1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits information about intrinsic functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenIntrinsics.h" 15 #include "CodeGenTarget.h" 16 #include "SequenceToOffsetTable.h" 17 #include "TableGenBackends.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/TableGen/Error.h" 20 #include "llvm/TableGen/Record.h" 21 #include "llvm/TableGen/StringMatcher.h" 22 #include "llvm/TableGen/TableGenBackend.h" 23 #include "llvm/TableGen/StringToOffsetTable.h" 24 #include <algorithm> 25 using namespace llvm; 26 27 namespace { 28 class IntrinsicEmitter { 29 RecordKeeper &Records; 30 bool TargetOnly; 31 std::string TargetPrefix; 32 33 public: 34 IntrinsicEmitter(RecordKeeper &R, bool T) 35 : Records(R), TargetOnly(T) {} 36 37 void run(raw_ostream &OS); 38 39 void EmitPrefix(raw_ostream &OS); 40 41 void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 42 void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 43 void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints, 44 raw_ostream &OS); 45 void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints, 46 raw_ostream &OS); 47 void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 48 void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 49 void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC, 50 raw_ostream &OS); 51 void EmitSuffix(raw_ostream &OS); 52 }; 53 } // End anonymous namespace 54 55 //===----------------------------------------------------------------------===// 56 // IntrinsicEmitter Implementation 57 //===----------------------------------------------------------------------===// 58 59 void IntrinsicEmitter::run(raw_ostream &OS) { 60 emitSourceFileHeader("Intrinsic Function Source Fragment", OS); 61 62 CodeGenIntrinsicTable Ints(Records, TargetOnly); 63 64 if (TargetOnly && !Ints.empty()) 65 TargetPrefix = Ints[0].TargetPrefix; 66 67 EmitPrefix(OS); 68 69 // Emit the enum information. 70 EmitEnumInfo(Ints, OS); 71 72 // Emit the target metadata. 73 EmitTargetInfo(Ints, OS); 74 75 // Emit the intrinsic ID -> name table. 76 EmitIntrinsicToNameTable(Ints, OS); 77 78 // Emit the intrinsic ID -> overload table. 79 EmitIntrinsicToOverloadTable(Ints, OS); 80 81 // Emit the intrinsic declaration generator. 82 EmitGenerator(Ints, OS); 83 84 // Emit the intrinsic parameter attributes. 85 EmitAttributes(Ints, OS); 86 87 // Emit code to translate GCC builtins into LLVM intrinsics. 88 EmitIntrinsicToBuiltinMap(Ints, true, OS); 89 90 // Emit code to translate MS builtins into LLVM intrinsics. 91 EmitIntrinsicToBuiltinMap(Ints, false, OS); 92 93 EmitSuffix(OS); 94 } 95 96 void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) { 97 OS << "// VisualStudio defines setjmp as _setjmp\n" 98 "#if defined(_MSC_VER) && defined(setjmp) && \\\n" 99 " !defined(setjmp_undefined_for_msvc)\n" 100 "# pragma push_macro(\"setjmp\")\n" 101 "# undef setjmp\n" 102 "# define setjmp_undefined_for_msvc\n" 103 "#endif\n\n"; 104 } 105 106 void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) { 107 OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n" 108 "// let's return it to _setjmp state\n" 109 "# pragma pop_macro(\"setjmp\")\n" 110 "# undef setjmp_undefined_for_msvc\n" 111 "#endif\n\n"; 112 } 113 114 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints, 115 raw_ostream &OS) { 116 OS << "// Enum values for Intrinsics.h\n"; 117 OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n"; 118 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 119 OS << " " << Ints[i].EnumName; 120 OS << ((i != e-1) ? ", " : " "); 121 if (Ints[i].EnumName.size() < 40) 122 OS << std::string(40-Ints[i].EnumName.size(), ' '); 123 OS << " // " << Ints[i].Name << "\n"; 124 } 125 OS << "#endif\n\n"; 126 } 127 128 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints, 129 raw_ostream &OS) { 130 OS << "// Target mapping\n"; 131 OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n"; 132 OS << "struct IntrinsicTargetInfo {\n" 133 << " llvm::StringLiteral Name;\n" 134 << " size_t Offset;\n" 135 << " size_t Count;\n" 136 << "};\n"; 137 OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n"; 138 for (auto Target : Ints.Targets) 139 OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset 140 << ", " << Target.Count << "},\n"; 141 OS << "};\n"; 142 OS << "#endif\n\n"; 143 } 144 145 void IntrinsicEmitter::EmitIntrinsicToNameTable( 146 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { 147 OS << "// Intrinsic ID to name table\n"; 148 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; 149 OS << " // Note that entry #0 is the invalid intrinsic!\n"; 150 for (unsigned i = 0, e = Ints.size(); i != e; ++i) 151 OS << " \"" << Ints[i].Name << "\",\n"; 152 OS << "#endif\n\n"; 153 } 154 155 void IntrinsicEmitter::EmitIntrinsicToOverloadTable( 156 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { 157 OS << "// Intrinsic ID to overload bitset\n"; 158 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; 159 OS << "static const uint8_t OTable[] = {\n"; 160 OS << " 0"; 161 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 162 // Add one to the index so we emit a null bit for the invalid #0 intrinsic. 163 if ((i+1)%8 == 0) 164 OS << ",\n 0"; 165 if (Ints[i].isOverloaded) 166 OS << " | (1<<" << (i+1)%8 << ')'; 167 } 168 OS << "\n};\n\n"; 169 // OTable contains a true bit at the position if the intrinsic is overloaded. 170 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; 171 OS << "#endif\n\n"; 172 } 173 174 175 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp! 176 enum IIT_Info { 177 // Common values should be encoded with 0-15. 178 IIT_Done = 0, 179 IIT_I1 = 1, 180 IIT_I8 = 2, 181 IIT_I16 = 3, 182 IIT_I32 = 4, 183 IIT_I64 = 5, 184 IIT_F16 = 6, 185 IIT_F32 = 7, 186 IIT_F64 = 8, 187 IIT_V2 = 9, 188 IIT_V4 = 10, 189 IIT_V8 = 11, 190 IIT_V16 = 12, 191 IIT_V32 = 13, 192 IIT_PTR = 14, 193 IIT_ARG = 15, 194 195 // Values from 16+ are only encodable with the inefficient encoding. 196 IIT_V64 = 16, 197 IIT_MMX = 17, 198 IIT_TOKEN = 18, 199 IIT_METADATA = 19, 200 IIT_EMPTYSTRUCT = 20, 201 IIT_STRUCT2 = 21, 202 IIT_STRUCT3 = 22, 203 IIT_STRUCT4 = 23, 204 IIT_STRUCT5 = 24, 205 IIT_EXTEND_ARG = 25, 206 IIT_TRUNC_ARG = 26, 207 IIT_ANYPTR = 27, 208 IIT_V1 = 28, 209 IIT_VARARG = 29, 210 IIT_HALF_VEC_ARG = 30, 211 IIT_SAME_VEC_WIDTH_ARG = 31, 212 IIT_PTR_TO_ARG = 32, 213 IIT_PTR_TO_ELT = 33, 214 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 215 IIT_I128 = 35, 216 IIT_V512 = 36, 217 IIT_V1024 = 37, 218 IIT_STRUCT6 = 38, 219 IIT_STRUCT7 = 39, 220 IIT_STRUCT8 = 40 221 }; 222 223 static void EncodeFixedValueType(MVT::SimpleValueType VT, 224 std::vector<unsigned char> &Sig) { 225 if (MVT(VT).isInteger()) { 226 unsigned BitWidth = MVT(VT).getSizeInBits(); 227 switch (BitWidth) { 228 default: PrintFatalError("unhandled integer type width in intrinsic!"); 229 case 1: return Sig.push_back(IIT_I1); 230 case 8: return Sig.push_back(IIT_I8); 231 case 16: return Sig.push_back(IIT_I16); 232 case 32: return Sig.push_back(IIT_I32); 233 case 64: return Sig.push_back(IIT_I64); 234 case 128: return Sig.push_back(IIT_I128); 235 } 236 } 237 238 switch (VT) { 239 default: PrintFatalError("unhandled MVT in intrinsic!"); 240 case MVT::f16: return Sig.push_back(IIT_F16); 241 case MVT::f32: return Sig.push_back(IIT_F32); 242 case MVT::f64: return Sig.push_back(IIT_F64); 243 case MVT::token: return Sig.push_back(IIT_TOKEN); 244 case MVT::Metadata: return Sig.push_back(IIT_METADATA); 245 case MVT::x86mmx: return Sig.push_back(IIT_MMX); 246 // MVT::OtherVT is used to mean the empty struct type here. 247 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); 248 // MVT::isVoid is used to represent varargs here. 249 case MVT::isVoid: return Sig.push_back(IIT_VARARG); 250 } 251 } 252 253 #if defined(_MSC_VER) && !defined(__clang__) 254 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function. 255 #endif 256 257 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes, 258 std::vector<unsigned char> &Sig) { 259 260 if (R->isSubClassOf("LLVMMatchType")) { 261 unsigned Number = R->getValueAsInt("Number"); 262 assert(Number < ArgCodes.size() && "Invalid matching number!"); 263 if (R->isSubClassOf("LLVMExtendedType")) 264 Sig.push_back(IIT_EXTEND_ARG); 265 else if (R->isSubClassOf("LLVMTruncatedType")) 266 Sig.push_back(IIT_TRUNC_ARG); 267 else if (R->isSubClassOf("LLVMHalfElementsVectorType")) 268 Sig.push_back(IIT_HALF_VEC_ARG); 269 else if (R->isSubClassOf("LLVMVectorSameWidth")) { 270 Sig.push_back(IIT_SAME_VEC_WIDTH_ARG); 271 Sig.push_back((Number << 3) | ArgCodes[Number]); 272 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy")); 273 EncodeFixedValueType(VT, Sig); 274 return; 275 } 276 else if (R->isSubClassOf("LLVMPointerTo")) 277 Sig.push_back(IIT_PTR_TO_ARG); 278 else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { 279 Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT); 280 unsigned ArgNo = ArgCodes.size(); 281 ArgCodes.push_back(3 /*vAny*/); 282 // Encode overloaded ArgNo 283 Sig.push_back(ArgNo); 284 // Encode LLVMMatchType<Number> ArgNo 285 Sig.push_back(Number); 286 return; 287 } else if (R->isSubClassOf("LLVMPointerToElt")) 288 Sig.push_back(IIT_PTR_TO_ELT); 289 else 290 Sig.push_back(IIT_ARG); 291 return Sig.push_back((Number << 3) | ArgCodes[Number]); 292 } 293 294 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); 295 296 unsigned Tmp = 0; 297 switch (VT) { 298 default: break; 299 case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH; 300 case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH; 301 case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH; 302 case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH; 303 case MVT::Any: { 304 // If this is an "any" valuetype, then the type is the type of the next 305 // type in the list specified to getIntrinsic(). 306 Sig.push_back(IIT_ARG); 307 308 // Figure out what arg # this is consuming, and remember what kind it was. 309 unsigned ArgNo = ArgCodes.size(); 310 ArgCodes.push_back(Tmp); 311 312 // Encode what sort of argument it must be in the low 3 bits of the ArgNo. 313 return Sig.push_back((ArgNo << 3) | Tmp); 314 } 315 316 case MVT::iPTR: { 317 unsigned AddrSpace = 0; 318 if (R->isSubClassOf("LLVMQualPointerType")) { 319 AddrSpace = R->getValueAsInt("AddrSpace"); 320 assert(AddrSpace < 256 && "Address space exceeds 255"); 321 } 322 if (AddrSpace) { 323 Sig.push_back(IIT_ANYPTR); 324 Sig.push_back(AddrSpace); 325 } else { 326 Sig.push_back(IIT_PTR); 327 } 328 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig); 329 } 330 } 331 332 if (MVT(VT).isVector()) { 333 MVT VVT = VT; 334 switch (VVT.getVectorNumElements()) { 335 default: PrintFatalError("unhandled vector type width in intrinsic!"); 336 case 1: Sig.push_back(IIT_V1); break; 337 case 2: Sig.push_back(IIT_V2); break; 338 case 4: Sig.push_back(IIT_V4); break; 339 case 8: Sig.push_back(IIT_V8); break; 340 case 16: Sig.push_back(IIT_V16); break; 341 case 32: Sig.push_back(IIT_V32); break; 342 case 64: Sig.push_back(IIT_V64); break; 343 case 512: Sig.push_back(IIT_V512); break; 344 case 1024: Sig.push_back(IIT_V1024); break; 345 } 346 347 return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig); 348 } 349 350 EncodeFixedValueType(VT, Sig); 351 } 352 353 #if defined(_MSC_VER) && !defined(__clang__) 354 #pragma optimize("",on) 355 #endif 356 357 /// ComputeFixedEncoding - If we can encode the type signature for this 358 /// intrinsic into 32 bits, return it. If not, return ~0U. 359 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, 360 std::vector<unsigned char> &TypeSig) { 361 std::vector<unsigned char> ArgCodes; 362 363 if (Int.IS.RetVTs.empty()) 364 TypeSig.push_back(IIT_Done); 365 else if (Int.IS.RetVTs.size() == 1 && 366 Int.IS.RetVTs[0] == MVT::isVoid) 367 TypeSig.push_back(IIT_Done); 368 else { 369 switch (Int.IS.RetVTs.size()) { 370 case 1: break; 371 case 2: TypeSig.push_back(IIT_STRUCT2); break; 372 case 3: TypeSig.push_back(IIT_STRUCT3); break; 373 case 4: TypeSig.push_back(IIT_STRUCT4); break; 374 case 5: TypeSig.push_back(IIT_STRUCT5); break; 375 case 6: TypeSig.push_back(IIT_STRUCT6); break; 376 case 7: TypeSig.push_back(IIT_STRUCT7); break; 377 case 8: TypeSig.push_back(IIT_STRUCT8); break; 378 default: llvm_unreachable("Unhandled case in struct"); 379 } 380 381 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) 382 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig); 383 } 384 385 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) 386 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig); 387 } 388 389 static void printIITEntry(raw_ostream &OS, unsigned char X) { 390 OS << (unsigned)X; 391 } 392 393 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints, 394 raw_ostream &OS) { 395 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and 396 // capture it in this vector, otherwise store a ~0U. 397 std::vector<unsigned> FixedEncodings; 398 399 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable; 400 401 std::vector<unsigned char> TypeSig; 402 403 // Compute the unique argument type info. 404 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 405 // Get the signature for the intrinsic. 406 TypeSig.clear(); 407 ComputeFixedEncoding(Ints[i], TypeSig); 408 409 // Check to see if we can encode it into a 32-bit word. We can only encode 410 // 8 nibbles into a 32-bit word. 411 if (TypeSig.size() <= 8) { 412 bool Failed = false; 413 unsigned Result = 0; 414 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { 415 // If we had an unencodable argument, bail out. 416 if (TypeSig[i] > 15) { 417 Failed = true; 418 break; 419 } 420 Result = (Result << 4) | TypeSig[e-i-1]; 421 } 422 423 // If this could be encoded into a 31-bit word, return it. 424 if (!Failed && (Result >> 31) == 0) { 425 FixedEncodings.push_back(Result); 426 continue; 427 } 428 } 429 430 // Otherwise, we're going to unique the sequence into the 431 // LongEncodingTable, and use its offset in the 32-bit table instead. 432 LongEncodingTable.add(TypeSig); 433 434 // This is a placehold that we'll replace after the table is laid out. 435 FixedEncodings.push_back(~0U); 436 } 437 438 LongEncodingTable.layout(); 439 440 OS << "// Global intrinsic function declaration type table.\n"; 441 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; 442 443 OS << "static const unsigned IIT_Table[] = {\n "; 444 445 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { 446 if ((i & 7) == 7) 447 OS << "\n "; 448 449 // If the entry fit in the table, just emit it. 450 if (FixedEncodings[i] != ~0U) { 451 OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", "; 452 continue; 453 } 454 455 TypeSig.clear(); 456 ComputeFixedEncoding(Ints[i], TypeSig); 457 458 459 // Otherwise, emit the offset into the long encoding table. We emit it this 460 // way so that it is easier to read the offset in the .def file. 461 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; 462 } 463 464 OS << "0\n};\n\n"; 465 466 // Emit the shared table of register lists. 467 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; 468 if (!LongEncodingTable.empty()) 469 LongEncodingTable.emit(OS, printIITEntry); 470 OS << " 255\n};\n\n"; 471 472 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL 473 } 474 475 namespace { 476 struct AttributeComparator { 477 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { 478 // Sort throwing intrinsics after non-throwing intrinsics. 479 if (L->canThrow != R->canThrow) 480 return R->canThrow; 481 482 if (L->isNoDuplicate != R->isNoDuplicate) 483 return R->isNoDuplicate; 484 485 if (L->isNoReturn != R->isNoReturn) 486 return R->isNoReturn; 487 488 if (L->isConvergent != R->isConvergent) 489 return R->isConvergent; 490 491 if (L->isSpeculatable != R->isSpeculatable) 492 return R->isSpeculatable; 493 494 if (L->hasSideEffects != R->hasSideEffects) 495 return R->hasSideEffects; 496 497 // Try to order by readonly/readnone attribute. 498 CodeGenIntrinsic::ModRefBehavior LK = L->ModRef; 499 CodeGenIntrinsic::ModRefBehavior RK = R->ModRef; 500 if (LK != RK) return (LK > RK); 501 502 // Order by argument attributes. 503 // This is reliable because each side is already sorted internally. 504 return (L->ArgumentAttributes < R->ArgumentAttributes); 505 } 506 }; 507 } // End anonymous namespace 508 509 /// EmitAttributes - This emits the Intrinsic::getAttributes method. 510 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints, 511 raw_ostream &OS) { 512 OS << "// Add parameter attributes that are not common to all intrinsics.\n"; 513 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; 514 if (TargetOnly) 515 OS << "static AttributeList getAttributes(LLVMContext &C, " << TargetPrefix 516 << "Intrinsic::ID id) {\n"; 517 else 518 OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; 519 520 // Compute the maximum number of attribute arguments and the map 521 typedef std::map<const CodeGenIntrinsic*, unsigned, 522 AttributeComparator> UniqAttrMapTy; 523 UniqAttrMapTy UniqAttributes; 524 unsigned maxArgAttrs = 0; 525 unsigned AttrNum = 0; 526 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 527 const CodeGenIntrinsic &intrinsic = Ints[i]; 528 maxArgAttrs = 529 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); 530 unsigned &N = UniqAttributes[&intrinsic]; 531 if (N) continue; 532 assert(AttrNum < 256 && "Too many unique attributes for table!"); 533 N = ++AttrNum; 534 } 535 536 // Emit an array of AttributeList. Most intrinsics will have at least one 537 // entry, for the function itself (index ~1), which is usually nounwind. 538 OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n"; 539 540 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 541 const CodeGenIntrinsic &intrinsic = Ints[i]; 542 543 OS << " " << UniqAttributes[&intrinsic] << ", // " 544 << intrinsic.Name << "\n"; 545 } 546 OS << " };\n\n"; 547 548 OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n"; 549 OS << " unsigned NumAttrs = 0;\n"; 550 OS << " if (id != 0) {\n"; 551 OS << " switch(IntrinsicsToAttributesMap[id - "; 552 if (TargetOnly) 553 OS << "Intrinsic::num_intrinsics"; 554 else 555 OS << "1"; 556 OS << "]) {\n"; 557 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; 558 for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(), 559 E = UniqAttributes.end(); I != E; ++I) { 560 OS << " case " << I->second << ": {\n"; 561 562 const CodeGenIntrinsic &intrinsic = *(I->first); 563 564 // Keep track of the number of attributes we're writing out. 565 unsigned numAttrs = 0; 566 567 // The argument attributes are alreadys sorted by argument index. 568 unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size(); 569 if (ae) { 570 while (ai != ae) { 571 unsigned argNo = intrinsic.ArgumentAttributes[ai].first; 572 unsigned attrIdx = argNo + 1; // Must match AttributeList::FirstArgIndex 573 574 OS << " const Attribute::AttrKind AttrParam" << attrIdx << "[]= {"; 575 bool addComma = false; 576 577 do { 578 switch (intrinsic.ArgumentAttributes[ai].second) { 579 case CodeGenIntrinsic::NoCapture: 580 if (addComma) 581 OS << ","; 582 OS << "Attribute::NoCapture"; 583 addComma = true; 584 break; 585 case CodeGenIntrinsic::Returned: 586 if (addComma) 587 OS << ","; 588 OS << "Attribute::Returned"; 589 addComma = true; 590 break; 591 case CodeGenIntrinsic::ReadOnly: 592 if (addComma) 593 OS << ","; 594 OS << "Attribute::ReadOnly"; 595 addComma = true; 596 break; 597 case CodeGenIntrinsic::WriteOnly: 598 if (addComma) 599 OS << ","; 600 OS << "Attribute::WriteOnly"; 601 addComma = true; 602 break; 603 case CodeGenIntrinsic::ReadNone: 604 if (addComma) 605 OS << ","; 606 OS << "Attribute::ReadNone"; 607 addComma = true; 608 break; 609 } 610 611 ++ai; 612 } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo); 613 OS << "};\n"; 614 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " 615 << attrIdx << ", AttrParam" << attrIdx << ");\n"; 616 } 617 } 618 619 if (!intrinsic.canThrow || 620 intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem || 621 intrinsic.isNoReturn || intrinsic.isNoDuplicate || 622 intrinsic.isConvergent || intrinsic.isSpeculatable) { 623 OS << " const Attribute::AttrKind Atts[] = {"; 624 bool addComma = false; 625 if (!intrinsic.canThrow) { 626 OS << "Attribute::NoUnwind"; 627 addComma = true; 628 } 629 if (intrinsic.isNoReturn) { 630 if (addComma) 631 OS << ","; 632 OS << "Attribute::NoReturn"; 633 addComma = true; 634 } 635 if (intrinsic.isNoDuplicate) { 636 if (addComma) 637 OS << ","; 638 OS << "Attribute::NoDuplicate"; 639 addComma = true; 640 } 641 if (intrinsic.isConvergent) { 642 if (addComma) 643 OS << ","; 644 OS << "Attribute::Convergent"; 645 addComma = true; 646 } 647 if (intrinsic.isSpeculatable) { 648 if (addComma) 649 OS << ","; 650 OS << "Attribute::Speculatable"; 651 addComma = true; 652 } 653 654 switch (intrinsic.ModRef) { 655 case CodeGenIntrinsic::NoMem: 656 if (addComma) 657 OS << ","; 658 OS << "Attribute::ReadNone"; 659 break; 660 case CodeGenIntrinsic::ReadArgMem: 661 if (addComma) 662 OS << ","; 663 OS << "Attribute::ReadOnly,"; 664 OS << "Attribute::ArgMemOnly"; 665 break; 666 case CodeGenIntrinsic::ReadMem: 667 if (addComma) 668 OS << ","; 669 OS << "Attribute::ReadOnly"; 670 break; 671 case CodeGenIntrinsic::ReadInaccessibleMem: 672 if (addComma) 673 OS << ","; 674 OS << "Attribute::ReadOnly,"; 675 OS << "Attribute::InaccessibleMemOnly"; 676 break; 677 case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem: 678 if (addComma) 679 OS << ","; 680 OS << "Attribute::ReadOnly,"; 681 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 682 break; 683 case CodeGenIntrinsic::WriteArgMem: 684 if (addComma) 685 OS << ","; 686 OS << "Attribute::WriteOnly,"; 687 OS << "Attribute::ArgMemOnly"; 688 break; 689 case CodeGenIntrinsic::WriteMem: 690 if (addComma) 691 OS << ","; 692 OS << "Attribute::WriteOnly"; 693 break; 694 case CodeGenIntrinsic::WriteInaccessibleMem: 695 if (addComma) 696 OS << ","; 697 OS << "Attribute::WriteOnly,"; 698 OS << "Attribute::InaccessibleMemOnly"; 699 break; 700 case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem: 701 if (addComma) 702 OS << ","; 703 OS << "Attribute::WriteOnly,"; 704 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 705 break; 706 case CodeGenIntrinsic::ReadWriteArgMem: 707 if (addComma) 708 OS << ","; 709 OS << "Attribute::ArgMemOnly"; 710 break; 711 case CodeGenIntrinsic::ReadWriteInaccessibleMem: 712 if (addComma) 713 OS << ","; 714 OS << "Attribute::InaccessibleMemOnly"; 715 break; 716 case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem: 717 if (addComma) 718 OS << ","; 719 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 720 break; 721 case CodeGenIntrinsic::ReadWriteMem: 722 break; 723 } 724 OS << "};\n"; 725 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " 726 << "AttributeList::FunctionIndex, Atts);\n"; 727 } 728 729 if (numAttrs) { 730 OS << " NumAttrs = " << numAttrs << ";\n"; 731 OS << " break;\n"; 732 OS << " }\n"; 733 } else { 734 OS << " return AttributeList();\n"; 735 OS << " }\n"; 736 } 737 } 738 739 OS << " }\n"; 740 OS << " }\n"; 741 OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n"; 742 OS << "}\n"; 743 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; 744 } 745 746 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap( 747 const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) { 748 StringRef CompilerName = (IsGCC ? "GCC" : "MS"); 749 typedef std::map<std::string, std::map<std::string, std::string>> BIMTy; 750 BIMTy BuiltinMap; 751 StringToOffsetTable Table; 752 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 753 const std::string &BuiltinName = 754 IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName; 755 if (!BuiltinName.empty()) { 756 // Get the map for this target prefix. 757 std::map<std::string, std::string> &BIM = 758 BuiltinMap[Ints[i].TargetPrefix]; 759 760 if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second) 761 PrintFatalError("Intrinsic '" + Ints[i].TheDef->getName() + 762 "': duplicate " + CompilerName + " builtin name!"); 763 Table.GetOrAddStringOffset(BuiltinName); 764 } 765 } 766 767 OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n"; 768 OS << "// This is used by the C front-end. The builtin name is passed\n"; 769 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; 770 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; 771 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n"; 772 773 if (TargetOnly) { 774 OS << "static " << TargetPrefix << "Intrinsic::ID " 775 << "getIntrinsicFor" << CompilerName << "Builtin(const char " 776 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n"; 777 } else { 778 OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName 779 << "Builtin(const char " 780 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n"; 781 } 782 783 if (Table.Empty()) { 784 OS << " return "; 785 if (!TargetPrefix.empty()) 786 OS << "(" << TargetPrefix << "Intrinsic::ID)"; 787 OS << "Intrinsic::not_intrinsic;\n"; 788 OS << "}\n"; 789 OS << "#endif\n\n"; 790 return; 791 } 792 793 OS << " static const char BuiltinNames[] = {\n"; 794 Table.EmitCharArray(OS); 795 OS << " };\n\n"; 796 797 OS << " struct BuiltinEntry {\n"; 798 OS << " Intrinsic::ID IntrinID;\n"; 799 OS << " unsigned StrTabOffset;\n"; 800 OS << " const char *getName() const {\n"; 801 OS << " return &BuiltinNames[StrTabOffset];\n"; 802 OS << " }\n"; 803 OS << " bool operator<(StringRef RHS) const {\n"; 804 OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n"; 805 OS << " }\n"; 806 OS << " };\n"; 807 808 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; 809 810 // Note: this could emit significantly better code if we cared. 811 for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ 812 OS << " "; 813 if (!I->first.empty()) 814 OS << "if (TargetPrefix == \"" << I->first << "\") "; 815 else 816 OS << "/* Target Independent Builtins */ "; 817 OS << "{\n"; 818 819 // Emit the comparisons for this target prefix. 820 OS << " static const BuiltinEntry " << I->first << "Names[] = {\n"; 821 for (const auto &P : I->second) { 822 OS << " {Intrinsic::" << P.second << ", " 823 << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n"; 824 } 825 OS << " };\n"; 826 OS << " auto I = std::lower_bound(std::begin(" << I->first << "Names),\n"; 827 OS << " std::end(" << I->first << "Names),\n"; 828 OS << " BuiltinNameStr);\n"; 829 OS << " if (I != std::end(" << I->first << "Names) &&\n"; 830 OS << " I->getName() == BuiltinNameStr)\n"; 831 OS << " return I->IntrinID;\n"; 832 OS << " }\n"; 833 } 834 OS << " return "; 835 if (!TargetPrefix.empty()) 836 OS << "(" << TargetPrefix << "Intrinsic::ID)"; 837 OS << "Intrinsic::not_intrinsic;\n"; 838 OS << "}\n"; 839 OS << "#endif\n\n"; 840 } 841 842 void llvm::EmitIntrinsics(RecordKeeper &RK, raw_ostream &OS, bool TargetOnly) { 843 IntrinsicEmitter(RK, TargetOnly).run(OS); 844 } 845