1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits subtarget enumerations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenTarget.h"
15 #include "CodeGenSchedule.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/MC/MCInstrItineraries.h"
21 #include "llvm/MC/MCSchedule.h"
22 #include "llvm/MC/SubtargetFeature.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include "llvm/TableGen/TableGenBackend.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstdint>
32 #include <iterator>
33 #include <map>
34 #include <string>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "subtarget-emitter"
40 
41 namespace {
42 
43 class SubtargetEmitter {
44   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
45   // The SchedClassDesc table indexes into a global write resource table, write
46   // latency table, and read advance table.
47   struct SchedClassTables {
48     std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
49     std::vector<MCWriteProcResEntry> WriteProcResources;
50     std::vector<MCWriteLatencyEntry> WriteLatencies;
51     std::vector<std::string> WriterNames;
52     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
53 
54     // Reserve an invalid entry at index 0
55     SchedClassTables() {
56       ProcSchedClasses.resize(1);
57       WriteProcResources.resize(1);
58       WriteLatencies.resize(1);
59       WriterNames.push_back("InvalidWrite");
60       ReadAdvanceEntries.resize(1);
61     }
62   };
63 
64   struct LessWriteProcResources {
65     bool operator()(const MCWriteProcResEntry &LHS,
66                     const MCWriteProcResEntry &RHS) {
67       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
68     }
69   };
70 
71   const CodeGenTarget &TGT;
72   RecordKeeper &Records;
73   CodeGenSchedModels &SchedModels;
74   std::string Target;
75 
76   void Enumeration(raw_ostream &OS);
77   unsigned FeatureKeyValues(raw_ostream &OS);
78   unsigned CPUKeyValues(raw_ostream &OS);
79   void FormItineraryStageString(const std::string &Names,
80                                 Record *ItinData, std::string &ItinString,
81                                 unsigned &NStages);
82   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
83                                        unsigned &NOperandCycles);
84   void FormItineraryBypassString(const std::string &Names,
85                                  Record *ItinData,
86                                  std::string &ItinString, unsigned NOperandCycles);
87   void EmitStageAndOperandCycleData(raw_ostream &OS,
88                                     std::vector<std::vector<InstrItinerary>>
89                                       &ProcItinLists);
90   void EmitItineraries(raw_ostream &OS,
91                        std::vector<std::vector<InstrItinerary>>
92                          &ProcItinLists);
93   void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
94                          char Separator);
95   void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
96                                      raw_ostream &OS);
97   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
98                               raw_ostream &OS);
99   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
100                              const CodeGenProcModel &ProcModel);
101   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
102                           const CodeGenProcModel &ProcModel);
103   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
104                            const CodeGenProcModel &ProcModel);
105   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
106                            SchedClassTables &SchedTables);
107   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
108   void EmitProcessorModels(raw_ostream &OS);
109   void EmitProcessorLookup(raw_ostream &OS);
110   void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
111   void EmitSchedModel(raw_ostream &OS);
112   void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
113   void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
114                              unsigned NumProcs);
115 
116 public:
117   SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT)
118     : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()),
119       Target(TGT.getName()) {}
120 
121   void run(raw_ostream &o);
122 };
123 
124 } // end anonymous namespace
125 
126 //
127 // Enumeration - Emit the specified class as an enumeration.
128 //
129 void SubtargetEmitter::Enumeration(raw_ostream &OS) {
130   // Get all records of class and sort
131   std::vector<Record*> DefList =
132     Records.getAllDerivedDefinitions("SubtargetFeature");
133   std::sort(DefList.begin(), DefList.end(), LessRecord());
134 
135   unsigned N = DefList.size();
136   if (N == 0)
137     return;
138   if (N > MAX_SUBTARGET_FEATURES)
139     PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
140 
141   OS << "namespace " << Target << " {\n";
142 
143   // Open enumeration.
144   OS << "enum {\n";
145 
146   // For each record
147   for (unsigned i = 0; i < N; ++i) {
148     // Next record
149     Record *Def = DefList[i];
150 
151     // Get and emit name
152     OS << "  " << Def->getName() << " = " << i << ",\n";
153   }
154 
155   // Close enumeration and namespace
156   OS << "};\n";
157   OS << "} // end namespace " << Target << "\n";
158 }
159 
160 //
161 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
162 // command line.
163 //
164 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) {
165   // Gather and sort all the features
166   std::vector<Record*> FeatureList =
167                            Records.getAllDerivedDefinitions("SubtargetFeature");
168 
169   if (FeatureList.empty())
170     return 0;
171 
172   std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName());
173 
174   // Begin feature table
175   OS << "// Sorted (by key) array of values for CPU features.\n"
176      << "extern const llvm::SubtargetFeatureKV " << Target
177      << "FeatureKV[] = {\n";
178 
179   // For each feature
180   unsigned NumFeatures = 0;
181   for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
182     // Next feature
183     Record *Feature = FeatureList[i];
184 
185     StringRef Name = Feature->getName();
186     StringRef CommandLineName = Feature->getValueAsString("Name");
187     StringRef Desc = Feature->getValueAsString("Desc");
188 
189     if (CommandLineName.empty()) continue;
190 
191     // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
192     OS << "  { "
193        << "\"" << CommandLineName << "\", "
194        << "\"" << Desc << "\", "
195        << "{ " << Target << "::" << Name << " }, ";
196 
197     const std::vector<Record*> &ImpliesList =
198       Feature->getValueAsListOfDefs("Implies");
199 
200     OS << "{";
201     for (unsigned j = 0, M = ImpliesList.size(); j < M;) {
202       OS << " " << Target << "::" << ImpliesList[j]->getName();
203       if (++j < M) OS << ",";
204     }
205     OS << " } },\n";
206     ++NumFeatures;
207   }
208 
209   // End feature table
210   OS << "};\n";
211 
212   return NumFeatures;
213 }
214 
215 //
216 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
217 // line.
218 //
219 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) {
220   // Gather and sort processor information
221   std::vector<Record*> ProcessorList =
222                           Records.getAllDerivedDefinitions("Processor");
223   std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
224 
225   // Begin processor table
226   OS << "// Sorted (by key) array of values for CPU subtype.\n"
227      << "extern const llvm::SubtargetFeatureKV " << Target
228      << "SubTypeKV[] = {\n";
229 
230   // For each processor
231   for (Record *Processor : ProcessorList) {
232     StringRef Name = Processor->getValueAsString("Name");
233     const std::vector<Record*> &FeatureList =
234       Processor->getValueAsListOfDefs("Features");
235 
236     // Emit as { "cpu", "description", { f1 , f2 , ... fn } },
237     OS << "  { "
238        << "\"" << Name << "\", "
239        << "\"Select the " << Name << " processor\", ";
240 
241     OS << "{";
242     for (unsigned j = 0, M = FeatureList.size(); j < M;) {
243       OS << " " << Target << "::" << FeatureList[j]->getName();
244       if (++j < M) OS << ",";
245     }
246     // The { } is for the "implies" section of this data structure.
247     OS << " }, { } },\n";
248   }
249 
250   // End processor table
251   OS << "};\n";
252 
253   return ProcessorList.size();
254 }
255 
256 //
257 // FormItineraryStageString - Compose a string containing the stage
258 // data initialization for the specified itinerary.  N is the number
259 // of stages.
260 //
261 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
262                                                 Record *ItinData,
263                                                 std::string &ItinString,
264                                                 unsigned &NStages) {
265   // Get states list
266   const std::vector<Record*> &StageList =
267     ItinData->getValueAsListOfDefs("Stages");
268 
269   // For each stage
270   unsigned N = NStages = StageList.size();
271   for (unsigned i = 0; i < N;) {
272     // Next stage
273     const Record *Stage = StageList[i];
274 
275     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
276     int Cycles = Stage->getValueAsInt("Cycles");
277     ItinString += "  { " + itostr(Cycles) + ", ";
278 
279     // Get unit list
280     const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units");
281 
282     // For each unit
283     for (unsigned j = 0, M = UnitList.size(); j < M;) {
284       // Add name and bitwise or
285       ItinString += Name + "FU::" + UnitList[j]->getName().str();
286       if (++j < M) ItinString += " | ";
287     }
288 
289     int TimeInc = Stage->getValueAsInt("TimeInc");
290     ItinString += ", " + itostr(TimeInc);
291 
292     int Kind = Stage->getValueAsInt("Kind");
293     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
294 
295     // Close off stage
296     ItinString += " }";
297     if (++i < N) ItinString += ", ";
298   }
299 }
300 
301 //
302 // FormItineraryOperandCycleString - Compose a string containing the
303 // operand cycle initialization for the specified itinerary.  N is the
304 // number of operands that has cycles specified.
305 //
306 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
307                          std::string &ItinString, unsigned &NOperandCycles) {
308   // Get operand cycle list
309   const std::vector<int64_t> &OperandCycleList =
310     ItinData->getValueAsListOfInts("OperandCycles");
311 
312   // For each operand cycle
313   unsigned N = NOperandCycles = OperandCycleList.size();
314   for (unsigned i = 0; i < N;) {
315     // Next operand cycle
316     const int OCycle = OperandCycleList[i];
317 
318     ItinString += "  " + itostr(OCycle);
319     if (++i < N) ItinString += ", ";
320   }
321 }
322 
323 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
324                                                  Record *ItinData,
325                                                  std::string &ItinString,
326                                                  unsigned NOperandCycles) {
327   const std::vector<Record*> &BypassList =
328     ItinData->getValueAsListOfDefs("Bypasses");
329   unsigned N = BypassList.size();
330   unsigned i = 0;
331   for (; i < N;) {
332     ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
333     if (++i < NOperandCycles) ItinString += ", ";
334   }
335   for (; i < NOperandCycles;) {
336     ItinString += " 0";
337     if (++i < NOperandCycles) ItinString += ", ";
338   }
339 }
340 
341 //
342 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
343 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
344 // by CodeGenSchedClass::Index.
345 //
346 void SubtargetEmitter::
347 EmitStageAndOperandCycleData(raw_ostream &OS,
348                              std::vector<std::vector<InstrItinerary>>
349                                &ProcItinLists) {
350   // Multiple processor models may share an itinerary record. Emit it once.
351   SmallPtrSet<Record*, 8> ItinsDefSet;
352 
353   // Emit functional units for all the itineraries.
354   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
355 
356     if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
357       continue;
358 
359     std::vector<Record*> FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
360     if (FUs.empty())
361       continue;
362 
363     StringRef Name = ProcModel.ItinsDef->getName();
364     OS << "\n// Functional units for \"" << Name << "\"\n"
365        << "namespace " << Name << "FU {\n";
366 
367     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
368       OS << "  const unsigned " << FUs[j]->getName()
369          << " = 1 << " << j << ";\n";
370 
371     OS << "} // end namespace " << Name << "FU\n";
372 
373     std::vector<Record*> BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
374     if (!BPs.empty()) {
375       OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name
376          << "\"\n" << "namespace " << Name << "Bypass {\n";
377 
378       OS << "  const unsigned NoBypass = 0;\n";
379       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
380         OS << "  const unsigned " << BPs[j]->getName()
381            << " = 1 << " << j << ";\n";
382 
383       OS << "} // end namespace " << Name << "Bypass\n";
384     }
385   }
386 
387   // Begin stages table
388   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
389                            "Stages[] = {\n";
390   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
391 
392   // Begin operand cycle table
393   std::string OperandCycleTable = "extern const unsigned " + Target +
394     "OperandCycles[] = {\n";
395   OperandCycleTable += "  0, // No itinerary\n";
396 
397   // Begin pipeline bypass table
398   std::string BypassTable = "extern const unsigned " + Target +
399     "ForwardingPaths[] = {\n";
400   BypassTable += " 0, // No itinerary\n";
401 
402   // For each Itinerary across all processors, add a unique entry to the stages,
403   // operand cycles, and pipeline bypass tables. Then add the new Itinerary
404   // object with computed offsets to the ProcItinLists result.
405   unsigned StageCount = 1, OperandCycleCount = 1;
406   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
407   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
408     // Add process itinerary to the list.
409     ProcItinLists.resize(ProcItinLists.size()+1);
410 
411     // If this processor defines no itineraries, then leave the itinerary list
412     // empty.
413     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
414     if (!ProcModel.hasItineraries())
415       continue;
416 
417     StringRef Name = ProcModel.ItinsDef->getName();
418 
419     ItinList.resize(SchedModels.numInstrSchedClasses());
420     assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
421 
422     for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
423          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
424 
425       // Next itinerary data
426       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
427 
428       // Get string and stage count
429       std::string ItinStageString;
430       unsigned NStages = 0;
431       if (ItinData)
432         FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
433 
434       // Get string and operand cycle count
435       std::string ItinOperandCycleString;
436       unsigned NOperandCycles = 0;
437       std::string ItinBypassString;
438       if (ItinData) {
439         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
440                                         NOperandCycles);
441 
442         FormItineraryBypassString(Name, ItinData, ItinBypassString,
443                                   NOperandCycles);
444       }
445 
446       // Check to see if stage already exists and create if it doesn't
447       uint16_t FindStage = 0;
448       if (NStages > 0) {
449         FindStage = ItinStageMap[ItinStageString];
450         if (FindStage == 0) {
451           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
452           StageTable += ItinStageString + ", // " + itostr(StageCount);
453           if (NStages > 1)
454             StageTable += "-" + itostr(StageCount + NStages - 1);
455           StageTable += "\n";
456           // Record Itin class number.
457           ItinStageMap[ItinStageString] = FindStage = StageCount;
458           StageCount += NStages;
459         }
460       }
461 
462       // Check to see if operand cycle already exists and create if it doesn't
463       uint16_t FindOperandCycle = 0;
464       if (NOperandCycles > 0) {
465         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
466         FindOperandCycle = ItinOperandMap[ItinOperandString];
467         if (FindOperandCycle == 0) {
468           // Emit as  cycle, // index
469           OperandCycleTable += ItinOperandCycleString + ", // ";
470           std::string OperandIdxComment = itostr(OperandCycleCount);
471           if (NOperandCycles > 1)
472             OperandIdxComment += "-"
473               + itostr(OperandCycleCount + NOperandCycles - 1);
474           OperandCycleTable += OperandIdxComment + "\n";
475           // Record Itin class number.
476           ItinOperandMap[ItinOperandCycleString] =
477             FindOperandCycle = OperandCycleCount;
478           // Emit as bypass, // index
479           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
480           OperandCycleCount += NOperandCycles;
481         }
482       }
483 
484       // Set up itinerary as location and location + stage count
485       int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
486       InstrItinerary Intinerary = {
487           NumUOps,
488           FindStage,
489           uint16_t(FindStage + NStages),
490           FindOperandCycle,
491           uint16_t(FindOperandCycle + NOperandCycles),
492       };
493 
494       // Inject - empty slots will be 0, 0
495       ItinList[SchedClassIdx] = Intinerary;
496     }
497   }
498 
499   // Closing stage
500   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
501   StageTable += "};\n";
502 
503   // Closing operand cycles
504   OperandCycleTable += "  0 // End operand cycles\n";
505   OperandCycleTable += "};\n";
506 
507   BypassTable += " 0 // End bypass tables\n";
508   BypassTable += "};\n";
509 
510   // Emit tables.
511   OS << StageTable;
512   OS << OperandCycleTable;
513   OS << BypassTable;
514 }
515 
516 //
517 // EmitProcessorData - Generate data for processor itineraries that were
518 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
519 // Itineraries for each processor. The Itinerary lists are indexed on
520 // CodeGenSchedClass::Index.
521 //
522 void SubtargetEmitter::
523 EmitItineraries(raw_ostream &OS,
524                 std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
525   // Multiple processor models may share an itinerary record. Emit it once.
526   SmallPtrSet<Record*, 8> ItinsDefSet;
527 
528   // For each processor's machine model
529   std::vector<std::vector<InstrItinerary>>::iterator
530       ProcItinListsIter = ProcItinLists.begin();
531   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
532          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
533 
534     Record *ItinsDef = PI->ItinsDef;
535     if (!ItinsDefSet.insert(ItinsDef).second)
536       continue;
537 
538     // Get the itinerary list for the processor.
539     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
540     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
541 
542     // Empty itineraries aren't referenced anywhere in the tablegen output
543     // so don't emit them.
544     if (ItinList.empty())
545       continue;
546 
547     OS << "\n";
548     OS << "static const llvm::InstrItinerary ";
549 
550     // Begin processor itinerary table
551     OS << ItinsDef->getName() << "[] = {\n";
552 
553     // For each itinerary class in CodeGenSchedClass::Index order.
554     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
555       InstrItinerary &Intinerary = ItinList[j];
556 
557       // Emit Itinerary in the form of
558       // { firstStage, lastStage, firstCycle, lastCycle } // index
559       OS << "  { " <<
560         Intinerary.NumMicroOps << ", " <<
561         Intinerary.FirstStage << ", " <<
562         Intinerary.LastStage << ", " <<
563         Intinerary.FirstOperandCycle << ", " <<
564         Intinerary.LastOperandCycle << " }" <<
565         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
566     }
567     // End processor itinerary table
568     OS << "  { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
569           "// end marker\n";
570     OS << "};\n";
571   }
572 }
573 
574 // Emit either the value defined in the TableGen Record, or the default
575 // value defined in the C++ header. The Record is null if the processor does not
576 // define a model.
577 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
578                                          StringRef Name, char Separator) {
579   OS << "  ";
580   int V = R ? R->getValueAsInt(Name) : -1;
581   if (V >= 0)
582     OS << V << Separator << " // " << Name;
583   else
584     OS << "MCSchedModel::Default" << Name << Separator;
585   OS << '\n';
586 }
587 
588 void SubtargetEmitter::EmitProcessorResourceSubUnits(
589     const CodeGenProcModel &ProcModel, raw_ostream &OS) {
590   OS << "\nstatic const unsigned " << ProcModel.ModelName
591      << "ProcResourceSubUnits[] = {\n"
592      << "  0,  // Invalid\n";
593 
594   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
595     Record *PRDef = ProcModel.ProcResourceDefs[i];
596     if (!PRDef->isSubClassOf("ProcResGroup"))
597       continue;
598     RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
599     for (Record *RUDef : ResUnits) {
600       Record *const RU =
601           SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
602       for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
603         OS << "  " << ProcModel.getProcResourceIdx(RU) << ", ";
604       }
605     }
606     OS << "  // " << PRDef->getName() << "\n";
607   }
608   OS << "};\n";
609 }
610 
611 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
612                                               raw_ostream &OS) {
613   EmitProcessorResourceSubUnits(ProcModel, OS);
614 
615   OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered, SubUnitsIdxBegin}\n";
616   OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
617      << "ProcResources"
618      << "[] = {\n"
619      << "  {\"InvalidUnit\", 0, 0, 0, 0},\n";
620 
621   unsigned SubUnitsOffset = 1;
622   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
623     Record *PRDef = ProcModel.ProcResourceDefs[i];
624 
625     Record *SuperDef = nullptr;
626     unsigned SuperIdx = 0;
627     unsigned NumUnits = 0;
628     const unsigned SubUnitsBeginOffset = SubUnitsOffset;
629     int BufferSize = PRDef->getValueAsInt("BufferSize");
630     if (PRDef->isSubClassOf("ProcResGroup")) {
631       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
632       for (Record *RU : ResUnits) {
633         NumUnits += RU->getValueAsInt("NumUnits");
634         SubUnitsOffset += RU->getValueAsInt("NumUnits");
635       }
636     }
637     else {
638       // Find the SuperIdx
639       if (PRDef->getValueInit("Super")->isComplete()) {
640         SuperDef =
641             SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
642                                          ProcModel, PRDef->getLoc());
643         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
644       }
645       NumUnits = PRDef->getValueAsInt("NumUnits");
646     }
647     // Emit the ProcResourceDesc
648     OS << "  {\"" << PRDef->getName() << "\", ";
649     if (PRDef->getName().size() < 15)
650       OS.indent(15 - PRDef->getName().size());
651     OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
652     if (SubUnitsBeginOffset != SubUnitsOffset) {
653       OS << ProcModel.ModelName << "ProcResourceSubUnits + "
654          << SubUnitsBeginOffset;
655     } else {
656       OS << "nullptr";
657     }
658     OS << "}, // #" << i+1;
659     if (SuperDef)
660       OS << ", Super=" << SuperDef->getName();
661     OS << "\n";
662   }
663   OS << "};\n";
664 }
665 
666 // Find the WriteRes Record that defines processor resources for this
667 // SchedWrite.
668 Record *SubtargetEmitter::FindWriteResources(
669   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
670 
671   // Check if the SchedWrite is already subtarget-specific and directly
672   // specifies a set of processor resources.
673   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
674     return SchedWrite.TheDef;
675 
676   Record *AliasDef = nullptr;
677   for (Record *A : SchedWrite.Aliases) {
678     const CodeGenSchedRW &AliasRW =
679       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
680     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
681       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
682       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
683         continue;
684     }
685     if (AliasDef)
686       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
687                     "defined for processor " + ProcModel.ModelName +
688                     " Ensure only one SchedAlias exists per RW.");
689     AliasDef = AliasRW.TheDef;
690   }
691   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
692     return AliasDef;
693 
694   // Check this processor's list of write resources.
695   Record *ResDef = nullptr;
696   for (Record *WR : ProcModel.WriteResDefs) {
697     if (!WR->isSubClassOf("WriteRes"))
698       continue;
699     if (AliasDef == WR->getValueAsDef("WriteType")
700         || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
701       if (ResDef) {
702         PrintFatalError(WR->getLoc(), "Resources are defined for both "
703                       "SchedWrite and its alias on processor " +
704                       ProcModel.ModelName);
705       }
706       ResDef = WR;
707     }
708   }
709   // TODO: If ProcModel has a base model (previous generation processor),
710   // then call FindWriteResources recursively with that model here.
711   if (!ResDef) {
712     PrintFatalError(ProcModel.ModelDef->getLoc(),
713                     Twine("Processor does not define resources for ") +
714                     SchedWrite.TheDef->getName());
715   }
716   return ResDef;
717 }
718 
719 /// Find the ReadAdvance record for the given SchedRead on this processor or
720 /// return NULL.
721 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
722                                           const CodeGenProcModel &ProcModel) {
723   // Check for SchedReads that directly specify a ReadAdvance.
724   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
725     return SchedRead.TheDef;
726 
727   // Check this processor's list of aliases for SchedRead.
728   Record *AliasDef = nullptr;
729   for (Record *A : SchedRead.Aliases) {
730     const CodeGenSchedRW &AliasRW =
731       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
732     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
733       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
734       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
735         continue;
736     }
737     if (AliasDef)
738       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
739                     "defined for processor " + ProcModel.ModelName +
740                     " Ensure only one SchedAlias exists per RW.");
741     AliasDef = AliasRW.TheDef;
742   }
743   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
744     return AliasDef;
745 
746   // Check this processor's ReadAdvanceList.
747   Record *ResDef = nullptr;
748   for (Record *RA : ProcModel.ReadAdvanceDefs) {
749     if (!RA->isSubClassOf("ReadAdvance"))
750       continue;
751     if (AliasDef == RA->getValueAsDef("ReadType")
752         || SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
753       if (ResDef) {
754         PrintFatalError(RA->getLoc(), "Resources are defined for both "
755                       "SchedRead and its alias on processor " +
756                       ProcModel.ModelName);
757       }
758       ResDef = RA;
759     }
760   }
761   // TODO: If ProcModel has a base model (previous generation processor),
762   // then call FindReadAdvance recursively with that model here.
763   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
764     PrintFatalError(ProcModel.ModelDef->getLoc(),
765                     Twine("Processor does not define resources for ") +
766                     SchedRead.TheDef->getName());
767   }
768   return ResDef;
769 }
770 
771 // Expand an explicit list of processor resources into a full list of implied
772 // resource groups and super resources that cover them.
773 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
774                                            std::vector<int64_t> &Cycles,
775                                            const CodeGenProcModel &PM) {
776   // Default to 1 resource cycle.
777   Cycles.resize(PRVec.size(), 1);
778   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
779     Record *PRDef = PRVec[i];
780     RecVec SubResources;
781     if (PRDef->isSubClassOf("ProcResGroup"))
782       SubResources = PRDef->getValueAsListOfDefs("Resources");
783     else {
784       SubResources.push_back(PRDef);
785       PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
786       for (Record *SubDef = PRDef;
787            SubDef->getValueInit("Super")->isComplete();) {
788         if (SubDef->isSubClassOf("ProcResGroup")) {
789           // Disallow this for simplicitly.
790           PrintFatalError(SubDef->getLoc(), "Processor resource group "
791                           " cannot be a super resources.");
792         }
793         Record *SuperDef =
794             SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
795                                          SubDef->getLoc());
796         PRVec.push_back(SuperDef);
797         Cycles.push_back(Cycles[i]);
798         SubDef = SuperDef;
799       }
800     }
801     for (Record *PR : PM.ProcResourceDefs) {
802       if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
803         continue;
804       RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
805       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
806       for( ; SubI != SubE; ++SubI) {
807         if (!is_contained(SuperResources, *SubI)) {
808           break;
809         }
810       }
811       if (SubI == SubE) {
812         PRVec.push_back(PR);
813         Cycles.push_back(Cycles[i]);
814       }
815     }
816   }
817 }
818 
819 // Generate the SchedClass table for this processor and update global
820 // tables. Must be called for each processor in order.
821 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
822                                            SchedClassTables &SchedTables) {
823   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
824   if (!ProcModel.hasInstrSchedModel())
825     return;
826 
827   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
828   DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
829   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
830     DEBUG(SC.dump(&SchedModels));
831 
832     SCTab.resize(SCTab.size() + 1);
833     MCSchedClassDesc &SCDesc = SCTab.back();
834     // SCDesc.Name is guarded by NDEBUG
835     SCDesc.NumMicroOps = 0;
836     SCDesc.BeginGroup = false;
837     SCDesc.EndGroup = false;
838     SCDesc.WriteProcResIdx = 0;
839     SCDesc.WriteLatencyIdx = 0;
840     SCDesc.ReadAdvanceIdx = 0;
841 
842     // A Variant SchedClass has no resources of its own.
843     bool HasVariants = false;
844     for (const CodeGenSchedTransition &CGT :
845            make_range(SC.Transitions.begin(), SC.Transitions.end())) {
846       if (CGT.ProcIndices[0] == 0 ||
847           is_contained(CGT.ProcIndices, ProcModel.Index)) {
848         HasVariants = true;
849         break;
850       }
851     }
852     if (HasVariants) {
853       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
854       continue;
855     }
856 
857     // Determine if the SchedClass is actually reachable on this processor. If
858     // not don't try to locate the processor resources, it will fail.
859     // If ProcIndices contains 0, this class applies to all processors.
860     assert(!SC.ProcIndices.empty() && "expect at least one procidx");
861     if (SC.ProcIndices[0] != 0) {
862       if (!is_contained(SC.ProcIndices, ProcModel.Index))
863         continue;
864     }
865     IdxVec Writes = SC.Writes;
866     IdxVec Reads = SC.Reads;
867     if (!SC.InstRWs.empty()) {
868       // This class has a default ReadWrite list which can be overriden by
869       // InstRW definitions.
870       Record *RWDef = nullptr;
871       for (Record *RW : SC.InstRWs) {
872         Record *RWModelDef = RW->getValueAsDef("SchedModel");
873         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
874           RWDef = RW;
875           break;
876         }
877       }
878       if (RWDef) {
879         Writes.clear();
880         Reads.clear();
881         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
882                             Writes, Reads);
883       }
884     }
885     if (Writes.empty()) {
886       // Check this processor's itinerary class resources.
887       for (Record *I : ProcModel.ItinRWDefs) {
888         RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
889         if (is_contained(Matched, SC.ItinClassDef)) {
890           SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
891                               Writes, Reads);
892           break;
893         }
894       }
895       if (Writes.empty()) {
896         DEBUG(dbgs() << ProcModel.ModelName
897               << " does not have resources for class " << SC.Name << '\n');
898       }
899     }
900     // Sum resources across all operand writes.
901     std::vector<MCWriteProcResEntry> WriteProcResources;
902     std::vector<MCWriteLatencyEntry> WriteLatencies;
903     std::vector<std::string> WriterNames;
904     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
905     for (unsigned W : Writes) {
906       IdxVec WriteSeq;
907       SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
908                                      ProcModel);
909 
910       // For each operand, create a latency entry.
911       MCWriteLatencyEntry WLEntry;
912       WLEntry.Cycles = 0;
913       unsigned WriteID = WriteSeq.back();
914       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
915       // If this Write is not referenced by a ReadAdvance, don't distinguish it
916       // from other WriteLatency entries.
917       if (!SchedModels.hasReadOfWrite(
918             SchedModels.getSchedWrite(WriteID).TheDef)) {
919         WriteID = 0;
920       }
921       WLEntry.WriteResourceID = WriteID;
922 
923       for (unsigned WS : WriteSeq) {
924 
925         Record *WriteRes =
926           FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
927 
928         // Mark the parent class as invalid for unsupported write types.
929         if (WriteRes->getValueAsBit("Unsupported")) {
930           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
931           break;
932         }
933         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
934         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
935         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
936         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
937         SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
938         SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
939 
940         // Create an entry for each ProcResource listed in WriteRes.
941         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
942         std::vector<int64_t> Cycles =
943           WriteRes->getValueAsListOfInts("ResourceCycles");
944 
945         ExpandProcResources(PRVec, Cycles, ProcModel);
946 
947         for (unsigned PRIdx = 0, PREnd = PRVec.size();
948              PRIdx != PREnd; ++PRIdx) {
949           MCWriteProcResEntry WPREntry;
950           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
951           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
952           WPREntry.Cycles = Cycles[PRIdx];
953           // If this resource is already used in this sequence, add the current
954           // entry's cycles so that the same resource appears to be used
955           // serially, rather than multiple parallel uses. This is important for
956           // in-order machine where the resource consumption is a hazard.
957           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
958           for( ; WPRIdx != WPREnd; ++WPRIdx) {
959             if (WriteProcResources[WPRIdx].ProcResourceIdx
960                 == WPREntry.ProcResourceIdx) {
961               WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
962               break;
963             }
964           }
965           if (WPRIdx == WPREnd)
966             WriteProcResources.push_back(WPREntry);
967         }
968       }
969       WriteLatencies.push_back(WLEntry);
970     }
971     // Create an entry for each operand Read in this SchedClass.
972     // Entries must be sorted first by UseIdx then by WriteResourceID.
973     for (unsigned UseIdx = 0, EndIdx = Reads.size();
974          UseIdx != EndIdx; ++UseIdx) {
975       Record *ReadAdvance =
976         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
977       if (!ReadAdvance)
978         continue;
979 
980       // Mark the parent class as invalid for unsupported write types.
981       if (ReadAdvance->getValueAsBit("Unsupported")) {
982         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
983         break;
984       }
985       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
986       IdxVec WriteIDs;
987       if (ValidWrites.empty())
988         WriteIDs.push_back(0);
989       else {
990         for (Record *VW : ValidWrites) {
991           WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
992         }
993       }
994       std::sort(WriteIDs.begin(), WriteIDs.end());
995       for(unsigned W : WriteIDs) {
996         MCReadAdvanceEntry RAEntry;
997         RAEntry.UseIdx = UseIdx;
998         RAEntry.WriteResourceID = W;
999         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1000         ReadAdvanceEntries.push_back(RAEntry);
1001       }
1002     }
1003     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1004       WriteProcResources.clear();
1005       WriteLatencies.clear();
1006       ReadAdvanceEntries.clear();
1007     }
1008     // Add the information for this SchedClass to the global tables using basic
1009     // compression.
1010     //
1011     // WritePrecRes entries are sorted by ProcResIdx.
1012     std::sort(WriteProcResources.begin(), WriteProcResources.end(),
1013               LessWriteProcResources());
1014 
1015     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1016     std::vector<MCWriteProcResEntry>::iterator WPRPos =
1017       std::search(SchedTables.WriteProcResources.begin(),
1018                   SchedTables.WriteProcResources.end(),
1019                   WriteProcResources.begin(), WriteProcResources.end());
1020     if (WPRPos != SchedTables.WriteProcResources.end())
1021       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1022     else {
1023       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1024       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1025                                             WriteProcResources.end());
1026     }
1027     // Latency entries must remain in operand order.
1028     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1029     std::vector<MCWriteLatencyEntry>::iterator WLPos =
1030       std::search(SchedTables.WriteLatencies.begin(),
1031                   SchedTables.WriteLatencies.end(),
1032                   WriteLatencies.begin(), WriteLatencies.end());
1033     if (WLPos != SchedTables.WriteLatencies.end()) {
1034       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1035       SCDesc.WriteLatencyIdx = idx;
1036       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1037         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1038             std::string::npos) {
1039           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1040         }
1041     }
1042     else {
1043       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1044       SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
1045                                         WriteLatencies.begin(),
1046                                         WriteLatencies.end());
1047       SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
1048                                      WriterNames.begin(), WriterNames.end());
1049     }
1050     // ReadAdvanceEntries must remain in operand order.
1051     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1052     std::vector<MCReadAdvanceEntry>::iterator RAPos =
1053       std::search(SchedTables.ReadAdvanceEntries.begin(),
1054                   SchedTables.ReadAdvanceEntries.end(),
1055                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1056     if (RAPos != SchedTables.ReadAdvanceEntries.end())
1057       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1058     else {
1059       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1060       SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
1061                                             ReadAdvanceEntries.end());
1062     }
1063   }
1064 }
1065 
1066 // Emit SchedClass tables for all processors and associated global tables.
1067 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1068                                             raw_ostream &OS) {
1069   // Emit global WriteProcResTable.
1070   OS << "\n// {ProcResourceIdx, Cycles}\n"
1071      << "extern const llvm::MCWriteProcResEntry "
1072      << Target << "WriteProcResTable[] = {\n"
1073      << "  { 0,  0}, // Invalid\n";
1074   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1075        WPRIdx != WPREnd; ++WPRIdx) {
1076     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1077     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1078        << format("%2d", WPREntry.Cycles) << "}";
1079     if (WPRIdx + 1 < WPREnd)
1080       OS << ',';
1081     OS << " // #" << WPRIdx << '\n';
1082   }
1083   OS << "}; // " << Target << "WriteProcResTable\n";
1084 
1085   // Emit global WriteLatencyTable.
1086   OS << "\n// {Cycles, WriteResourceID}\n"
1087      << "extern const llvm::MCWriteLatencyEntry "
1088      << Target << "WriteLatencyTable[] = {\n"
1089      << "  { 0,  0}, // Invalid\n";
1090   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1091        WLIdx != WLEnd; ++WLIdx) {
1092     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1093     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1094        << format("%2d", WLEntry.WriteResourceID) << "}";
1095     if (WLIdx + 1 < WLEnd)
1096       OS << ',';
1097     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1098   }
1099   OS << "}; // " << Target << "WriteLatencyTable\n";
1100 
1101   // Emit global ReadAdvanceTable.
1102   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1103      << "extern const llvm::MCReadAdvanceEntry "
1104      << Target << "ReadAdvanceTable[] = {\n"
1105      << "  {0,  0,  0}, // Invalid\n";
1106   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1107        RAIdx != RAEnd; ++RAIdx) {
1108     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1109     OS << "  {" << RAEntry.UseIdx << ", "
1110        << format("%2d", RAEntry.WriteResourceID) << ", "
1111        << format("%2d", RAEntry.Cycles) << "}";
1112     if (RAIdx + 1 < RAEnd)
1113       OS << ',';
1114     OS << " // #" << RAIdx << '\n';
1115   }
1116   OS << "}; // " << Target << "ReadAdvanceTable\n";
1117 
1118   // Emit a SchedClass table for each processor.
1119   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1120          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1121     if (!PI->hasInstrSchedModel())
1122       continue;
1123 
1124     std::vector<MCSchedClassDesc> &SCTab =
1125       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1126 
1127     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
1128        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1129     OS << "static const llvm::MCSchedClassDesc "
1130        << PI->ModelName << "SchedClasses[] = {\n";
1131 
1132     // The first class is always invalid. We no way to distinguish it except by
1133     // name and position.
1134     assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1135            && "invalid class not first");
1136     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1137        << MCSchedClassDesc::InvalidNumMicroOps
1138        << ", false, false,  0, 0,  0, 0,  0, 0},\n";
1139 
1140     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1141       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1142       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1143       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1144       if (SchedClass.Name.size() < 18)
1145         OS.indent(18 - SchedClass.Name.size());
1146       OS << MCDesc.NumMicroOps
1147          << ", " << ( MCDesc.BeginGroup ? "true" : "false" )
1148          << ", " << ( MCDesc.EndGroup ? "true" : "false" )
1149          << ", " << format("%2d", MCDesc.WriteProcResIdx)
1150          << ", " << MCDesc.NumWriteProcResEntries
1151          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1152          << ", " << MCDesc.NumWriteLatencyEntries
1153          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1154          << ", " << MCDesc.NumReadAdvanceEntries
1155          << "}, // #" << SCIdx << '\n';
1156     }
1157     OS << "}; // " << PI->ModelName << "SchedClasses\n";
1158   }
1159 }
1160 
1161 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1162   // For each processor model.
1163   for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1164     // Emit processor resource table.
1165     if (PM.hasInstrSchedModel())
1166       EmitProcessorResources(PM, OS);
1167     else if(!PM.ProcResourceDefs.empty())
1168       PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
1169                     "ProcResources without defining WriteRes SchedWriteRes");
1170 
1171     // Begin processor itinerary properties
1172     OS << "\n";
1173     OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1174     EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1175     EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1176     EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1177     EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1178     EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1179     EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1180 
1181     bool PostRAScheduler =
1182       (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1183 
1184     OS << "  " << (PostRAScheduler ? "true" : "false")  << ", // "
1185        << "PostRAScheduler\n";
1186 
1187     bool CompleteModel =
1188       (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1189 
1190     OS << "  " << (CompleteModel ? "true" : "false") << ", // "
1191        << "CompleteModel\n";
1192 
1193     OS << "  " << PM.Index << ", // Processor ID\n";
1194     if (PM.hasInstrSchedModel())
1195       OS << "  " << PM.ModelName << "ProcResources" << ",\n"
1196          << "  " << PM.ModelName << "SchedClasses" << ",\n"
1197          << "  " << PM.ProcResourceDefs.size()+1 << ",\n"
1198          << "  " << (SchedModels.schedClassEnd()
1199                      - SchedModels.schedClassBegin()) << ",\n";
1200     else
1201       OS << "  nullptr, nullptr, 0, 0,"
1202          << " // No instruction-level machine model.\n";
1203     if (PM.hasItineraries())
1204       OS << "  " << PM.ItinsDef->getName() << "\n";
1205     else
1206       OS << "  nullptr // No Itinerary\n";
1207     OS << "};\n";
1208   }
1209 }
1210 
1211 //
1212 // EmitProcessorLookup - generate cpu name to itinerary lookup table.
1213 //
1214 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) {
1215   // Gather and sort processor information
1216   std::vector<Record*> ProcessorList =
1217                           Records.getAllDerivedDefinitions("Processor");
1218   std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
1219 
1220   // Begin processor table
1221   OS << "\n";
1222   OS << "// Sorted (by key) array of itineraries for CPU subtype.\n"
1223      << "extern const llvm::SubtargetInfoKV "
1224      << Target << "ProcSchedKV[] = {\n";
1225 
1226   // For each processor
1227   for (Record *Processor : ProcessorList) {
1228     StringRef Name = Processor->getValueAsString("Name");
1229     const std::string &ProcModelName =
1230       SchedModels.getModelForProc(Processor).ModelName;
1231 
1232     // Emit as { "cpu", procinit },
1233     OS << "  { \"" << Name << "\", (const void *)&" << ProcModelName << " },\n";
1234   }
1235 
1236   // End processor table
1237   OS << "};\n";
1238 }
1239 
1240 //
1241 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1242 //
1243 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1244   OS << "#ifdef DBGFIELD\n"
1245      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1246      << "#endif\n"
1247      << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1248      << "#define DBGFIELD(x) x,\n"
1249      << "#else\n"
1250      << "#define DBGFIELD(x)\n"
1251      << "#endif\n";
1252 
1253   if (SchedModels.hasItineraries()) {
1254     std::vector<std::vector<InstrItinerary>> ProcItinLists;
1255     // Emit the stage data
1256     EmitStageAndOperandCycleData(OS, ProcItinLists);
1257     EmitItineraries(OS, ProcItinLists);
1258   }
1259   OS << "\n// ===============================================================\n"
1260      << "// Data tables for the new per-operand machine model.\n";
1261 
1262   SchedClassTables SchedTables;
1263   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1264     GenSchedClassTables(ProcModel, SchedTables);
1265   }
1266   EmitSchedClassTables(SchedTables, OS);
1267 
1268   // Emit the processor machine model
1269   EmitProcessorModels(OS);
1270   // Emit the processor lookup data
1271   EmitProcessorLookup(OS);
1272 
1273   OS << "\n#undef DBGFIELD";
1274 }
1275 
1276 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1277                                              raw_ostream &OS) {
1278   OS << "unsigned " << ClassName
1279      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1280      << " const TargetSchedModel *SchedModel) const {\n";
1281 
1282   std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog");
1283   std::sort(Prologs.begin(), Prologs.end(), LessRecord());
1284   for (Record *P : Prologs) {
1285     OS << P->getValueAsString("Code") << '\n';
1286   }
1287   IdxVec VariantClasses;
1288   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1289     if (SC.Transitions.empty())
1290       continue;
1291     VariantClasses.push_back(SC.Index);
1292   }
1293   if (!VariantClasses.empty()) {
1294     OS << "  switch (SchedClass) {\n";
1295     for (unsigned VC : VariantClasses) {
1296       const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1297       OS << "  case " << VC << ": // " << SC.Name << '\n';
1298       IdxVec ProcIndices;
1299       for (const CodeGenSchedTransition &T : SC.Transitions) {
1300         IdxVec PI;
1301         std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(),
1302                        ProcIndices.begin(), ProcIndices.end(),
1303                        std::back_inserter(PI));
1304         ProcIndices.swap(PI);
1305       }
1306       for (unsigned PI : ProcIndices) {
1307         OS << "    ";
1308         if (PI != 0)
1309           OS << "if (SchedModel->getProcessorID() == " << PI << ") ";
1310         OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName
1311            << '\n';
1312         for (const CodeGenSchedTransition &T : SC.Transitions) {
1313           if (PI != 0 && !std::count(T.ProcIndices.begin(),
1314                                      T.ProcIndices.end(), PI)) {
1315               continue;
1316           }
1317           OS << "      if (";
1318           for (RecIter RI = T.PredTerm.begin(), RE = T.PredTerm.end();
1319                RI != RE; ++RI) {
1320             if (RI != T.PredTerm.begin())
1321               OS << "\n          && ";
1322             OS << "(" << (*RI)->getValueAsString("Predicate") << ")";
1323           }
1324           OS << ")\n"
1325              << "        return " << T.ToClassIdx << "; // "
1326              << SchedModels.getSchedClass(T.ToClassIdx).Name << '\n';
1327         }
1328         OS << "    }\n";
1329         if (PI == 0)
1330           break;
1331       }
1332       if (SC.isInferred())
1333         OS << "    return " << SC.Index << ";\n";
1334       OS << "    break;\n";
1335     }
1336     OS << "  };\n";
1337   }
1338   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n"
1339      << "} // " << ClassName << "::resolveSchedClass\n";
1340 }
1341 
1342 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
1343                                        raw_ostream &OS) {
1344   const CodeGenHwModes &CGH = TGT.getHwModes();
1345   assert(CGH.getNumModeIds() > 0);
1346   if (CGH.getNumModeIds() == 1)
1347     return;
1348 
1349   OS << "unsigned " << ClassName << "::getHwMode() const {\n";
1350   for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
1351     const HwMode &HM = CGH.getMode(M);
1352     OS << "  if (checkFeatures(\"" << HM.Features
1353        << "\")) return " << M << ";\n";
1354   }
1355   OS << "  return 0;\n}\n";
1356 }
1357 
1358 //
1359 // ParseFeaturesFunction - Produces a subtarget specific function for parsing
1360 // the subtarget features string.
1361 //
1362 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1363                                              unsigned NumFeatures,
1364                                              unsigned NumProcs) {
1365   std::vector<Record*> Features =
1366                        Records.getAllDerivedDefinitions("SubtargetFeature");
1367   std::sort(Features.begin(), Features.end(), LessRecord());
1368 
1369   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1370      << "// subtarget options.\n"
1371      << "void llvm::";
1372   OS << Target;
1373   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
1374      << "  DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1375      << "  DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
1376 
1377   if (Features.empty()) {
1378     OS << "}\n";
1379     return;
1380   }
1381 
1382   OS << "  InitMCProcessorInfo(CPU, FS);\n"
1383      << "  const FeatureBitset& Bits = getFeatureBits();\n";
1384 
1385   for (Record *R : Features) {
1386     // Next record
1387     StringRef Instance = R->getName();
1388     StringRef Value = R->getValueAsString("Value");
1389     StringRef Attribute = R->getValueAsString("Attribute");
1390 
1391     if (Value=="true" || Value=="false")
1392       OS << "  if (Bits[" << Target << "::"
1393          << Instance << "]) "
1394          << Attribute << " = " << Value << ";\n";
1395     else
1396       OS << "  if (Bits[" << Target << "::"
1397          << Instance << "] && "
1398          << Attribute << " < " << Value << ") "
1399          << Attribute << " = " << Value << ";\n";
1400   }
1401 
1402   OS << "}\n";
1403 }
1404 
1405 //
1406 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1407 //
1408 void SubtargetEmitter::run(raw_ostream &OS) {
1409   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1410 
1411   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1412   OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1413 
1414   OS << "namespace llvm {\n";
1415   Enumeration(OS);
1416   OS << "} // end namespace llvm\n\n";
1417   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1418 
1419   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
1420   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
1421 
1422   OS << "namespace llvm {\n";
1423 #if 0
1424   OS << "namespace {\n";
1425 #endif
1426   unsigned NumFeatures = FeatureKeyValues(OS);
1427   OS << "\n";
1428   unsigned NumProcs = CPUKeyValues(OS);
1429   OS << "\n";
1430   EmitSchedModel(OS);
1431   OS << "\n";
1432 #if 0
1433   OS << "} // end anonymous namespace\n\n";
1434 #endif
1435 
1436   // MCInstrInfo initialization routine.
1437   OS << "\nstatic inline MCSubtargetInfo *create" << Target
1438      << "MCSubtargetInfoImpl("
1439      << "const Triple &TT, StringRef CPU, StringRef FS) {\n";
1440   OS << "  return new MCSubtargetInfo(TT, CPU, FS, ";
1441   if (NumFeatures)
1442     OS << Target << "FeatureKV, ";
1443   else
1444     OS << "None, ";
1445   if (NumProcs)
1446     OS << Target << "SubTypeKV, ";
1447   else
1448     OS << "None, ";
1449   OS << '\n'; OS.indent(22);
1450   OS << Target << "ProcSchedKV, "
1451      << Target << "WriteProcResTable, "
1452      << Target << "WriteLatencyTable, "
1453      << Target << "ReadAdvanceTable, ";
1454   OS << '\n'; OS.indent(22);
1455   if (SchedModels.hasItineraries()) {
1456     OS << Target << "Stages, "
1457        << Target << "OperandCycles, "
1458        << Target << "ForwardingPaths";
1459   } else
1460     OS << "nullptr, nullptr, nullptr";
1461   OS << ");\n}\n\n";
1462 
1463   OS << "} // end namespace llvm\n\n";
1464 
1465   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1466 
1467   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1468   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
1469 
1470   OS << "#include \"llvm/Support/Debug.h\"\n";
1471   OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
1472   ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1473 
1474   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1475 
1476   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1477   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1478   OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
1479 
1480   std::string ClassName = Target + "GenSubtargetInfo";
1481   OS << "namespace llvm {\n";
1482   OS << "class DFAPacketizer;\n";
1483   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1484      << "  explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1485      << "StringRef FS);\n"
1486      << "public:\n"
1487      << "  unsigned resolveSchedClass(unsigned SchedClass, "
1488      << " const MachineInstr *DefMI,"
1489      << " const TargetSchedModel *SchedModel) const override;\n"
1490      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1491      << " const;\n";
1492   if (TGT.getHwModes().getNumModeIds() > 1)
1493     OS << "  unsigned getHwMode() const override;\n";
1494   OS << "};\n"
1495      << "} // end namespace llvm\n\n";
1496 
1497   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1498 
1499   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1500   OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
1501 
1502   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
1503   OS << "namespace llvm {\n";
1504   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1505   OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n";
1506   OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n";
1507   OS << "extern const llvm::MCWriteProcResEntry "
1508      << Target << "WriteProcResTable[];\n";
1509   OS << "extern const llvm::MCWriteLatencyEntry "
1510      << Target << "WriteLatencyTable[];\n";
1511   OS << "extern const llvm::MCReadAdvanceEntry "
1512      << Target << "ReadAdvanceTable[];\n";
1513 
1514   if (SchedModels.hasItineraries()) {
1515     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1516     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1517     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1518   }
1519 
1520   OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
1521      << "StringRef FS)\n"
1522      << "  : TargetSubtargetInfo(TT, CPU, FS, ";
1523   if (NumFeatures)
1524     OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
1525   else
1526     OS << "None, ";
1527   if (NumProcs)
1528     OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
1529   else
1530     OS << "None, ";
1531   OS << '\n'; OS.indent(24);
1532   OS << Target << "ProcSchedKV, "
1533      << Target << "WriteProcResTable, "
1534      << Target << "WriteLatencyTable, "
1535      << Target << "ReadAdvanceTable, ";
1536   OS << '\n'; OS.indent(24);
1537   if (SchedModels.hasItineraries()) {
1538     OS << Target << "Stages, "
1539        << Target << "OperandCycles, "
1540        << Target << "ForwardingPaths";
1541   } else
1542     OS << "nullptr, nullptr, nullptr";
1543   OS << ") {}\n\n";
1544 
1545   EmitSchedModelHelpers(ClassName, OS);
1546   EmitHwModeCheck(ClassName, OS);
1547 
1548   OS << "} // end namespace llvm\n\n";
1549 
1550   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1551 }
1552 
1553 namespace llvm {
1554 
1555 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1556   CodeGenTarget CGTarget(RK);
1557   SubtargetEmitter(RK, CGTarget).run(OS);
1558 }
1559 
1560 } // end namespace llvm
1561