1 //===- RegisterInfoEmitter.cpp - Generate a Register File Desc. -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend is responsible for emitting a description of a target 11 // register file for a code generator. It uses instances of the Register, 12 // RegisterAliases, and RegisterClass classes to gather this information. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CodeGenRegisters.h" 17 #include "CodeGenTarget.h" 18 #include "Types.h" 19 #include "SequenceToOffsetTable.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/SparseBitVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/CodeGen/MachineValueType.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Format.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/TableGen/Error.h" 32 #include "llvm/TableGen/Record.h" 33 #include "llvm/TableGen/SetTheory.h" 34 #include "llvm/TableGen/TableGenBackend.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstddef> 38 #include <cstdint> 39 #include <deque> 40 #include <iterator> 41 #include <set> 42 #include <string> 43 #include <vector> 44 45 using namespace llvm; 46 47 namespace { 48 49 class RegisterInfoEmitter { 50 RecordKeeper &Records; 51 52 public: 53 RegisterInfoEmitter(RecordKeeper &R) : Records(R) {} 54 55 // runEnums - Print out enum values for all of the registers. 56 void runEnums(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); 57 58 // runMCDesc - Print out MC register descriptions. 59 void runMCDesc(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); 60 61 // runTargetHeader - Emit a header fragment for the register info emitter. 62 void runTargetHeader(raw_ostream &o, CodeGenTarget &Target, 63 CodeGenRegBank &Bank); 64 65 // runTargetDesc - Output the target register and register file descriptions. 66 void runTargetDesc(raw_ostream &o, CodeGenTarget &Target, 67 CodeGenRegBank &Bank); 68 69 // run - Output the register file description. 70 void run(raw_ostream &o); 71 72 private: 73 void EmitRegMapping(raw_ostream &o, const std::deque<CodeGenRegister> &Regs, 74 bool isCtor); 75 void EmitRegMappingTables(raw_ostream &o, 76 const std::deque<CodeGenRegister> &Regs, 77 bool isCtor); 78 void EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank, 79 const std::string &ClassName); 80 void emitComposeSubRegIndices(raw_ostream &OS, CodeGenRegBank &RegBank, 81 const std::string &ClassName); 82 void emitComposeSubRegIndexLaneMask(raw_ostream &OS, CodeGenRegBank &RegBank, 83 const std::string &ClassName); 84 }; 85 86 } // end anonymous namespace 87 88 // runEnums - Print out enum values for all of the registers. 89 void RegisterInfoEmitter::runEnums(raw_ostream &OS, 90 CodeGenTarget &Target, CodeGenRegBank &Bank) { 91 const auto &Registers = Bank.getRegisters(); 92 93 // Register enums are stored as uint16_t in the tables. Make sure we'll fit. 94 assert(Registers.size() <= 0xffff && "Too many regs to fit in tables"); 95 96 std::string Namespace = 97 Registers.front().TheDef->getValueAsString("Namespace"); 98 99 emitSourceFileHeader("Target Register Enum Values", OS); 100 101 OS << "\n#ifdef GET_REGINFO_ENUM\n"; 102 OS << "#undef GET_REGINFO_ENUM\n\n"; 103 104 OS << "namespace llvm {\n\n"; 105 106 OS << "class MCRegisterClass;\n" 107 << "extern const MCRegisterClass " << Target.getName() 108 << "MCRegisterClasses[];\n\n"; 109 110 if (!Namespace.empty()) 111 OS << "namespace " << Namespace << " {\n"; 112 OS << "enum {\n NoRegister,\n"; 113 114 for (const auto &Reg : Registers) 115 OS << " " << Reg.getName() << " = " << Reg.EnumValue << ",\n"; 116 assert(Registers.size() == Registers.back().EnumValue && 117 "Register enum value mismatch!"); 118 OS << " NUM_TARGET_REGS \t// " << Registers.size()+1 << "\n"; 119 OS << "};\n"; 120 if (!Namespace.empty()) 121 OS << "} // end namespace " << Namespace << "\n"; 122 123 const auto &RegisterClasses = Bank.getRegClasses(); 124 if (!RegisterClasses.empty()) { 125 126 // RegisterClass enums are stored as uint16_t in the tables. 127 assert(RegisterClasses.size() <= 0xffff && 128 "Too many register classes to fit in tables"); 129 130 OS << "\n// Register classes\n\n"; 131 if (!Namespace.empty()) 132 OS << "namespace " << Namespace << " {\n"; 133 OS << "enum {\n"; 134 for (const auto &RC : RegisterClasses) 135 OS << " " << RC.getName() << "RegClassID" 136 << " = " << RC.EnumValue << ",\n"; 137 OS << "\n };\n"; 138 if (!Namespace.empty()) 139 OS << "} // end namespace " << Namespace << "\n\n"; 140 } 141 142 const std::vector<Record*> &RegAltNameIndices = Target.getRegAltNameIndices(); 143 // If the only definition is the default NoRegAltName, we don't need to 144 // emit anything. 145 if (RegAltNameIndices.size() > 1) { 146 OS << "\n// Register alternate name indices\n\n"; 147 if (!Namespace.empty()) 148 OS << "namespace " << Namespace << " {\n"; 149 OS << "enum {\n"; 150 for (unsigned i = 0, e = RegAltNameIndices.size(); i != e; ++i) 151 OS << " " << RegAltNameIndices[i]->getName() << ",\t// " << i << "\n"; 152 OS << " NUM_TARGET_REG_ALT_NAMES = " << RegAltNameIndices.size() << "\n"; 153 OS << "};\n"; 154 if (!Namespace.empty()) 155 OS << "} // end namespace " << Namespace << "\n\n"; 156 } 157 158 auto &SubRegIndices = Bank.getSubRegIndices(); 159 if (!SubRegIndices.empty()) { 160 OS << "\n// Subregister indices\n\n"; 161 std::string Namespace = SubRegIndices.front().getNamespace(); 162 if (!Namespace.empty()) 163 OS << "namespace " << Namespace << " {\n"; 164 OS << "enum {\n NoSubRegister,\n"; 165 unsigned i = 0; 166 for (const auto &Idx : SubRegIndices) 167 OS << " " << Idx.getName() << ",\t// " << ++i << "\n"; 168 OS << " NUM_TARGET_SUBREGS\n};\n"; 169 if (!Namespace.empty()) 170 OS << "} // end namespace " << Namespace << "\n\n"; 171 } 172 173 OS << "} // end namespace llvm\n\n"; 174 OS << "#endif // GET_REGINFO_ENUM\n\n"; 175 } 176 177 static void printInt(raw_ostream &OS, int Val) { 178 OS << Val; 179 } 180 181 void RegisterInfoEmitter:: 182 EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank, 183 const std::string &ClassName) { 184 unsigned NumRCs = RegBank.getRegClasses().size(); 185 unsigned NumSets = RegBank.getNumRegPressureSets(); 186 187 OS << "/// Get the weight in units of pressure for this register class.\n" 188 << "const RegClassWeight &" << ClassName << "::\n" 189 << "getRegClassWeight(const TargetRegisterClass *RC) const {\n" 190 << " static const RegClassWeight RCWeightTable[] = {\n"; 191 for (const auto &RC : RegBank.getRegClasses()) { 192 const CodeGenRegister::Vec &Regs = RC.getMembers(); 193 if (Regs.empty()) 194 OS << " {0, 0"; 195 else { 196 std::vector<unsigned> RegUnits; 197 RC.buildRegUnitSet(RegUnits); 198 OS << " {" << (*Regs.begin())->getWeight(RegBank) 199 << ", " << RegBank.getRegUnitSetWeight(RegUnits); 200 } 201 OS << "}, \t// " << RC.getName() << "\n"; 202 } 203 OS << " };\n" 204 << " return RCWeightTable[RC->getID()];\n" 205 << "}\n\n"; 206 207 // Reasonable targets (not ARMv7) have unit weight for all units, so don't 208 // bother generating a table. 209 bool RegUnitsHaveUnitWeight = true; 210 for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); 211 UnitIdx < UnitEnd; ++UnitIdx) { 212 if (RegBank.getRegUnit(UnitIdx).Weight > 1) 213 RegUnitsHaveUnitWeight = false; 214 } 215 OS << "/// Get the weight in units of pressure for this register unit.\n" 216 << "unsigned " << ClassName << "::\n" 217 << "getRegUnitWeight(unsigned RegUnit) const {\n" 218 << " assert(RegUnit < " << RegBank.getNumNativeRegUnits() 219 << " && \"invalid register unit\");\n"; 220 if (!RegUnitsHaveUnitWeight) { 221 OS << " static const uint8_t RUWeightTable[] = {\n "; 222 for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); 223 UnitIdx < UnitEnd; ++UnitIdx) { 224 const RegUnit &RU = RegBank.getRegUnit(UnitIdx); 225 assert(RU.Weight < 256 && "RegUnit too heavy"); 226 OS << RU.Weight << ", "; 227 } 228 OS << "};\n" 229 << " return RUWeightTable[RegUnit];\n"; 230 } 231 else { 232 OS << " // All register units have unit weight.\n" 233 << " return 1;\n"; 234 } 235 OS << "}\n\n"; 236 237 OS << "\n" 238 << "// Get the number of dimensions of register pressure.\n" 239 << "unsigned " << ClassName << "::getNumRegPressureSets() const {\n" 240 << " return " << NumSets << ";\n}\n\n"; 241 242 OS << "// Get the name of this register unit pressure set.\n" 243 << "const char *" << ClassName << "::\n" 244 << "getRegPressureSetName(unsigned Idx) const {\n" 245 << " static const char *const PressureNameTable[] = {\n"; 246 unsigned MaxRegUnitWeight = 0; 247 for (unsigned i = 0; i < NumSets; ++i ) { 248 const RegUnitSet &RegUnits = RegBank.getRegSetAt(i); 249 MaxRegUnitWeight = std::max(MaxRegUnitWeight, RegUnits.Weight); 250 OS << " \"" << RegUnits.Name << "\",\n"; 251 } 252 OS << " };\n" 253 << " return PressureNameTable[Idx];\n" 254 << "}\n\n"; 255 256 OS << "// Get the register unit pressure limit for this dimension.\n" 257 << "// This limit must be adjusted dynamically for reserved registers.\n" 258 << "unsigned " << ClassName << "::\n" 259 << "getRegPressureSetLimit(const MachineFunction &MF, unsigned Idx) const " 260 "{\n" 261 << " static const " << getMinimalTypeForRange(MaxRegUnitWeight, 32) 262 << " PressureLimitTable[] = {\n"; 263 for (unsigned i = 0; i < NumSets; ++i ) { 264 const RegUnitSet &RegUnits = RegBank.getRegSetAt(i); 265 OS << " " << RegUnits.Weight << ", \t// " << i << ": " 266 << RegUnits.Name << "\n"; 267 } 268 OS << " };\n" 269 << " return PressureLimitTable[Idx];\n" 270 << "}\n\n"; 271 272 SequenceToOffsetTable<std::vector<int>> PSetsSeqs; 273 274 // This table may be larger than NumRCs if some register units needed a list 275 // of unit sets that did not correspond to a register class. 276 unsigned NumRCUnitSets = RegBank.getNumRegClassPressureSetLists(); 277 std::vector<std::vector<int>> PSets(NumRCUnitSets); 278 279 for (unsigned i = 0, e = NumRCUnitSets; i != e; ++i) { 280 ArrayRef<unsigned> PSetIDs = RegBank.getRCPressureSetIDs(i); 281 PSets[i].reserve(PSetIDs.size()); 282 for (ArrayRef<unsigned>::iterator PSetI = PSetIDs.begin(), 283 PSetE = PSetIDs.end(); PSetI != PSetE; ++PSetI) { 284 PSets[i].push_back(RegBank.getRegPressureSet(*PSetI).Order); 285 } 286 std::sort(PSets[i].begin(), PSets[i].end()); 287 PSetsSeqs.add(PSets[i]); 288 } 289 290 PSetsSeqs.layout(); 291 292 OS << "/// Table of pressure sets per register class or unit.\n" 293 << "static const int RCSetsTable[] = {\n"; 294 PSetsSeqs.emit(OS, printInt, "-1"); 295 OS << "};\n\n"; 296 297 OS << "/// Get the dimensions of register pressure impacted by this " 298 << "register class.\n" 299 << "/// Returns a -1 terminated array of pressure set IDs\n" 300 << "const int* " << ClassName << "::\n" 301 << "getRegClassPressureSets(const TargetRegisterClass *RC) const {\n"; 302 OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size() - 1, 32) 303 << " RCSetStartTable[] = {\n "; 304 for (unsigned i = 0, e = NumRCs; i != e; ++i) { 305 OS << PSetsSeqs.get(PSets[i]) << ","; 306 } 307 OS << "};\n" 308 << " return &RCSetsTable[RCSetStartTable[RC->getID()]];\n" 309 << "}\n\n"; 310 311 OS << "/// Get the dimensions of register pressure impacted by this " 312 << "register unit.\n" 313 << "/// Returns a -1 terminated array of pressure set IDs\n" 314 << "const int* " << ClassName << "::\n" 315 << "getRegUnitPressureSets(unsigned RegUnit) const {\n" 316 << " assert(RegUnit < " << RegBank.getNumNativeRegUnits() 317 << " && \"invalid register unit\");\n"; 318 OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size() - 1, 32) 319 << " RUSetStartTable[] = {\n "; 320 for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); 321 UnitIdx < UnitEnd; ++UnitIdx) { 322 OS << PSetsSeqs.get(PSets[RegBank.getRegUnit(UnitIdx).RegClassUnitSetsIdx]) 323 << ","; 324 } 325 OS << "};\n" 326 << " return &RCSetsTable[RUSetStartTable[RegUnit]];\n" 327 << "}\n\n"; 328 } 329 330 void RegisterInfoEmitter::EmitRegMappingTables( 331 raw_ostream &OS, const std::deque<CodeGenRegister> &Regs, bool isCtor) { 332 // Collect all information about dwarf register numbers 333 typedef std::map<Record*, std::vector<int64_t>, LessRecordRegister> DwarfRegNumsMapTy; 334 DwarfRegNumsMapTy DwarfRegNums; 335 336 // First, just pull all provided information to the map 337 unsigned maxLength = 0; 338 for (auto &RE : Regs) { 339 Record *Reg = RE.TheDef; 340 std::vector<int64_t> RegNums = Reg->getValueAsListOfInts("DwarfNumbers"); 341 maxLength = std::max((size_t)maxLength, RegNums.size()); 342 if (DwarfRegNums.count(Reg)) 343 PrintWarning(Reg->getLoc(), Twine("DWARF numbers for register ") + 344 getQualifiedName(Reg) + "specified multiple times"); 345 DwarfRegNums[Reg] = RegNums; 346 } 347 348 if (!maxLength) 349 return; 350 351 // Now we know maximal length of number list. Append -1's, where needed 352 for (DwarfRegNumsMapTy::iterator 353 I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) 354 for (unsigned i = I->second.size(), e = maxLength; i != e; ++i) 355 I->second.push_back(-1); 356 357 std::string Namespace = Regs.front().TheDef->getValueAsString("Namespace"); 358 359 OS << "// " << Namespace << " Dwarf<->LLVM register mappings.\n"; 360 361 // Emit reverse information about the dwarf register numbers. 362 for (unsigned j = 0; j < 2; ++j) { 363 for (unsigned i = 0, e = maxLength; i != e; ++i) { 364 OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace; 365 OS << (j == 0 ? "DwarfFlavour" : "EHFlavour"); 366 OS << i << "Dwarf2L[]"; 367 368 if (!isCtor) { 369 OS << " = {\n"; 370 371 // Store the mapping sorted by the LLVM reg num so lookup can be done 372 // with a binary search. 373 std::map<uint64_t, Record*> Dwarf2LMap; 374 for (DwarfRegNumsMapTy::iterator 375 I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) { 376 int DwarfRegNo = I->second[i]; 377 if (DwarfRegNo < 0) 378 continue; 379 Dwarf2LMap[DwarfRegNo] = I->first; 380 } 381 382 for (std::map<uint64_t, Record*>::iterator 383 I = Dwarf2LMap.begin(), E = Dwarf2LMap.end(); I != E; ++I) 384 OS << " { " << I->first << "U, " << getQualifiedName(I->second) 385 << " },\n"; 386 387 OS << "};\n"; 388 } else { 389 OS << ";\n"; 390 } 391 392 // We have to store the size in a const global, it's used in multiple 393 // places. 394 OS << "extern const unsigned " << Namespace 395 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2LSize"; 396 if (!isCtor) 397 OS << " = array_lengthof(" << Namespace 398 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i 399 << "Dwarf2L);\n\n"; 400 else 401 OS << ";\n\n"; 402 } 403 } 404 405 for (auto &RE : Regs) { 406 Record *Reg = RE.TheDef; 407 const RecordVal *V = Reg->getValue("DwarfAlias"); 408 if (!V || !V->getValue()) 409 continue; 410 411 DefInit *DI = cast<DefInit>(V->getValue()); 412 Record *Alias = DI->getDef(); 413 DwarfRegNums[Reg] = DwarfRegNums[Alias]; 414 } 415 416 // Emit information about the dwarf register numbers. 417 for (unsigned j = 0; j < 2; ++j) { 418 for (unsigned i = 0, e = maxLength; i != e; ++i) { 419 OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace; 420 OS << (j == 0 ? "DwarfFlavour" : "EHFlavour"); 421 OS << i << "L2Dwarf[]"; 422 if (!isCtor) { 423 OS << " = {\n"; 424 // Store the mapping sorted by the Dwarf reg num so lookup can be done 425 // with a binary search. 426 for (DwarfRegNumsMapTy::iterator 427 I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) { 428 int RegNo = I->second[i]; 429 if (RegNo == -1) // -1 is the default value, don't emit a mapping. 430 continue; 431 432 OS << " { " << getQualifiedName(I->first) << ", " << RegNo 433 << "U },\n"; 434 } 435 OS << "};\n"; 436 } else { 437 OS << ";\n"; 438 } 439 440 // We have to store the size in a const global, it's used in multiple 441 // places. 442 OS << "extern const unsigned " << Namespace 443 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2DwarfSize"; 444 if (!isCtor) 445 OS << " = array_lengthof(" << Namespace 446 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2Dwarf);\n\n"; 447 else 448 OS << ";\n\n"; 449 } 450 } 451 } 452 453 void RegisterInfoEmitter::EmitRegMapping( 454 raw_ostream &OS, const std::deque<CodeGenRegister> &Regs, bool isCtor) { 455 // Emit the initializer so the tables from EmitRegMappingTables get wired up 456 // to the MCRegisterInfo object. 457 unsigned maxLength = 0; 458 for (auto &RE : Regs) { 459 Record *Reg = RE.TheDef; 460 maxLength = std::max((size_t)maxLength, 461 Reg->getValueAsListOfInts("DwarfNumbers").size()); 462 } 463 464 if (!maxLength) 465 return; 466 467 std::string Namespace = Regs.front().TheDef->getValueAsString("Namespace"); 468 469 // Emit reverse information about the dwarf register numbers. 470 for (unsigned j = 0; j < 2; ++j) { 471 OS << " switch ("; 472 if (j == 0) 473 OS << "DwarfFlavour"; 474 else 475 OS << "EHFlavour"; 476 OS << ") {\n" 477 << " default:\n" 478 << " llvm_unreachable(\"Unknown DWARF flavour\");\n"; 479 480 for (unsigned i = 0, e = maxLength; i != e; ++i) { 481 OS << " case " << i << ":\n"; 482 OS << " "; 483 if (!isCtor) 484 OS << "RI->"; 485 std::string Tmp; 486 raw_string_ostream(Tmp) << Namespace 487 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i 488 << "Dwarf2L"; 489 OS << "mapDwarfRegsToLLVMRegs(" << Tmp << ", " << Tmp << "Size, "; 490 if (j == 0) 491 OS << "false"; 492 else 493 OS << "true"; 494 OS << ");\n"; 495 OS << " break;\n"; 496 } 497 OS << " }\n"; 498 } 499 500 // Emit information about the dwarf register numbers. 501 for (unsigned j = 0; j < 2; ++j) { 502 OS << " switch ("; 503 if (j == 0) 504 OS << "DwarfFlavour"; 505 else 506 OS << "EHFlavour"; 507 OS << ") {\n" 508 << " default:\n" 509 << " llvm_unreachable(\"Unknown DWARF flavour\");\n"; 510 511 for (unsigned i = 0, e = maxLength; i != e; ++i) { 512 OS << " case " << i << ":\n"; 513 OS << " "; 514 if (!isCtor) 515 OS << "RI->"; 516 std::string Tmp; 517 raw_string_ostream(Tmp) << Namespace 518 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i 519 << "L2Dwarf"; 520 OS << "mapLLVMRegsToDwarfRegs(" << Tmp << ", " << Tmp << "Size, "; 521 if (j == 0) 522 OS << "false"; 523 else 524 OS << "true"; 525 OS << ");\n"; 526 OS << " break;\n"; 527 } 528 OS << " }\n"; 529 } 530 } 531 532 // Print a BitVector as a sequence of hex numbers using a little-endian mapping. 533 // Width is the number of bits per hex number. 534 static void printBitVectorAsHex(raw_ostream &OS, 535 const BitVector &Bits, 536 unsigned Width) { 537 assert(Width <= 32 && "Width too large"); 538 unsigned Digits = (Width + 3) / 4; 539 for (unsigned i = 0, e = Bits.size(); i < e; i += Width) { 540 unsigned Value = 0; 541 for (unsigned j = 0; j != Width && i + j != e; ++j) 542 Value |= Bits.test(i + j) << j; 543 OS << format("0x%0*x, ", Digits, Value); 544 } 545 } 546 547 // Helper to emit a set of bits into a constant byte array. 548 class BitVectorEmitter { 549 BitVector Values; 550 public: 551 void add(unsigned v) { 552 if (v >= Values.size()) 553 Values.resize(((v/8)+1)*8); // Round up to the next byte. 554 Values[v] = true; 555 } 556 557 void print(raw_ostream &OS) { 558 printBitVectorAsHex(OS, Values, 8); 559 } 560 }; 561 562 static void printSimpleValueType(raw_ostream &OS, MVT::SimpleValueType VT) { 563 OS << getEnumName(VT); 564 } 565 566 static void printSubRegIndex(raw_ostream &OS, const CodeGenSubRegIndex *Idx) { 567 OS << Idx->EnumValue; 568 } 569 570 // Differentially encoded register and regunit lists allow for better 571 // compression on regular register banks. The sequence is computed from the 572 // differential list as: 573 // 574 // out[0] = InitVal; 575 // out[n+1] = out[n] + diff[n]; // n = 0, 1, ... 576 // 577 // The initial value depends on the specific list. The list is terminated by a 578 // 0 differential which means we can't encode repeated elements. 579 580 typedef SmallVector<uint16_t, 4> DiffVec; 581 typedef SmallVector<LaneBitmask, 4> MaskVec; 582 583 // Differentially encode a sequence of numbers into V. The starting value and 584 // terminating 0 are not added to V, so it will have the same size as List. 585 static 586 DiffVec &diffEncode(DiffVec &V, unsigned InitVal, SparseBitVector<> List) { 587 assert(V.empty() && "Clear DiffVec before diffEncode."); 588 uint16_t Val = uint16_t(InitVal); 589 590 for (uint16_t Cur : List) { 591 V.push_back(Cur - Val); 592 Val = Cur; 593 } 594 return V; 595 } 596 597 template<typename Iter> 598 static 599 DiffVec &diffEncode(DiffVec &V, unsigned InitVal, Iter Begin, Iter End) { 600 assert(V.empty() && "Clear DiffVec before diffEncode."); 601 uint16_t Val = uint16_t(InitVal); 602 for (Iter I = Begin; I != End; ++I) { 603 uint16_t Cur = (*I)->EnumValue; 604 V.push_back(Cur - Val); 605 Val = Cur; 606 } 607 return V; 608 } 609 610 static void printDiff16(raw_ostream &OS, uint16_t Val) { 611 OS << Val; 612 } 613 614 static void printMask(raw_ostream &OS, LaneBitmask Val) { 615 OS << "LaneBitmask(0x" << PrintLaneMask(Val) << ')'; 616 } 617 618 // Try to combine Idx's compose map into Vec if it is compatible. 619 // Return false if it's not possible. 620 static bool combine(const CodeGenSubRegIndex *Idx, 621 SmallVectorImpl<CodeGenSubRegIndex*> &Vec) { 622 const CodeGenSubRegIndex::CompMap &Map = Idx->getComposites(); 623 for (const auto &I : Map) { 624 CodeGenSubRegIndex *&Entry = Vec[I.first->EnumValue - 1]; 625 if (Entry && Entry != I.second) 626 return false; 627 } 628 629 // All entries are compatible. Make it so. 630 for (const auto &I : Map) { 631 auto *&Entry = Vec[I.first->EnumValue - 1]; 632 assert((!Entry || Entry == I.second) && 633 "Expected EnumValue to be unique"); 634 Entry = I.second; 635 } 636 return true; 637 } 638 639 void 640 RegisterInfoEmitter::emitComposeSubRegIndices(raw_ostream &OS, 641 CodeGenRegBank &RegBank, 642 const std::string &ClName) { 643 const auto &SubRegIndices = RegBank.getSubRegIndices(); 644 OS << "unsigned " << ClName 645 << "::composeSubRegIndicesImpl(unsigned IdxA, unsigned IdxB) const {\n"; 646 647 // Many sub-register indexes are composition-compatible, meaning that 648 // 649 // compose(IdxA, IdxB) == compose(IdxA', IdxB) 650 // 651 // for many IdxA, IdxA' pairs. Not all sub-register indexes can be composed. 652 // The illegal entries can be use as wildcards to compress the table further. 653 654 // Map each Sub-register index to a compatible table row. 655 SmallVector<unsigned, 4> RowMap; 656 SmallVector<SmallVector<CodeGenSubRegIndex*, 4>, 4> Rows; 657 658 auto SubRegIndicesSize = 659 std::distance(SubRegIndices.begin(), SubRegIndices.end()); 660 for (const auto &Idx : SubRegIndices) { 661 unsigned Found = ~0u; 662 for (unsigned r = 0, re = Rows.size(); r != re; ++r) { 663 if (combine(&Idx, Rows[r])) { 664 Found = r; 665 break; 666 } 667 } 668 if (Found == ~0u) { 669 Found = Rows.size(); 670 Rows.resize(Found + 1); 671 Rows.back().resize(SubRegIndicesSize); 672 combine(&Idx, Rows.back()); 673 } 674 RowMap.push_back(Found); 675 } 676 677 // Output the row map if there is multiple rows. 678 if (Rows.size() > 1) { 679 OS << " static const " << getMinimalTypeForRange(Rows.size(), 32) 680 << " RowMap[" << SubRegIndicesSize << "] = {\n "; 681 for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i) 682 OS << RowMap[i] << ", "; 683 OS << "\n };\n"; 684 } 685 686 // Output the rows. 687 OS << " static const " << getMinimalTypeForRange(SubRegIndicesSize + 1, 32) 688 << " Rows[" << Rows.size() << "][" << SubRegIndicesSize << "] = {\n"; 689 for (unsigned r = 0, re = Rows.size(); r != re; ++r) { 690 OS << " { "; 691 for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i) 692 if (Rows[r][i]) 693 OS << Rows[r][i]->EnumValue << ", "; 694 else 695 OS << "0, "; 696 OS << "},\n"; 697 } 698 OS << " };\n\n"; 699 700 OS << " --IdxA; assert(IdxA < " << SubRegIndicesSize << ");\n" 701 << " --IdxB; assert(IdxB < " << SubRegIndicesSize << ");\n"; 702 if (Rows.size() > 1) 703 OS << " return Rows[RowMap[IdxA]][IdxB];\n"; 704 else 705 OS << " return Rows[0][IdxB];\n"; 706 OS << "}\n\n"; 707 } 708 709 void 710 RegisterInfoEmitter::emitComposeSubRegIndexLaneMask(raw_ostream &OS, 711 CodeGenRegBank &RegBank, 712 const std::string &ClName) { 713 // See the comments in computeSubRegLaneMasks() for our goal here. 714 const auto &SubRegIndices = RegBank.getSubRegIndices(); 715 716 // Create a list of Mask+Rotate operations, with equivalent entries merged. 717 SmallVector<unsigned, 4> SubReg2SequenceIndexMap; 718 SmallVector<SmallVector<MaskRolPair, 1>, 4> Sequences; 719 for (const auto &Idx : SubRegIndices) { 720 const SmallVector<MaskRolPair, 1> &IdxSequence 721 = Idx.CompositionLaneMaskTransform; 722 723 unsigned Found = ~0u; 724 unsigned SIdx = 0; 725 unsigned NextSIdx; 726 for (size_t s = 0, se = Sequences.size(); s != se; ++s, SIdx = NextSIdx) { 727 SmallVectorImpl<MaskRolPair> &Sequence = Sequences[s]; 728 NextSIdx = SIdx + Sequence.size() + 1; 729 if (Sequence == IdxSequence) { 730 Found = SIdx; 731 break; 732 } 733 } 734 if (Found == ~0u) { 735 Sequences.push_back(IdxSequence); 736 Found = SIdx; 737 } 738 SubReg2SequenceIndexMap.push_back(Found); 739 } 740 741 OS << " struct MaskRolOp {\n" 742 " LaneBitmask Mask;\n" 743 " uint8_t RotateLeft;\n" 744 " };\n" 745 " static const MaskRolOp LaneMaskComposeSequences[] = {\n"; 746 unsigned Idx = 0; 747 for (size_t s = 0, se = Sequences.size(); s != se; ++s) { 748 OS << " "; 749 const SmallVectorImpl<MaskRolPair> &Sequence = Sequences[s]; 750 for (size_t p = 0, pe = Sequence.size(); p != pe; ++p) { 751 const MaskRolPair &P = Sequence[p]; 752 printMask(OS << "{ ", P.Mask); 753 OS << format(", %2u }, ", P.RotateLeft); 754 } 755 OS << "{ LaneBitmask::getNone(), 0 }"; 756 if (s+1 != se) 757 OS << ", "; 758 OS << " // Sequence " << Idx << "\n"; 759 Idx += Sequence.size() + 1; 760 } 761 OS << " };\n" 762 " static const MaskRolOp *const CompositeSequences[] = {\n"; 763 for (size_t i = 0, e = SubRegIndices.size(); i != e; ++i) { 764 OS << " "; 765 unsigned Idx = SubReg2SequenceIndexMap[i]; 766 OS << format("&LaneMaskComposeSequences[%u]", Idx); 767 if (i+1 != e) 768 OS << ","; 769 OS << " // to " << SubRegIndices[i].getName() << "\n"; 770 } 771 OS << " };\n\n"; 772 773 OS << "LaneBitmask " << ClName 774 << "::composeSubRegIndexLaneMaskImpl(unsigned IdxA, LaneBitmask LaneMask)" 775 " const {\n" 776 " --IdxA; assert(IdxA < " << SubRegIndices.size() 777 << " && \"Subregister index out of bounds\");\n" 778 " LaneBitmask Result;\n" 779 " for (const MaskRolOp *Ops = CompositeSequences[IdxA]; Ops->Mask.any(); ++Ops) {\n" 780 " LaneBitmask::Type M = LaneMask.getAsInteger() & Ops->Mask.getAsInteger();\n" 781 " if (unsigned S = Ops->RotateLeft)\n" 782 " Result |= LaneBitmask((M << S) | (M >> (LaneBitmask::BitWidth - S)));\n" 783 " else\n" 784 " Result |= LaneBitmask(M);\n" 785 " }\n" 786 " return Result;\n" 787 "}\n\n"; 788 789 OS << "LaneBitmask " << ClName 790 << "::reverseComposeSubRegIndexLaneMaskImpl(unsigned IdxA, " 791 " LaneBitmask LaneMask) const {\n" 792 " LaneMask &= getSubRegIndexLaneMask(IdxA);\n" 793 " --IdxA; assert(IdxA < " << SubRegIndices.size() 794 << " && \"Subregister index out of bounds\");\n" 795 " LaneBitmask Result;\n" 796 " for (const MaskRolOp *Ops = CompositeSequences[IdxA]; Ops->Mask.any(); ++Ops) {\n" 797 " LaneBitmask::Type M = LaneMask.getAsInteger();\n" 798 " if (unsigned S = Ops->RotateLeft)\n" 799 " Result |= LaneBitmask((M >> S) | (M << (LaneBitmask::BitWidth - S)));\n" 800 " else\n" 801 " Result |= LaneBitmask(M);\n" 802 " }\n" 803 " return Result;\n" 804 "}\n\n"; 805 } 806 807 // 808 // runMCDesc - Print out MC register descriptions. 809 // 810 void 811 RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target, 812 CodeGenRegBank &RegBank) { 813 emitSourceFileHeader("MC Register Information", OS); 814 815 OS << "\n#ifdef GET_REGINFO_MC_DESC\n"; 816 OS << "#undef GET_REGINFO_MC_DESC\n\n"; 817 818 const auto &Regs = RegBank.getRegisters(); 819 820 auto &SubRegIndices = RegBank.getSubRegIndices(); 821 // The lists of sub-registers and super-registers go in the same array. That 822 // allows us to share suffixes. 823 typedef std::vector<const CodeGenRegister*> RegVec; 824 825 // Differentially encoded lists. 826 SequenceToOffsetTable<DiffVec> DiffSeqs; 827 SmallVector<DiffVec, 4> SubRegLists(Regs.size()); 828 SmallVector<DiffVec, 4> SuperRegLists(Regs.size()); 829 SmallVector<DiffVec, 4> RegUnitLists(Regs.size()); 830 SmallVector<unsigned, 4> RegUnitInitScale(Regs.size()); 831 832 // List of lane masks accompanying register unit sequences. 833 SequenceToOffsetTable<MaskVec> LaneMaskSeqs; 834 SmallVector<MaskVec, 4> RegUnitLaneMasks(Regs.size()); 835 836 // Keep track of sub-register names as well. These are not differentially 837 // encoded. 838 typedef SmallVector<const CodeGenSubRegIndex*, 4> SubRegIdxVec; 839 SequenceToOffsetTable<SubRegIdxVec, deref<llvm::less>> SubRegIdxSeqs; 840 SmallVector<SubRegIdxVec, 4> SubRegIdxLists(Regs.size()); 841 842 SequenceToOffsetTable<std::string> RegStrings; 843 844 // Precompute register lists for the SequenceToOffsetTable. 845 unsigned i = 0; 846 for (auto I = Regs.begin(), E = Regs.end(); I != E; ++I, ++i) { 847 const auto &Reg = *I; 848 RegStrings.add(Reg.getName()); 849 850 // Compute the ordered sub-register list. 851 SetVector<const CodeGenRegister*> SR; 852 Reg.addSubRegsPreOrder(SR, RegBank); 853 diffEncode(SubRegLists[i], Reg.EnumValue, SR.begin(), SR.end()); 854 DiffSeqs.add(SubRegLists[i]); 855 856 // Compute the corresponding sub-register indexes. 857 SubRegIdxVec &SRIs = SubRegIdxLists[i]; 858 for (unsigned j = 0, je = SR.size(); j != je; ++j) 859 SRIs.push_back(Reg.getSubRegIndex(SR[j])); 860 SubRegIdxSeqs.add(SRIs); 861 862 // Super-registers are already computed. 863 const RegVec &SuperRegList = Reg.getSuperRegs(); 864 diffEncode(SuperRegLists[i], Reg.EnumValue, SuperRegList.begin(), 865 SuperRegList.end()); 866 DiffSeqs.add(SuperRegLists[i]); 867 868 // Differentially encode the register unit list, seeded by register number. 869 // First compute a scale factor that allows more diff-lists to be reused: 870 // 871 // D0 -> (S0, S1) 872 // D1 -> (S2, S3) 873 // 874 // A scale factor of 2 allows D0 and D1 to share a diff-list. The initial 875 // value for the differential decoder is the register number multiplied by 876 // the scale. 877 // 878 // Check the neighboring registers for arithmetic progressions. 879 unsigned ScaleA = ~0u, ScaleB = ~0u; 880 SparseBitVector<> RUs = Reg.getNativeRegUnits(); 881 if (I != Regs.begin() && 882 std::prev(I)->getNativeRegUnits().count() == RUs.count()) 883 ScaleB = *RUs.begin() - *std::prev(I)->getNativeRegUnits().begin(); 884 if (std::next(I) != Regs.end() && 885 std::next(I)->getNativeRegUnits().count() == RUs.count()) 886 ScaleA = *std::next(I)->getNativeRegUnits().begin() - *RUs.begin(); 887 unsigned Scale = std::min(ScaleB, ScaleA); 888 // Default the scale to 0 if it can't be encoded in 4 bits. 889 if (Scale >= 16) 890 Scale = 0; 891 RegUnitInitScale[i] = Scale; 892 DiffSeqs.add(diffEncode(RegUnitLists[i], Scale * Reg.EnumValue, RUs)); 893 894 const auto &RUMasks = Reg.getRegUnitLaneMasks(); 895 MaskVec &LaneMaskVec = RegUnitLaneMasks[i]; 896 assert(LaneMaskVec.empty()); 897 LaneMaskVec.insert(LaneMaskVec.begin(), RUMasks.begin(), RUMasks.end()); 898 // Terminator mask should not be used inside of the list. 899 #ifndef NDEBUG 900 for (LaneBitmask M : LaneMaskVec) { 901 assert(!M.all() && "terminator mask should not be part of the list"); 902 } 903 #endif 904 LaneMaskSeqs.add(LaneMaskVec); 905 } 906 907 // Compute the final layout of the sequence table. 908 DiffSeqs.layout(); 909 LaneMaskSeqs.layout(); 910 SubRegIdxSeqs.layout(); 911 912 OS << "namespace llvm {\n\n"; 913 914 const std::string &TargetName = Target.getName(); 915 916 // Emit the shared table of differential lists. 917 OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[] = {\n"; 918 DiffSeqs.emit(OS, printDiff16); 919 OS << "};\n\n"; 920 921 // Emit the shared table of regunit lane mask sequences. 922 OS << "extern const LaneBitmask " << TargetName << "LaneMaskLists[] = {\n"; 923 LaneMaskSeqs.emit(OS, printMask, "LaneBitmask::getAll()"); 924 OS << "};\n\n"; 925 926 // Emit the table of sub-register indexes. 927 OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[] = {\n"; 928 SubRegIdxSeqs.emit(OS, printSubRegIndex); 929 OS << "};\n\n"; 930 931 // Emit the table of sub-register index sizes. 932 OS << "extern const MCRegisterInfo::SubRegCoveredBits " 933 << TargetName << "SubRegIdxRanges[] = {\n"; 934 OS << " { " << (uint16_t)-1 << ", " << (uint16_t)-1 << " },\n"; 935 for (const auto &Idx : SubRegIndices) { 936 OS << " { " << Idx.Offset << ", " << Idx.Size << " },\t// " 937 << Idx.getName() << "\n"; 938 } 939 OS << "};\n\n"; 940 941 // Emit the string table. 942 RegStrings.layout(); 943 OS << "extern const char " << TargetName << "RegStrings[] = {\n"; 944 RegStrings.emit(OS, printChar); 945 OS << "};\n\n"; 946 947 OS << "extern const MCRegisterDesc " << TargetName 948 << "RegDesc[] = { // Descriptors\n"; 949 OS << " { " << RegStrings.get("") << ", 0, 0, 0, 0, 0 },\n"; 950 951 // Emit the register descriptors now. 952 i = 0; 953 for (const auto &Reg : Regs) { 954 OS << " { " << RegStrings.get(Reg.getName()) << ", " 955 << DiffSeqs.get(SubRegLists[i]) << ", " << DiffSeqs.get(SuperRegLists[i]) 956 << ", " << SubRegIdxSeqs.get(SubRegIdxLists[i]) << ", " 957 << (DiffSeqs.get(RegUnitLists[i]) * 16 + RegUnitInitScale[i]) << ", " 958 << LaneMaskSeqs.get(RegUnitLaneMasks[i]) << " },\n"; 959 ++i; 960 } 961 OS << "};\n\n"; // End of register descriptors... 962 963 // Emit the table of register unit roots. Each regunit has one or two root 964 // registers. 965 OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2] = {\n"; 966 for (unsigned i = 0, e = RegBank.getNumNativeRegUnits(); i != e; ++i) { 967 ArrayRef<const CodeGenRegister*> Roots = RegBank.getRegUnit(i).getRoots(); 968 assert(!Roots.empty() && "All regunits must have a root register."); 969 assert(Roots.size() <= 2 && "More than two roots not supported yet."); 970 OS << " { " << getQualifiedName(Roots.front()->TheDef); 971 for (unsigned r = 1; r != Roots.size(); ++r) 972 OS << ", " << getQualifiedName(Roots[r]->TheDef); 973 OS << " },\n"; 974 } 975 OS << "};\n\n"; 976 977 const auto &RegisterClasses = RegBank.getRegClasses(); 978 979 // Loop over all of the register classes... emitting each one. 980 OS << "namespace { // Register classes...\n"; 981 982 SequenceToOffsetTable<std::string> RegClassStrings; 983 984 // Emit the register enum value arrays for each RegisterClass 985 for (const auto &RC : RegisterClasses) { 986 ArrayRef<Record*> Order = RC.getOrder(); 987 988 // Give the register class a legal C name if it's anonymous. 989 const std::string &Name = RC.getName(); 990 991 RegClassStrings.add(Name); 992 993 // Emit the register list now. 994 OS << " // " << Name << " Register Class...\n" 995 << " const MCPhysReg " << Name 996 << "[] = {\n "; 997 for (unsigned i = 0, e = Order.size(); i != e; ++i) { 998 Record *Reg = Order[i]; 999 OS << getQualifiedName(Reg) << ", "; 1000 } 1001 OS << "\n };\n\n"; 1002 1003 OS << " // " << Name << " Bit set.\n" 1004 << " const uint8_t " << Name 1005 << "Bits[] = {\n "; 1006 BitVectorEmitter BVE; 1007 for (unsigned i = 0, e = Order.size(); i != e; ++i) { 1008 Record *Reg = Order[i]; 1009 BVE.add(Target.getRegBank().getReg(Reg)->EnumValue); 1010 } 1011 BVE.print(OS); 1012 OS << "\n };\n\n"; 1013 1014 } 1015 OS << "} // end anonymous namespace\n\n"; 1016 1017 RegClassStrings.layout(); 1018 OS << "extern const char " << TargetName << "RegClassStrings[] = {\n"; 1019 RegClassStrings.emit(OS, printChar); 1020 OS << "};\n\n"; 1021 1022 OS << "extern const MCRegisterClass " << TargetName 1023 << "MCRegisterClasses[] = {\n"; 1024 1025 for (const auto &RC : RegisterClasses) { 1026 assert(isInt<8>(RC.CopyCost) && "Copy cost too large."); 1027 // Register size and spill size will become independent, but are not at 1028 // the moment. For now use SpillSize as the register size. 1029 OS << " { " << RC.getName() << ", " << RC.getName() << "Bits, " 1030 << RegClassStrings.get(RC.getName()) << ", " 1031 << RC.getOrder().size() << ", sizeof(" << RC.getName() << "Bits), " 1032 << RC.getQualifiedName() + "RegClassID" << ", " 1033 << RC.SpillSize/8 << ", " 1034 << RC.CopyCost << ", " 1035 << ( RC.Allocatable ? "true" : "false" ) << " },\n"; 1036 } 1037 1038 OS << "};\n\n"; 1039 1040 EmitRegMappingTables(OS, Regs, false); 1041 1042 // Emit Reg encoding table 1043 OS << "extern const uint16_t " << TargetName; 1044 OS << "RegEncodingTable[] = {\n"; 1045 // Add entry for NoRegister 1046 OS << " 0,\n"; 1047 for (const auto &RE : Regs) { 1048 Record *Reg = RE.TheDef; 1049 BitsInit *BI = Reg->getValueAsBitsInit("HWEncoding"); 1050 uint64_t Value = 0; 1051 for (unsigned b = 0, be = BI->getNumBits(); b != be; ++b) { 1052 if (BitInit *B = dyn_cast<BitInit>(BI->getBit(b))) 1053 Value |= (uint64_t)B->getValue() << b; 1054 } 1055 OS << " " << Value << ",\n"; 1056 } 1057 OS << "};\n"; // End of HW encoding table 1058 1059 // MCRegisterInfo initialization routine. 1060 OS << "static inline void Init" << TargetName 1061 << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, " 1062 << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0, unsigned PC = 0) " 1063 "{\n" 1064 << " RI->InitMCRegisterInfo(" << TargetName << "RegDesc, " 1065 << Regs.size() + 1 << ", RA, PC, " << TargetName << "MCRegisterClasses, " 1066 << RegisterClasses.size() << ", " << TargetName << "RegUnitRoots, " 1067 << RegBank.getNumNativeRegUnits() << ", " << TargetName << "RegDiffLists, " 1068 << TargetName << "LaneMaskLists, " << TargetName << "RegStrings, " 1069 << TargetName << "RegClassStrings, " << TargetName << "SubRegIdxLists, " 1070 << (std::distance(SubRegIndices.begin(), SubRegIndices.end()) + 1) << ",\n" 1071 << TargetName << "SubRegIdxRanges, " << TargetName 1072 << "RegEncodingTable);\n\n"; 1073 1074 EmitRegMapping(OS, Regs, false); 1075 1076 OS << "}\n\n"; 1077 1078 OS << "} // end namespace llvm\n\n"; 1079 OS << "#endif // GET_REGINFO_MC_DESC\n\n"; 1080 } 1081 1082 void 1083 RegisterInfoEmitter::runTargetHeader(raw_ostream &OS, CodeGenTarget &Target, 1084 CodeGenRegBank &RegBank) { 1085 emitSourceFileHeader("Register Information Header Fragment", OS); 1086 1087 OS << "\n#ifdef GET_REGINFO_HEADER\n"; 1088 OS << "#undef GET_REGINFO_HEADER\n\n"; 1089 1090 const std::string &TargetName = Target.getName(); 1091 std::string ClassName = TargetName + "GenRegisterInfo"; 1092 1093 OS << "#include \"llvm/Target/TargetRegisterInfo.h\"\n\n"; 1094 1095 OS << "namespace llvm {\n\n"; 1096 1097 OS << "class " << TargetName << "FrameLowering;\n\n"; 1098 1099 OS << "struct " << ClassName << " : public TargetRegisterInfo {\n" 1100 << " explicit " << ClassName 1101 << "(unsigned RA, unsigned D = 0, unsigned E = 0, unsigned PC = 0);\n"; 1102 if (!RegBank.getSubRegIndices().empty()) { 1103 OS << " unsigned composeSubRegIndicesImpl" 1104 << "(unsigned, unsigned) const override;\n" 1105 << " LaneBitmask composeSubRegIndexLaneMaskImpl" 1106 << "(unsigned, LaneBitmask) const override;\n" 1107 << " LaneBitmask reverseComposeSubRegIndexLaneMaskImpl" 1108 << "(unsigned, LaneBitmask) const override;\n" 1109 << " const TargetRegisterClass *getSubClassWithSubReg" 1110 << "(const TargetRegisterClass*, unsigned) const override;\n"; 1111 } 1112 OS << " const RegClassWeight &getRegClassWeight(" 1113 << "const TargetRegisterClass *RC) const override;\n" 1114 << " unsigned getRegUnitWeight(unsigned RegUnit) const override;\n" 1115 << " unsigned getNumRegPressureSets() const override;\n" 1116 << " const char *getRegPressureSetName(unsigned Idx) const override;\n" 1117 << " unsigned getRegPressureSetLimit(const MachineFunction &MF, unsigned " 1118 "Idx) const override;\n" 1119 << " const int *getRegClassPressureSets(" 1120 << "const TargetRegisterClass *RC) const override;\n" 1121 << " const int *getRegUnitPressureSets(" 1122 << "unsigned RegUnit) const override;\n" 1123 << " ArrayRef<const char *> getRegMaskNames() const override;\n" 1124 << " ArrayRef<const uint32_t *> getRegMasks() const override;\n" 1125 << " /// Devirtualized TargetFrameLowering.\n" 1126 << " static const " << TargetName << "FrameLowering *getFrameLowering(\n" 1127 << " const MachineFunction &MF);\n" 1128 << "};\n\n"; 1129 1130 const auto &RegisterClasses = RegBank.getRegClasses(); 1131 1132 if (!RegisterClasses.empty()) { 1133 OS << "namespace " << RegisterClasses.front().Namespace 1134 << " { // Register classes\n"; 1135 1136 for (const auto &RC : RegisterClasses) { 1137 const std::string &Name = RC.getName(); 1138 1139 // Output the extern for the instance. 1140 OS << " extern const TargetRegisterClass " << Name << "RegClass;\n"; 1141 } 1142 OS << "} // end namespace " << RegisterClasses.front().Namespace << "\n\n"; 1143 } 1144 OS << "} // end namespace llvm\n\n"; 1145 OS << "#endif // GET_REGINFO_HEADER\n\n"; 1146 } 1147 1148 // 1149 // runTargetDesc - Output the target register and register file descriptions. 1150 // 1151 void 1152 RegisterInfoEmitter::runTargetDesc(raw_ostream &OS, CodeGenTarget &Target, 1153 CodeGenRegBank &RegBank){ 1154 emitSourceFileHeader("Target Register and Register Classes Information", OS); 1155 1156 OS << "\n#ifdef GET_REGINFO_TARGET_DESC\n"; 1157 OS << "#undef GET_REGINFO_TARGET_DESC\n\n"; 1158 1159 OS << "namespace llvm {\n\n"; 1160 1161 // Get access to MCRegisterClass data. 1162 OS << "extern const MCRegisterClass " << Target.getName() 1163 << "MCRegisterClasses[];\n"; 1164 1165 // Start out by emitting each of the register classes. 1166 const auto &RegisterClasses = RegBank.getRegClasses(); 1167 const auto &SubRegIndices = RegBank.getSubRegIndices(); 1168 1169 // Collect all registers belonging to any allocatable class. 1170 std::set<Record*> AllocatableRegs; 1171 1172 // Collect allocatable registers. 1173 for (const auto &RC : RegisterClasses) { 1174 ArrayRef<Record*> Order = RC.getOrder(); 1175 1176 if (RC.Allocatable) 1177 AllocatableRegs.insert(Order.begin(), Order.end()); 1178 } 1179 1180 // Build a shared array of value types. 1181 SequenceToOffsetTable<SmallVector<MVT::SimpleValueType, 4> > VTSeqs; 1182 for (const auto &RC : RegisterClasses) 1183 VTSeqs.add(RC.VTs); 1184 VTSeqs.layout(); 1185 OS << "\nstatic const MVT::SimpleValueType VTLists[] = {\n"; 1186 VTSeqs.emit(OS, printSimpleValueType, "MVT::Other"); 1187 OS << "};\n"; 1188 1189 // Emit SubRegIndex names, skipping 0. 1190 OS << "\nstatic const char *const SubRegIndexNameTable[] = { \""; 1191 1192 for (const auto &Idx : SubRegIndices) { 1193 OS << Idx.getName(); 1194 OS << "\", \""; 1195 } 1196 OS << "\" };\n\n"; 1197 1198 // Emit SubRegIndex lane masks, including 0. 1199 OS << "\nstatic const LaneBitmask SubRegIndexLaneMaskTable[] = {\n LaneBitmask::getAll(),\n"; 1200 for (const auto &Idx : SubRegIndices) { 1201 printMask(OS << " ", Idx.LaneMask); 1202 OS << ", // " << Idx.getName() << '\n'; 1203 } 1204 OS << " };\n\n"; 1205 1206 OS << "\n"; 1207 1208 // Now that all of the structs have been emitted, emit the instances. 1209 if (!RegisterClasses.empty()) { 1210 OS << "\nstatic const TargetRegisterClass *const " 1211 << "NullRegClasses[] = { nullptr };\n\n"; 1212 1213 // Emit register class bit mask tables. The first bit mask emitted for a 1214 // register class, RC, is the set of sub-classes, including RC itself. 1215 // 1216 // If RC has super-registers, also create a list of subreg indices and bit 1217 // masks, (Idx, Mask). The bit mask has a bit for every superreg regclass, 1218 // SuperRC, that satisfies: 1219 // 1220 // For all SuperReg in SuperRC: SuperReg:Idx in RC 1221 // 1222 // The 0-terminated list of subreg indices starts at: 1223 // 1224 // RC->getSuperRegIndices() = SuperRegIdxSeqs + ... 1225 // 1226 // The corresponding bitmasks follow the sub-class mask in memory. Each 1227 // mask has RCMaskWords uint32_t entries. 1228 // 1229 // Every bit mask present in the list has at least one bit set. 1230 1231 // Compress the sub-reg index lists. 1232 typedef std::vector<const CodeGenSubRegIndex*> IdxList; 1233 SmallVector<IdxList, 8> SuperRegIdxLists(RegisterClasses.size()); 1234 SequenceToOffsetTable<IdxList, deref<llvm::less>> SuperRegIdxSeqs; 1235 BitVector MaskBV(RegisterClasses.size()); 1236 1237 for (const auto &RC : RegisterClasses) { 1238 OS << "static const uint32_t " << RC.getName() << "SubClassMask[] = {\n "; 1239 printBitVectorAsHex(OS, RC.getSubClasses(), 32); 1240 1241 // Emit super-reg class masks for any relevant SubRegIndices that can 1242 // project into RC. 1243 IdxList &SRIList = SuperRegIdxLists[RC.EnumValue]; 1244 for (auto &Idx : SubRegIndices) { 1245 MaskBV.reset(); 1246 RC.getSuperRegClasses(&Idx, MaskBV); 1247 if (MaskBV.none()) 1248 continue; 1249 SRIList.push_back(&Idx); 1250 OS << "\n "; 1251 printBitVectorAsHex(OS, MaskBV, 32); 1252 OS << "// " << Idx.getName(); 1253 } 1254 SuperRegIdxSeqs.add(SRIList); 1255 OS << "\n};\n\n"; 1256 } 1257 1258 OS << "static const uint16_t SuperRegIdxSeqs[] = {\n"; 1259 SuperRegIdxSeqs.layout(); 1260 SuperRegIdxSeqs.emit(OS, printSubRegIndex); 1261 OS << "};\n\n"; 1262 1263 // Emit NULL terminated super-class lists. 1264 for (const auto &RC : RegisterClasses) { 1265 ArrayRef<CodeGenRegisterClass*> Supers = RC.getSuperClasses(); 1266 1267 // Skip classes without supers. We can reuse NullRegClasses. 1268 if (Supers.empty()) 1269 continue; 1270 1271 OS << "static const TargetRegisterClass *const " 1272 << RC.getName() << "Superclasses[] = {\n"; 1273 for (const auto *Super : Supers) 1274 OS << " &" << Super->getQualifiedName() << "RegClass,\n"; 1275 OS << " nullptr\n};\n\n"; 1276 } 1277 1278 // Emit methods. 1279 for (const auto &RC : RegisterClasses) { 1280 if (!RC.AltOrderSelect.empty()) { 1281 OS << "\nstatic inline unsigned " << RC.getName() 1282 << "AltOrderSelect(const MachineFunction &MF) {" 1283 << RC.AltOrderSelect << "}\n\n" 1284 << "static ArrayRef<MCPhysReg> " << RC.getName() 1285 << "GetRawAllocationOrder(const MachineFunction &MF) {\n"; 1286 for (unsigned oi = 1 , oe = RC.getNumOrders(); oi != oe; ++oi) { 1287 ArrayRef<Record*> Elems = RC.getOrder(oi); 1288 if (!Elems.empty()) { 1289 OS << " static const MCPhysReg AltOrder" << oi << "[] = {"; 1290 for (unsigned elem = 0; elem != Elems.size(); ++elem) 1291 OS << (elem ? ", " : " ") << getQualifiedName(Elems[elem]); 1292 OS << " };\n"; 1293 } 1294 } 1295 OS << " const MCRegisterClass &MCR = " << Target.getName() 1296 << "MCRegisterClasses[" << RC.getQualifiedName() + "RegClassID];\n" 1297 << " const ArrayRef<MCPhysReg> Order[] = {\n" 1298 << " makeArrayRef(MCR.begin(), MCR.getNumRegs()"; 1299 for (unsigned oi = 1, oe = RC.getNumOrders(); oi != oe; ++oi) 1300 if (RC.getOrder(oi).empty()) 1301 OS << "),\n ArrayRef<MCPhysReg>("; 1302 else 1303 OS << "),\n makeArrayRef(AltOrder" << oi; 1304 OS << ")\n };\n const unsigned Select = " << RC.getName() 1305 << "AltOrderSelect(MF);\n assert(Select < " << RC.getNumOrders() 1306 << ");\n return Order[Select];\n}\n"; 1307 } 1308 } 1309 1310 // Now emit the actual value-initialized register class instances. 1311 OS << "\nnamespace " << RegisterClasses.front().Namespace 1312 << " { // Register class instances\n"; 1313 1314 for (const auto &RC : RegisterClasses) { 1315 assert(isUInt<16>(RC.SpillSize/8) && "SpillSize too large."); 1316 assert(isUInt<16>(RC.SpillAlignment/8) && "SpillAlignment too large."); 1317 OS << " extern const TargetRegisterClass " << RC.getName() 1318 << "RegClass = {\n " << '&' << Target.getName() 1319 << "MCRegisterClasses[" << RC.getName() << "RegClassID],\n " 1320 << RC.SpillSize/8 << ", /* SpillSize */\n " 1321 << RC.SpillAlignment/8 << ", /* SpillAlignment */\n " 1322 << "VTLists + " << VTSeqs.get(RC.VTs) << ",\n " << RC.getName() 1323 << "SubClassMask,\n SuperRegIdxSeqs + " 1324 << SuperRegIdxSeqs.get(SuperRegIdxLists[RC.EnumValue]) << ",\n "; 1325 printMask(OS, RC.LaneMask); 1326 OS << ",\n " << (unsigned)RC.AllocationPriority << ",\n " 1327 << (RC.HasDisjunctSubRegs?"true":"false") 1328 << ", /* HasDisjunctSubRegs */\n " 1329 << (RC.CoveredBySubRegs?"true":"false") 1330 << ", /* CoveredBySubRegs */\n "; 1331 if (RC.getSuperClasses().empty()) 1332 OS << "NullRegClasses,\n "; 1333 else 1334 OS << RC.getName() << "Superclasses,\n "; 1335 if (RC.AltOrderSelect.empty()) 1336 OS << "nullptr\n"; 1337 else 1338 OS << RC.getName() << "GetRawAllocationOrder\n"; 1339 OS << " };\n\n"; 1340 } 1341 1342 OS << "} // end namespace " << RegisterClasses.front().Namespace << "\n"; 1343 } 1344 1345 OS << "\nnamespace {\n"; 1346 OS << " const TargetRegisterClass* const RegisterClasses[] = {\n"; 1347 for (const auto &RC : RegisterClasses) 1348 OS << " &" << RC.getQualifiedName() << "RegClass,\n"; 1349 OS << " };\n"; 1350 OS << "} // end anonymous namespace\n"; 1351 1352 // Emit extra information about registers. 1353 const std::string &TargetName = Target.getName(); 1354 OS << "\nstatic const TargetRegisterInfoDesc " 1355 << TargetName << "RegInfoDesc[] = { // Extra Descriptors\n"; 1356 OS << " { 0, false },\n"; 1357 1358 const auto &Regs = RegBank.getRegisters(); 1359 for (const auto &Reg : Regs) { 1360 OS << " { "; 1361 OS << Reg.CostPerUse << ", " 1362 << ( AllocatableRegs.count(Reg.TheDef) != 0 ? "true" : "false" ) 1363 << " },\n"; 1364 } 1365 OS << "};\n"; // End of register descriptors... 1366 1367 1368 std::string ClassName = Target.getName().str() + "GenRegisterInfo"; 1369 1370 auto SubRegIndicesSize = 1371 std::distance(SubRegIndices.begin(), SubRegIndices.end()); 1372 1373 if (!SubRegIndices.empty()) { 1374 emitComposeSubRegIndices(OS, RegBank, ClassName); 1375 emitComposeSubRegIndexLaneMask(OS, RegBank, ClassName); 1376 } 1377 1378 // Emit getSubClassWithSubReg. 1379 if (!SubRegIndices.empty()) { 1380 OS << "const TargetRegisterClass *" << ClassName 1381 << "::getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx)" 1382 << " const {\n"; 1383 // Use the smallest type that can hold a regclass ID with room for a 1384 // sentinel. 1385 if (RegisterClasses.size() < UINT8_MAX) 1386 OS << " static const uint8_t Table["; 1387 else if (RegisterClasses.size() < UINT16_MAX) 1388 OS << " static const uint16_t Table["; 1389 else 1390 PrintFatalError("Too many register classes."); 1391 OS << RegisterClasses.size() << "][" << SubRegIndicesSize << "] = {\n"; 1392 for (const auto &RC : RegisterClasses) { 1393 OS << " {\t// " << RC.getName() << "\n"; 1394 for (auto &Idx : SubRegIndices) { 1395 if (CodeGenRegisterClass *SRC = RC.getSubClassWithSubReg(&Idx)) 1396 OS << " " << SRC->EnumValue + 1 << ",\t// " << Idx.getName() 1397 << " -> " << SRC->getName() << "\n"; 1398 else 1399 OS << " 0,\t// " << Idx.getName() << "\n"; 1400 } 1401 OS << " },\n"; 1402 } 1403 OS << " };\n assert(RC && \"Missing regclass\");\n" 1404 << " if (!Idx) return RC;\n --Idx;\n" 1405 << " assert(Idx < " << SubRegIndicesSize << " && \"Bad subreg\");\n" 1406 << " unsigned TV = Table[RC->getID()][Idx];\n" 1407 << " return TV ? getRegClass(TV - 1) : nullptr;\n}\n\n"; 1408 } 1409 1410 EmitRegUnitPressure(OS, RegBank, ClassName); 1411 1412 // Emit the constructor of the class... 1413 OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[];\n"; 1414 OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[];\n"; 1415 OS << "extern const LaneBitmask " << TargetName << "LaneMaskLists[];\n"; 1416 OS << "extern const char " << TargetName << "RegStrings[];\n"; 1417 OS << "extern const char " << TargetName << "RegClassStrings[];\n"; 1418 OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2];\n"; 1419 OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[];\n"; 1420 OS << "extern const MCRegisterInfo::SubRegCoveredBits " 1421 << TargetName << "SubRegIdxRanges[];\n"; 1422 OS << "extern const uint16_t " << TargetName << "RegEncodingTable[];\n"; 1423 1424 EmitRegMappingTables(OS, Regs, true); 1425 1426 OS << ClassName << "::\n" << ClassName 1427 << "(unsigned RA, unsigned DwarfFlavour, unsigned EHFlavour, unsigned PC)\n" 1428 << " : TargetRegisterInfo(" << TargetName << "RegInfoDesc" 1429 << ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() <<",\n" 1430 << " SubRegIndexNameTable, SubRegIndexLaneMaskTable, "; 1431 printMask(OS, RegBank.CoveringLanes); 1432 OS << ") {\n" 1433 << " InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size() + 1 1434 << ", RA, PC,\n " << TargetName 1435 << "MCRegisterClasses, " << RegisterClasses.size() << ",\n" 1436 << " " << TargetName << "RegUnitRoots,\n" 1437 << " " << RegBank.getNumNativeRegUnits() << ",\n" 1438 << " " << TargetName << "RegDiffLists,\n" 1439 << " " << TargetName << "LaneMaskLists,\n" 1440 << " " << TargetName << "RegStrings,\n" 1441 << " " << TargetName << "RegClassStrings,\n" 1442 << " " << TargetName << "SubRegIdxLists,\n" 1443 << " " << SubRegIndicesSize + 1 << ",\n" 1444 << " " << TargetName << "SubRegIdxRanges,\n" 1445 << " " << TargetName << "RegEncodingTable);\n\n"; 1446 1447 EmitRegMapping(OS, Regs, true); 1448 1449 OS << "}\n\n"; 1450 1451 // Emit CalleeSavedRegs information. 1452 std::vector<Record*> CSRSets = 1453 Records.getAllDerivedDefinitions("CalleeSavedRegs"); 1454 for (unsigned i = 0, e = CSRSets.size(); i != e; ++i) { 1455 Record *CSRSet = CSRSets[i]; 1456 const SetTheory::RecVec *Regs = RegBank.getSets().expand(CSRSet); 1457 assert(Regs && "Cannot expand CalleeSavedRegs instance"); 1458 1459 // Emit the *_SaveList list of callee-saved registers. 1460 OS << "static const MCPhysReg " << CSRSet->getName() 1461 << "_SaveList[] = { "; 1462 for (unsigned r = 0, re = Regs->size(); r != re; ++r) 1463 OS << getQualifiedName((*Regs)[r]) << ", "; 1464 OS << "0 };\n"; 1465 1466 // Emit the *_RegMask bit mask of call-preserved registers. 1467 BitVector Covered = RegBank.computeCoveredRegisters(*Regs); 1468 1469 // Check for an optional OtherPreserved set. 1470 // Add those registers to RegMask, but not to SaveList. 1471 if (DagInit *OPDag = 1472 dyn_cast<DagInit>(CSRSet->getValueInit("OtherPreserved"))) { 1473 SetTheory::RecSet OPSet; 1474 RegBank.getSets().evaluate(OPDag, OPSet, CSRSet->getLoc()); 1475 Covered |= RegBank.computeCoveredRegisters( 1476 ArrayRef<Record*>(OPSet.begin(), OPSet.end())); 1477 } 1478 1479 OS << "static const uint32_t " << CSRSet->getName() 1480 << "_RegMask[] = { "; 1481 printBitVectorAsHex(OS, Covered, 32); 1482 OS << "};\n"; 1483 } 1484 OS << "\n\n"; 1485 1486 OS << "ArrayRef<const uint32_t *> " << ClassName 1487 << "::getRegMasks() const {\n"; 1488 if (!CSRSets.empty()) { 1489 OS << " static const uint32_t *const Masks[] = {\n"; 1490 for (Record *CSRSet : CSRSets) 1491 OS << " " << CSRSet->getName() << "_RegMask,\n"; 1492 OS << " };\n"; 1493 OS << " return makeArrayRef(Masks);\n"; 1494 } else { 1495 OS << " return None;\n"; 1496 } 1497 OS << "}\n\n"; 1498 1499 OS << "ArrayRef<const char *> " << ClassName 1500 << "::getRegMaskNames() const {\n"; 1501 if (!CSRSets.empty()) { 1502 OS << " static const char *const Names[] = {\n"; 1503 for (Record *CSRSet : CSRSets) 1504 OS << " " << '"' << CSRSet->getName() << '"' << ",\n"; 1505 OS << " };\n"; 1506 OS << " return makeArrayRef(Names);\n"; 1507 } else { 1508 OS << " return None;\n"; 1509 } 1510 OS << "}\n\n"; 1511 1512 OS << "const " << TargetName << "FrameLowering *\n" << TargetName 1513 << "GenRegisterInfo::getFrameLowering(const MachineFunction &MF) {\n" 1514 << " return static_cast<const " << TargetName << "FrameLowering *>(\n" 1515 << " MF.getSubtarget().getFrameLowering());\n" 1516 << "}\n\n"; 1517 1518 OS << "} // end namespace llvm\n\n"; 1519 OS << "#endif // GET_REGINFO_TARGET_DESC\n\n"; 1520 } 1521 1522 void RegisterInfoEmitter::run(raw_ostream &OS) { 1523 CodeGenTarget Target(Records); 1524 CodeGenRegBank &RegBank = Target.getRegBank(); 1525 RegBank.computeDerivedInfo(); 1526 1527 runEnums(OS, Target, RegBank); 1528 runMCDesc(OS, Target, RegBank); 1529 runTargetHeader(OS, Target, RegBank); 1530 runTargetDesc(OS, Target, RegBank); 1531 } 1532 1533 namespace llvm { 1534 1535 void EmitRegisterInfo(RecordKeeper &RK, raw_ostream &OS) { 1536 RegisterInfoEmitter(RK).run(OS); 1537 } 1538 1539 } // end namespace llvm 1540