargetInfo(const Triple &TT,\n"
1781      << "    StringRef CPU, StringRef TuneCPU, StringRef FS,\n"
1782      << "    ArrayRef<SubtargetFeatureKV> PF,\n"
1783      << "    ArrayRef<SubtargetSubTypeKV> PD,\n"
1784      << "    const MCWriteProcResEntry *WPR,\n"
1785      << "    const MCWriteLatencyEntry *WL,\n"
1786      << "    const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
1787      << "    const unsigned *OC, const unsigned *FP) :\n"
1788      << "      MCSubtargetInfo(TT, CPU, TuneCPU, FS, PF, PD,\n"
1789      << "                      WPR, WL, RA, IS, OC, FP) { }\n\n"
1790      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
1791      << "      const MCInst *MI, const MCInstrInfo *MCII,\n"
1792      << "      unsigned CPUID) const override {\n"
1793      << "    return " << Target << "_MC"
1794      << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n";
1795   OS << "  }\n";
1796   if (TGT.getHwModes().getNumModeIds() > 1)
1797     OS << "  unsigned getHwMode() const override;\n";
1798   OS << "};\n";
1799   EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS);
1800 }
1801 
1802 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) {
1803   OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
1804   OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1805 
1806   STIPredicateExpander PE(Target);
1807   PE.setExpandForMC(true);
1808   PE.setByRef(true);
1809   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1810     PE.expandSTIPredicate(OS, Fn);
1811 
1812   OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1813 
1814   OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
1815   OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1816 
1817   std::string ClassPrefix = Target + "MCInstrAnalysis";
1818   PE.setExpandDefinition(true);
1819   PE.setClassPrefix(ClassPrefix);
1820   PE.setIndentLevel(0);
1821   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1822     PE.expandSTIPredicate(OS, Fn);
1823 
1824   OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1825 }
1826 
1827 //
1828 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1829 //
1830 void SubtargetEmitter::run(raw_ostream &OS) {
1831   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1832 
1833   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1834   OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1835 
1836   DenseMap<Record *, unsigned> FeatureMap;
1837 
1838   OS << "namespace llvm {\n";
1839   Enumeration(OS, FeatureMap);
1840   OS << "} // end namespace llvm\n\n";
1841   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1842 
1843   EmitSubtargetInfoMacroCalls(OS);
1844 
1845   OS << "namespace llvm {\n";
1846 #if 0
1847   OS << "namespace {\n";
1848 #endif
1849   unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap);
1850   OS << "\n";
1851   EmitSchedModel(OS);
1852   OS << "\n";
1853   unsigned NumProcs = CPUKeyValues(OS, FeatureMap);
1854   OS << "\n";
1855 #if 0
1856   OS << "} // end anonymous namespace\n\n";
1857 #endif
1858 
1859   // MCInstrInfo initialization routine.
1860   emitGenMCSubtargetInfo(OS);
1861 
1862   OS << "\nstatic inline MCSubtargetInfo *create" << Target
1863      << "MCSubtargetInfoImpl("
1864      << "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n";
1865   OS << "  return new " << Target
1866      << "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, ";
1867   if (NumFeatures)
1868     OS << Target << "FeatureKV, ";
1869   else
1870     OS << "None, ";
1871   if (NumProcs)
1872     OS << Target << "SubTypeKV, ";
1873   else
1874     OS << "None, ";
1875   OS << '\n'; OS.indent(22);
1876   OS << Target << "WriteProcResTable, "
1877      << Target << "WriteLatencyTable, "
1878      << Target << "ReadAdvanceTable, ";
1879   OS << '\n'; OS.indent(22);
1880   if (SchedModels.hasItineraries()) {
1881     OS << Target << "Stages, "
1882        << Target << "OperandCycles, "
1883        << Target << "ForwardingPaths";
1884   } else
1885     OS << "nullptr, nullptr, nullptr";
1886   OS << ");\n}\n\n";
1887 
1888   OS << "} // end namespace llvm\n\n";
1889 
1890   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1891 
1892   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1893   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
1894 
1895   OS << "#include \"llvm/Support/Debug.h\"\n";
1896   OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
1897   ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1898 
1899   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1900 
1901   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1902   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1903   OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
1904 
1905   std::string ClassName = Target + "GenSubtargetInfo";
1906   OS << "namespace llvm {\n";
1907   OS << "class DFAPacketizer;\n";
1908   OS << "namespace " << Target << "_MC {\n"
1909      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
1910      << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n"
1911      << "} // end namespace " << Target << "_MC\n\n";
1912   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1913      << "  explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1914      << "StringRef TuneCPU, StringRef FS);\n"
1915      << "public:\n"
1916      << "  unsigned resolveSchedClass(unsigned SchedClass, "
1917      << " const MachineInstr *DefMI,"
1918      << " const TargetSchedModel *SchedModel) const override;\n"
1919      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,"
1920      << " const MCInst *MI, const MCInstrInfo *MCII,"
1921      << " unsigned CPUID) const override;\n"
1922      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1923      << " const;\n";
1924   if (TGT.getHwModes().getNumModeIds() > 1)
1925     OS << "  unsigned getHwMode() const override;\n";
1926 
1927   STIPredicateExpander PE(Target);
1928   PE.setByRef(false);
1929   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1930     PE.expandSTIPredicate(OS, Fn);
1931 
1932   OS << "};\n"
1933      << "} // end namespace llvm\n\n";
1934 
1935   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1936 
1937   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1938   OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
1939 
1940   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
1941   OS << "namespace llvm {\n";
1942   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1943   OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n";
1944   OS << "extern const llvm::MCWriteProcResEntry "
1945      << Target << "WriteProcResTable[];\n";
1946   OS << "extern const llvm::MCWriteLatencyEntry "
1947      << Target << "WriteLatencyTable[];\n";
1948   OS << "extern const llvm::MCReadAdvanceEntry "
1949      << Target << "ReadAdvanceTable[];\n";
1950 
1951   if (SchedModels.hasItineraries()) {
1952     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1953     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1954     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1955   }
1956 
1957   OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
1958      << "StringRef TuneCPU, StringRef FS)\n"
1959      << "  : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, ";
1960   if (NumFeatures)
1961     OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
1962   else
1963     OS << "None, ";
1964   if (NumProcs)
1965     OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
1966   else
1967     OS << "None, ";
1968   OS << '\n'; OS.indent(24);
1969   OS << Target << "WriteProcResTable, "
1970      << Target << "WriteLatencyTable, "
1971      << Target << "ReadAdvanceTable, ";
1972   OS << '\n'; OS.indent(24);
1973   if (SchedModels.hasItineraries()) {
1974     OS << Target << "Stages, "
1975        << Target << "OperandCycles, "
1976        << Target << "ForwardingPaths";
1977   } else
1978     OS << "nullptr, nullptr, nullptr";
1979   OS << ") {}\n\n";
1980 
1981   EmitSchedModelHelpers(ClassName, OS);
1982   EmitHwModeCheck(ClassName, OS);
1983 
1984   OS << "} // end namespace llvm\n\n";
1985 
1986   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1987 
1988   EmitMCInstrAnalysisPredicateFunctions(OS);
1989 }
1990 
1991 namespace llvm {
1992 
1993 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1994   CodeGenTarget CGTarget(RK);
1995   SubtargetEmitter(RK, CGTarget).run(OS);
1996 }
1997 
1998 } // end namespace llvm
1999