1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits information about intrinsic functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenIntrinsics.h"
14 #include "CodeGenTarget.h"
15 #include "SequenceToOffsetTable.h"
16 #include "TableGenBackends.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/TableGen/Error.h"
19 #include "llvm/TableGen/Record.h"
20 #include "llvm/TableGen/StringMatcher.h"
21 #include "llvm/TableGen/TableGenBackend.h"
22 #include "llvm/TableGen/StringToOffsetTable.h"
23 #include <algorithm>
24 using namespace llvm;
25 
26 namespace {
27 class IntrinsicEmitter {
28   RecordKeeper &Records;
29   bool TargetOnly;
30   std::string TargetPrefix;
31 
32 public:
33   IntrinsicEmitter(RecordKeeper &R, bool T)
34     : Records(R), TargetOnly(T) {}
35 
36   void run(raw_ostream &OS, bool Enums);
37 
38   void EmitPrefix(raw_ostream &OS);
39 
40   void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
41   void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
42   void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
43                                 raw_ostream &OS);
44   void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
45                                     raw_ostream &OS);
46   void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
47   void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
48   void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
49                                  raw_ostream &OS);
50   void EmitSuffix(raw_ostream &OS);
51 };
52 } // End anonymous namespace
53 
54 //===----------------------------------------------------------------------===//
55 // IntrinsicEmitter Implementation
56 //===----------------------------------------------------------------------===//
57 
58 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
59   emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
60 
61   CodeGenIntrinsicTable Ints(Records, TargetOnly);
62 
63   if (TargetOnly && !Ints.empty())
64     TargetPrefix = Ints[0].TargetPrefix;
65 
66   EmitPrefix(OS);
67 
68   if (Enums) {
69     // Emit the enum information.
70     EmitEnumInfo(Ints, OS);
71   } else {
72     // Emit the target metadata.
73     EmitTargetInfo(Ints, OS);
74 
75     // Emit the intrinsic ID -> name table.
76     EmitIntrinsicToNameTable(Ints, OS);
77 
78     // Emit the intrinsic ID -> overload table.
79     EmitIntrinsicToOverloadTable(Ints, OS);
80 
81     // Emit the intrinsic declaration generator.
82     EmitGenerator(Ints, OS);
83 
84     // Emit the intrinsic parameter attributes.
85     EmitAttributes(Ints, OS);
86 
87     // Emit code to translate GCC builtins into LLVM intrinsics.
88     EmitIntrinsicToBuiltinMap(Ints, true, OS);
89 
90     // Emit code to translate MS builtins into LLVM intrinsics.
91     EmitIntrinsicToBuiltinMap(Ints, false, OS);
92   }
93 
94   EmitSuffix(OS);
95 }
96 
97 void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) {
98   OS << "// VisualStudio defines setjmp as _setjmp\n"
99         "#if defined(_MSC_VER) && defined(setjmp) && \\\n"
100         "                         !defined(setjmp_undefined_for_msvc)\n"
101         "#  pragma push_macro(\"setjmp\")\n"
102         "#  undef setjmp\n"
103         "#  define setjmp_undefined_for_msvc\n"
104         "#endif\n\n";
105 }
106 
107 void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) {
108   OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n"
109         "// let's return it to _setjmp state\n"
110         "#  pragma pop_macro(\"setjmp\")\n"
111         "#  undef setjmp_undefined_for_msvc\n"
112         "#endif\n\n";
113 }
114 
115 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
116                                     raw_ostream &OS) {
117   OS << "// Enum values for Intrinsics.h\n";
118   OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
119   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
120     OS << "    " << Ints[i].EnumName;
121     OS << ((i != e-1) ? ", " : "  ");
122     if (Ints[i].EnumName.size() < 40)
123       OS << std::string(40-Ints[i].EnumName.size(), ' ');
124     OS << " // " << Ints[i].Name << "\n";
125   }
126   OS << "#endif\n\n";
127 }
128 
129 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
130                                     raw_ostream &OS) {
131   OS << "// Target mapping\n";
132   OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
133   OS << "struct IntrinsicTargetInfo {\n"
134      << "  llvm::StringLiteral Name;\n"
135      << "  size_t Offset;\n"
136      << "  size_t Count;\n"
137      << "};\n";
138   OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
139   for (auto Target : Ints.Targets)
140     OS << "  {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
141        << ", " << Target.Count << "},\n";
142   OS << "};\n";
143   OS << "#endif\n\n";
144 }
145 
146 void IntrinsicEmitter::EmitIntrinsicToNameTable(
147     const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
148   OS << "// Intrinsic ID to name table\n";
149   OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
150   OS << "  // Note that entry #0 is the invalid intrinsic!\n";
151   for (unsigned i = 0, e = Ints.size(); i != e; ++i)
152     OS << "  \"" << Ints[i].Name << "\",\n";
153   OS << "#endif\n\n";
154 }
155 
156 void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
157     const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
158   OS << "// Intrinsic ID to overload bitset\n";
159   OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
160   OS << "static const uint8_t OTable[] = {\n";
161   OS << "  0";
162   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
163     // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
164     if ((i+1)%8 == 0)
165       OS << ",\n  0";
166     if (Ints[i].isOverloaded)
167       OS << " | (1<<" << (i+1)%8 << ')';
168   }
169   OS << "\n};\n\n";
170   // OTable contains a true bit at the position if the intrinsic is overloaded.
171   OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
172   OS << "#endif\n\n";
173 }
174 
175 
176 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
177 enum IIT_Info {
178   // Common values should be encoded with 0-15.
179   IIT_Done = 0,
180   IIT_I1   = 1,
181   IIT_I8   = 2,
182   IIT_I16  = 3,
183   IIT_I32  = 4,
184   IIT_I64  = 5,
185   IIT_F16  = 6,
186   IIT_F32  = 7,
187   IIT_F64  = 8,
188   IIT_V2   = 9,
189   IIT_V4   = 10,
190   IIT_V8   = 11,
191   IIT_V16  = 12,
192   IIT_V32  = 13,
193   IIT_PTR  = 14,
194   IIT_ARG  = 15,
195 
196   // Values from 16+ are only encodable with the inefficient encoding.
197   IIT_V64  = 16,
198   IIT_MMX  = 17,
199   IIT_TOKEN = 18,
200   IIT_METADATA = 19,
201   IIT_EMPTYSTRUCT = 20,
202   IIT_STRUCT2 = 21,
203   IIT_STRUCT3 = 22,
204   IIT_STRUCT4 = 23,
205   IIT_STRUCT5 = 24,
206   IIT_EXTEND_ARG = 25,
207   IIT_TRUNC_ARG = 26,
208   IIT_ANYPTR = 27,
209   IIT_V1   = 28,
210   IIT_VARARG = 29,
211   IIT_HALF_VEC_ARG = 30,
212   IIT_SAME_VEC_WIDTH_ARG = 31,
213   IIT_PTR_TO_ARG = 32,
214   IIT_PTR_TO_ELT = 33,
215   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
216   IIT_I128 = 35,
217   IIT_V512 = 36,
218   IIT_V1024 = 37,
219   IIT_STRUCT6 = 38,
220   IIT_STRUCT7 = 39,
221   IIT_STRUCT8 = 40,
222   IIT_F128 = 41,
223   IIT_VEC_ELEMENT = 42
224 };
225 
226 static void EncodeFixedValueType(MVT::SimpleValueType VT,
227                                  std::vector<unsigned char> &Sig) {
228   if (MVT(VT).isInteger()) {
229     unsigned BitWidth = MVT(VT).getSizeInBits();
230     switch (BitWidth) {
231     default: PrintFatalError("unhandled integer type width in intrinsic!");
232     case 1: return Sig.push_back(IIT_I1);
233     case 8: return Sig.push_back(IIT_I8);
234     case 16: return Sig.push_back(IIT_I16);
235     case 32: return Sig.push_back(IIT_I32);
236     case 64: return Sig.push_back(IIT_I64);
237     case 128: return Sig.push_back(IIT_I128);
238     }
239   }
240 
241   switch (VT) {
242   default: PrintFatalError("unhandled MVT in intrinsic!");
243   case MVT::f16: return Sig.push_back(IIT_F16);
244   case MVT::f32: return Sig.push_back(IIT_F32);
245   case MVT::f64: return Sig.push_back(IIT_F64);
246   case MVT::f128: return Sig.push_back(IIT_F128);
247   case MVT::token: return Sig.push_back(IIT_TOKEN);
248   case MVT::Metadata: return Sig.push_back(IIT_METADATA);
249   case MVT::x86mmx: return Sig.push_back(IIT_MMX);
250   // MVT::OtherVT is used to mean the empty struct type here.
251   case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
252   // MVT::isVoid is used to represent varargs here.
253   case MVT::isVoid: return Sig.push_back(IIT_VARARG);
254   }
255 }
256 
257 #if defined(_MSC_VER) && !defined(__clang__)
258 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
259 #endif
260 
261 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
262                             unsigned &NextArgCode,
263                             std::vector<unsigned char> &Sig,
264                             ArrayRef<unsigned char> Mapping) {
265 
266   if (R->isSubClassOf("LLVMMatchType")) {
267     unsigned Number = Mapping[R->getValueAsInt("Number")];
268     assert(Number < ArgCodes.size() && "Invalid matching number!");
269     if (R->isSubClassOf("LLVMExtendedType"))
270       Sig.push_back(IIT_EXTEND_ARG);
271     else if (R->isSubClassOf("LLVMTruncatedType"))
272       Sig.push_back(IIT_TRUNC_ARG);
273     else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
274       Sig.push_back(IIT_HALF_VEC_ARG);
275     else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) {
276       Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
277       Sig.push_back((Number << 3) | ArgCodes[Number]);
278       MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
279       EncodeFixedValueType(VT, Sig);
280       return;
281     }
282     else if (R->isSubClassOf("LLVMPointerTo"))
283       Sig.push_back(IIT_PTR_TO_ARG);
284     else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
285       Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
286       // Encode overloaded ArgNo
287       Sig.push_back(NextArgCode++);
288       // Encode LLVMMatchType<Number> ArgNo
289       Sig.push_back(Number);
290       return;
291     } else if (R->isSubClassOf("LLVMPointerToElt"))
292       Sig.push_back(IIT_PTR_TO_ELT);
293     else if (R->isSubClassOf("LLVMVectorElementType"))
294       Sig.push_back(IIT_VEC_ELEMENT);
295     else
296       Sig.push_back(IIT_ARG);
297     return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/);
298   }
299 
300   MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
301 
302   unsigned Tmp = 0;
303   switch (VT) {
304   default: break;
305   case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
306   case MVT::vAny: ++Tmp;    LLVM_FALLTHROUGH;
307   case MVT::fAny: ++Tmp;    LLVM_FALLTHROUGH;
308   case MVT::iAny: ++Tmp;    LLVM_FALLTHROUGH;
309   case MVT::Any: {
310     // If this is an "any" valuetype, then the type is the type of the next
311     // type in the list specified to getIntrinsic().
312     Sig.push_back(IIT_ARG);
313 
314     // Figure out what arg # this is consuming, and remember what kind it was.
315     assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp &&
316            "Invalid or no ArgCode associated with overloaded VT!");
317     unsigned ArgNo = NextArgCode++;
318 
319     // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
320     return Sig.push_back((ArgNo << 3) | Tmp);
321   }
322 
323   case MVT::iPTR: {
324     unsigned AddrSpace = 0;
325     if (R->isSubClassOf("LLVMQualPointerType")) {
326       AddrSpace = R->getValueAsInt("AddrSpace");
327       assert(AddrSpace < 256 && "Address space exceeds 255");
328     }
329     if (AddrSpace) {
330       Sig.push_back(IIT_ANYPTR);
331       Sig.push_back(AddrSpace);
332     } else {
333       Sig.push_back(IIT_PTR);
334     }
335     return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig,
336                            Mapping);
337   }
338   }
339 
340   if (MVT(VT).isVector()) {
341     MVT VVT = VT;
342     switch (VVT.getVectorNumElements()) {
343     default: PrintFatalError("unhandled vector type width in intrinsic!");
344     case 1: Sig.push_back(IIT_V1); break;
345     case 2: Sig.push_back(IIT_V2); break;
346     case 4: Sig.push_back(IIT_V4); break;
347     case 8: Sig.push_back(IIT_V8); break;
348     case 16: Sig.push_back(IIT_V16); break;
349     case 32: Sig.push_back(IIT_V32); break;
350     case 64: Sig.push_back(IIT_V64); break;
351     case 512: Sig.push_back(IIT_V512); break;
352     case 1024: Sig.push_back(IIT_V1024); break;
353     }
354 
355     return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
356   }
357 
358   EncodeFixedValueType(VT, Sig);
359 }
360 
361 static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes,
362                            unsigned int &NumInserted,
363                            SmallVectorImpl<unsigned char> &Mapping) {
364   if (R->isSubClassOf("LLVMMatchType")) {
365     if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
366       ArgCodes.push_back(3 /*vAny*/);
367       ++NumInserted;
368     }
369     return;
370   }
371 
372   unsigned Tmp = 0;
373   switch (getValueType(R->getValueAsDef("VT"))) {
374   default: break;
375   case MVT::iPTRAny:
376     ++Tmp;
377     LLVM_FALLTHROUGH;
378   case MVT::vAny:
379     ++Tmp;
380     LLVM_FALLTHROUGH;
381   case MVT::fAny:
382     ++Tmp;
383     LLVM_FALLTHROUGH;
384   case MVT::iAny:
385     ++Tmp;
386     LLVM_FALLTHROUGH;
387   case MVT::Any:
388     unsigned OriginalIdx = ArgCodes.size() - NumInserted;
389     assert(OriginalIdx >= Mapping.size());
390     Mapping.resize(OriginalIdx+1);
391     Mapping[OriginalIdx] = ArgCodes.size();
392     ArgCodes.push_back(Tmp);
393     break;
394   }
395 }
396 
397 #if defined(_MSC_VER) && !defined(__clang__)
398 #pragma optimize("",on)
399 #endif
400 
401 /// ComputeFixedEncoding - If we can encode the type signature for this
402 /// intrinsic into 32 bits, return it.  If not, return ~0U.
403 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
404                                  std::vector<unsigned char> &TypeSig) {
405   std::vector<unsigned char> ArgCodes;
406 
407   // Add codes for any overloaded result VTs.
408   unsigned int NumInserted = 0;
409   SmallVector<unsigned char, 8> ArgMapping;
410   for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
411     UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
412 
413   // Add codes for any overloaded operand VTs.
414   for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
415     UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
416 
417   unsigned NextArgCode = 0;
418   if (Int.IS.RetVTs.empty())
419     TypeSig.push_back(IIT_Done);
420   else if (Int.IS.RetVTs.size() == 1 &&
421            Int.IS.RetVTs[0] == MVT::isVoid)
422     TypeSig.push_back(IIT_Done);
423   else {
424     switch (Int.IS.RetVTs.size()) {
425       case 1: break;
426       case 2: TypeSig.push_back(IIT_STRUCT2); break;
427       case 3: TypeSig.push_back(IIT_STRUCT3); break;
428       case 4: TypeSig.push_back(IIT_STRUCT4); break;
429       case 5: TypeSig.push_back(IIT_STRUCT5); break;
430       case 6: TypeSig.push_back(IIT_STRUCT6); break;
431       case 7: TypeSig.push_back(IIT_STRUCT7); break;
432       case 8: TypeSig.push_back(IIT_STRUCT8); break;
433       default: llvm_unreachable("Unhandled case in struct");
434     }
435 
436     for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
437       EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
438                       ArgMapping);
439   }
440 
441   for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
442     EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
443                     ArgMapping);
444 }
445 
446 static void printIITEntry(raw_ostream &OS, unsigned char X) {
447   OS << (unsigned)X;
448 }
449 
450 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
451                                      raw_ostream &OS) {
452   // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
453   // capture it in this vector, otherwise store a ~0U.
454   std::vector<unsigned> FixedEncodings;
455 
456   SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
457 
458   std::vector<unsigned char> TypeSig;
459 
460   // Compute the unique argument type info.
461   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
462     // Get the signature for the intrinsic.
463     TypeSig.clear();
464     ComputeFixedEncoding(Ints[i], TypeSig);
465 
466     // Check to see if we can encode it into a 32-bit word.  We can only encode
467     // 8 nibbles into a 32-bit word.
468     if (TypeSig.size() <= 8) {
469       bool Failed = false;
470       unsigned Result = 0;
471       for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
472         // If we had an unencodable argument, bail out.
473         if (TypeSig[i] > 15) {
474           Failed = true;
475           break;
476         }
477         Result = (Result << 4) | TypeSig[e-i-1];
478       }
479 
480       // If this could be encoded into a 31-bit word, return it.
481       if (!Failed && (Result >> 31) == 0) {
482         FixedEncodings.push_back(Result);
483         continue;
484       }
485     }
486 
487     // Otherwise, we're going to unique the sequence into the
488     // LongEncodingTable, and use its offset in the 32-bit table instead.
489     LongEncodingTable.add(TypeSig);
490 
491     // This is a placehold that we'll replace after the table is laid out.
492     FixedEncodings.push_back(~0U);
493   }
494 
495   LongEncodingTable.layout();
496 
497   OS << "// Global intrinsic function declaration type table.\n";
498   OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
499 
500   OS << "static const unsigned IIT_Table[] = {\n  ";
501 
502   for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
503     if ((i & 7) == 7)
504       OS << "\n  ";
505 
506     // If the entry fit in the table, just emit it.
507     if (FixedEncodings[i] != ~0U) {
508       OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
509       continue;
510     }
511 
512     TypeSig.clear();
513     ComputeFixedEncoding(Ints[i], TypeSig);
514 
515 
516     // Otherwise, emit the offset into the long encoding table.  We emit it this
517     // way so that it is easier to read the offset in the .def file.
518     OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
519   }
520 
521   OS << "0\n};\n\n";
522 
523   // Emit the shared table of register lists.
524   OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
525   if (!LongEncodingTable.empty())
526     LongEncodingTable.emit(OS, printIITEntry);
527   OS << "  255\n};\n\n";
528 
529   OS << "#endif\n\n";  // End of GET_INTRINSIC_GENERATOR_GLOBAL
530 }
531 
532 namespace {
533 struct AttributeComparator {
534   bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
535     // Sort throwing intrinsics after non-throwing intrinsics.
536     if (L->canThrow != R->canThrow)
537       return R->canThrow;
538 
539     if (L->isNoDuplicate != R->isNoDuplicate)
540       return R->isNoDuplicate;
541 
542     if (L->isNoReturn != R->isNoReturn)
543       return R->isNoReturn;
544 
545     if (L->isCold != R->isCold)
546       return R->isCold;
547 
548     if (L->isConvergent != R->isConvergent)
549       return R->isConvergent;
550 
551     if (L->isSpeculatable != R->isSpeculatable)
552       return R->isSpeculatable;
553 
554     if (L->hasSideEffects != R->hasSideEffects)
555       return R->hasSideEffects;
556 
557     // Try to order by readonly/readnone attribute.
558     CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
559     CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
560     if (LK != RK) return (LK > RK);
561     // Order by argument attributes.
562     // This is reliable because each side is already sorted internally.
563     return (L->ArgumentAttributes < R->ArgumentAttributes);
564   }
565 };
566 } // End anonymous namespace
567 
568 /// EmitAttributes - This emits the Intrinsic::getAttributes method.
569 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
570                                       raw_ostream &OS) {
571   OS << "// Add parameter attributes that are not common to all intrinsics.\n";
572   OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
573   if (TargetOnly)
574     OS << "static AttributeList getAttributes(LLVMContext &C, " << TargetPrefix
575        << "Intrinsic::ID id) {\n";
576   else
577     OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
578 
579   // Compute the maximum number of attribute arguments and the map
580   typedef std::map<const CodeGenIntrinsic*, unsigned,
581                    AttributeComparator> UniqAttrMapTy;
582   UniqAttrMapTy UniqAttributes;
583   unsigned maxArgAttrs = 0;
584   unsigned AttrNum = 0;
585   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
586     const CodeGenIntrinsic &intrinsic = Ints[i];
587     maxArgAttrs =
588       std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
589     unsigned &N = UniqAttributes[&intrinsic];
590     if (N) continue;
591     assert(AttrNum < 256 && "Too many unique attributes for table!");
592     N = ++AttrNum;
593   }
594 
595   // Emit an array of AttributeList.  Most intrinsics will have at least one
596   // entry, for the function itself (index ~1), which is usually nounwind.
597   OS << "  static const uint8_t IntrinsicsToAttributesMap[] = {\n";
598 
599   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
600     const CodeGenIntrinsic &intrinsic = Ints[i];
601 
602     OS << "    " << UniqAttributes[&intrinsic] << ", // "
603        << intrinsic.Name << "\n";
604   }
605   OS << "  };\n\n";
606 
607   OS << "  AttributeList AS[" << maxArgAttrs + 1 << "];\n";
608   OS << "  unsigned NumAttrs = 0;\n";
609   OS << "  if (id != 0) {\n";
610   OS << "    switch(IntrinsicsToAttributesMap[id - ";
611   if (TargetOnly)
612     OS << "Intrinsic::num_intrinsics";
613   else
614     OS << "1";
615   OS << "]) {\n";
616   OS << "    default: llvm_unreachable(\"Invalid attribute number\");\n";
617   for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
618        E = UniqAttributes.end(); I != E; ++I) {
619     OS << "    case " << I->second << ": {\n";
620 
621     const CodeGenIntrinsic &intrinsic = *(I->first);
622 
623     // Keep track of the number of attributes we're writing out.
624     unsigned numAttrs = 0;
625 
626     // The argument attributes are alreadys sorted by argument index.
627     unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
628     if (ae) {
629       while (ai != ae) {
630         unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
631         unsigned attrIdx = argNo + 1; // Must match AttributeList::FirstArgIndex
632 
633         OS << "      const Attribute::AttrKind AttrParam" << attrIdx << "[]= {";
634         bool addComma = false;
635 
636         do {
637           switch (intrinsic.ArgumentAttributes[ai].second) {
638           case CodeGenIntrinsic::NoCapture:
639             if (addComma)
640               OS << ",";
641             OS << "Attribute::NoCapture";
642             addComma = true;
643             break;
644           case CodeGenIntrinsic::Returned:
645             if (addComma)
646               OS << ",";
647             OS << "Attribute::Returned";
648             addComma = true;
649             break;
650           case CodeGenIntrinsic::ReadOnly:
651             if (addComma)
652               OS << ",";
653             OS << "Attribute::ReadOnly";
654             addComma = true;
655             break;
656           case CodeGenIntrinsic::WriteOnly:
657             if (addComma)
658               OS << ",";
659             OS << "Attribute::WriteOnly";
660             addComma = true;
661             break;
662           case CodeGenIntrinsic::ReadNone:
663             if (addComma)
664               OS << ",";
665             OS << "Attribute::ReadNone";
666             addComma = true;
667             break;
668           case CodeGenIntrinsic::ImmArg:
669             if (addComma)
670               OS << ',';
671             OS << "Attribute::ImmArg";
672             addComma = true;
673             break;
674           }
675 
676           ++ai;
677         } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
678         OS << "};\n";
679         OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
680            << attrIdx << ", AttrParam" << attrIdx << ");\n";
681       }
682     }
683 
684     if (!intrinsic.canThrow ||
685         intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem ||
686         intrinsic.isNoReturn || intrinsic.isCold || intrinsic.isNoDuplicate ||
687         intrinsic.isConvergent || intrinsic.isSpeculatable) {
688       OS << "      const Attribute::AttrKind Atts[] = {";
689       bool addComma = false;
690       if (!intrinsic.canThrow) {
691         OS << "Attribute::NoUnwind";
692         addComma = true;
693       }
694       if (intrinsic.isNoReturn) {
695         if (addComma)
696           OS << ",";
697         OS << "Attribute::NoReturn";
698         addComma = true;
699       }
700       if (intrinsic.isCold) {
701         if (addComma)
702           OS << ",";
703         OS << "Attribute::Cold";
704         addComma = true;
705       }
706       if (intrinsic.isNoDuplicate) {
707         if (addComma)
708           OS << ",";
709         OS << "Attribute::NoDuplicate";
710         addComma = true;
711       }
712       if (intrinsic.isConvergent) {
713         if (addComma)
714           OS << ",";
715         OS << "Attribute::Convergent";
716         addComma = true;
717       }
718       if (intrinsic.isSpeculatable) {
719         if (addComma)
720           OS << ",";
721         OS << "Attribute::Speculatable";
722         addComma = true;
723       }
724 
725       switch (intrinsic.ModRef) {
726       case CodeGenIntrinsic::NoMem:
727         if (addComma)
728           OS << ",";
729         OS << "Attribute::ReadNone";
730         break;
731       case CodeGenIntrinsic::ReadArgMem:
732         if (addComma)
733           OS << ",";
734         OS << "Attribute::ReadOnly,";
735         OS << "Attribute::ArgMemOnly";
736         break;
737       case CodeGenIntrinsic::ReadMem:
738         if (addComma)
739           OS << ",";
740         OS << "Attribute::ReadOnly";
741         break;
742       case CodeGenIntrinsic::ReadInaccessibleMem:
743         if (addComma)
744           OS << ",";
745         OS << "Attribute::ReadOnly,";
746         OS << "Attribute::InaccessibleMemOnly";
747         break;
748       case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
749         if (addComma)
750           OS << ",";
751         OS << "Attribute::ReadOnly,";
752         OS << "Attribute::InaccessibleMemOrArgMemOnly";
753         break;
754       case CodeGenIntrinsic::WriteArgMem:
755         if (addComma)
756           OS << ",";
757         OS << "Attribute::WriteOnly,";
758         OS << "Attribute::ArgMemOnly";
759         break;
760       case CodeGenIntrinsic::WriteMem:
761         if (addComma)
762           OS << ",";
763         OS << "Attribute::WriteOnly";
764         break;
765       case CodeGenIntrinsic::WriteInaccessibleMem:
766         if (addComma)
767           OS << ",";
768         OS << "Attribute::WriteOnly,";
769         OS << "Attribute::InaccessibleMemOnly";
770         break;
771       case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
772         if (addComma)
773           OS << ",";
774         OS << "Attribute::WriteOnly,";
775         OS << "Attribute::InaccessibleMemOrArgMemOnly";
776         break;
777       case CodeGenIntrinsic::ReadWriteArgMem:
778         if (addComma)
779           OS << ",";
780         OS << "Attribute::ArgMemOnly";
781         break;
782       case CodeGenIntrinsic::ReadWriteInaccessibleMem:
783         if (addComma)
784           OS << ",";
785         OS << "Attribute::InaccessibleMemOnly";
786         break;
787       case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
788         if (addComma)
789           OS << ",";
790         OS << "Attribute::InaccessibleMemOrArgMemOnly";
791         break;
792       case CodeGenIntrinsic::ReadWriteMem:
793         break;
794       }
795       OS << "};\n";
796       OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
797          << "AttributeList::FunctionIndex, Atts);\n";
798     }
799 
800     if (numAttrs) {
801       OS << "      NumAttrs = " << numAttrs << ";\n";
802       OS << "      break;\n";
803       OS << "      }\n";
804     } else {
805       OS << "      return AttributeList();\n";
806       OS << "      }\n";
807     }
808   }
809 
810   OS << "    }\n";
811   OS << "  }\n";
812   OS << "  return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
813   OS << "}\n";
814   OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
815 }
816 
817 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
818     const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
819   StringRef CompilerName = (IsGCC ? "GCC" : "MS");
820   typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
821   BIMTy BuiltinMap;
822   StringToOffsetTable Table;
823   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
824     const std::string &BuiltinName =
825         IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
826     if (!BuiltinName.empty()) {
827       // Get the map for this target prefix.
828       std::map<std::string, std::string> &BIM =
829           BuiltinMap[Ints[i].TargetPrefix];
830 
831       if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
832         PrintFatalError(Ints[i].TheDef->getLoc(),
833                         "Intrinsic '" + Ints[i].TheDef->getName() +
834                             "': duplicate " + CompilerName + " builtin name!");
835       Table.GetOrAddStringOffset(BuiltinName);
836     }
837   }
838 
839   OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
840   OS << "// This is used by the C front-end.  The builtin name is passed\n";
841   OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
842   OS << "// in as TargetPrefix.  The result is assigned to 'IntrinsicID'.\n";
843   OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";
844 
845   if (TargetOnly) {
846     OS << "static " << TargetPrefix << "Intrinsic::ID "
847        << "getIntrinsicFor" << CompilerName << "Builtin(const char "
848        << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
849   } else {
850     OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
851        << "Builtin(const char "
852        << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
853   }
854 
855   if (Table.Empty()) {
856     OS << "  return ";
857     if (!TargetPrefix.empty())
858       OS << "(" << TargetPrefix << "Intrinsic::ID)";
859     OS << "Intrinsic::not_intrinsic;\n";
860     OS << "}\n";
861     OS << "#endif\n\n";
862     return;
863   }
864 
865   OS << "  static const char BuiltinNames[] = {\n";
866   Table.EmitCharArray(OS);
867   OS << "  };\n\n";
868 
869   OS << "  struct BuiltinEntry {\n";
870   OS << "    Intrinsic::ID IntrinID;\n";
871   OS << "    unsigned StrTabOffset;\n";
872   OS << "    const char *getName() const {\n";
873   OS << "      return &BuiltinNames[StrTabOffset];\n";
874   OS << "    }\n";
875   OS << "    bool operator<(StringRef RHS) const {\n";
876   OS << "      return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
877   OS << "    }\n";
878   OS << "  };\n";
879 
880   OS << "  StringRef TargetPrefix(TargetPrefixStr);\n\n";
881 
882   // Note: this could emit significantly better code if we cared.
883   for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
884     OS << "  ";
885     if (!I->first.empty())
886       OS << "if (TargetPrefix == \"" << I->first << "\") ";
887     else
888       OS << "/* Target Independent Builtins */ ";
889     OS << "{\n";
890 
891     // Emit the comparisons for this target prefix.
892     OS << "    static const BuiltinEntry " << I->first << "Names[] = {\n";
893     for (const auto &P : I->second) {
894       OS << "      {Intrinsic::" << P.second << ", "
895          << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
896     }
897     OS << "    };\n";
898     OS << "    auto I = std::lower_bound(std::begin(" << I->first << "Names),\n";
899     OS << "                              std::end(" << I->first << "Names),\n";
900     OS << "                              BuiltinNameStr);\n";
901     OS << "    if (I != std::end(" << I->first << "Names) &&\n";
902     OS << "        I->getName() == BuiltinNameStr)\n";
903     OS << "      return I->IntrinID;\n";
904     OS << "  }\n";
905   }
906   OS << "  return ";
907   if (!TargetPrefix.empty())
908     OS << "(" << TargetPrefix << "Intrinsic::ID)";
909   OS << "Intrinsic::not_intrinsic;\n";
910   OS << "}\n";
911   OS << "#endif\n\n";
912 }
913 
914 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS,
915                               bool TargetOnly) {
916   IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/true);
917 }
918 
919 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS,
920                              bool TargetOnly) {
921   IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/false);
922 }
923