1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits code for use by the "fast" instruction
10 // selection algorithm. See the comments at the top of
11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
12 //
13 // This file scans through the target's tablegen instruction-info files
14 // and extracts instructions with obvious-looking patterns, and it emits
15 // code to look up these instructions by type and operator.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "CodeGenDAGPatterns.h"
20 #include "CodeGenInstruction.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 #include <utility>
28 using namespace llvm;
29 
30 
31 /// InstructionMemo - This class holds additional information about an
32 /// instruction needed to emit code for it.
33 ///
34 namespace {
35 struct InstructionMemo {
36   std::string Name;
37   const CodeGenRegisterClass *RC;
38   std::string SubRegNo;
39   std::vector<std::string> PhysRegs;
40   std::string PredicateCheck;
41 
42   InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
43                   std::string SubRegNo, std::vector<std::string> PhysRegs,
44                   std::string PredicateCheck)
45       : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
46         PhysRegs(std::move(PhysRegs)),
47         PredicateCheck(std::move(PredicateCheck)) {}
48 
49   // Make sure we do not copy InstructionMemo.
50   InstructionMemo(const InstructionMemo &Other) = delete;
51   InstructionMemo(InstructionMemo &&Other) = default;
52 };
53 } // End anonymous namespace
54 
55 /// ImmPredicateSet - This uniques predicates (represented as a string) and
56 /// gives them unique (small) integer ID's that start at 0.
57 namespace {
58 class ImmPredicateSet {
59   DenseMap<TreePattern *, unsigned> ImmIDs;
60   std::vector<TreePredicateFn> PredsByName;
61 public:
62 
63   unsigned getIDFor(TreePredicateFn Pred) {
64     unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
65     if (Entry == 0) {
66       PredsByName.push_back(Pred);
67       Entry = PredsByName.size();
68     }
69     return Entry-1;
70   }
71 
72   const TreePredicateFn &getPredicate(unsigned i) {
73     assert(i < PredsByName.size());
74     return PredsByName[i];
75   }
76 
77   typedef std::vector<TreePredicateFn>::const_iterator iterator;
78   iterator begin() const { return PredsByName.begin(); }
79   iterator end() const { return PredsByName.end(); }
80 
81 };
82 } // End anonymous namespace
83 
84 /// OperandsSignature - This class holds a description of a list of operand
85 /// types. It has utility methods for emitting text based on the operands.
86 ///
87 namespace {
88 struct OperandsSignature {
89   class OpKind {
90     enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
91     char Repr;
92   public:
93 
94     OpKind() : Repr(OK_Invalid) {}
95 
96     bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
97     bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
98 
99     static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
100     static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
101     static OpKind getImm(unsigned V) {
102       assert((unsigned)OK_Imm+V < 128 &&
103              "Too many integer predicates for the 'Repr' char");
104       OpKind K; K.Repr = OK_Imm+V; return K;
105     }
106 
107     bool isReg() const { return Repr == OK_Reg; }
108     bool isFP() const  { return Repr == OK_FP; }
109     bool isImm() const { return Repr >= OK_Imm; }
110 
111     unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
112 
113     void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
114                              bool StripImmCodes) const {
115       if (isReg())
116         OS << 'r';
117       else if (isFP())
118         OS << 'f';
119       else {
120         OS << 'i';
121         if (!StripImmCodes)
122           if (unsigned Code = getImmCode())
123             OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
124       }
125     }
126   };
127 
128 
129   SmallVector<OpKind, 3> Operands;
130 
131   bool operator<(const OperandsSignature &O) const {
132     return Operands < O.Operands;
133   }
134   bool operator==(const OperandsSignature &O) const {
135     return Operands == O.Operands;
136   }
137 
138   bool empty() const { return Operands.empty(); }
139 
140   bool hasAnyImmediateCodes() const {
141     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
142       if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
143         return true;
144     return false;
145   }
146 
147   /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
148   /// to zero.
149   OperandsSignature getWithoutImmCodes() const {
150     OperandsSignature Result;
151     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
152       if (!Operands[i].isImm())
153         Result.Operands.push_back(Operands[i]);
154       else
155         Result.Operands.push_back(OpKind::getImm(0));
156     return Result;
157   }
158 
159   void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
160     bool EmittedAnything = false;
161     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
162       if (!Operands[i].isImm()) continue;
163 
164       unsigned Code = Operands[i].getImmCode();
165       if (Code == 0) continue;
166 
167       if (EmittedAnything)
168         OS << " &&\n        ";
169 
170       TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
171 
172       // Emit the type check.
173       TreePattern *TP = PredFn.getOrigPatFragRecord();
174       ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
175       assert(VVT.isSimple() &&
176              "Cannot use variable value types with fast isel");
177       OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
178 
179       OS << PredFn.getFnName() << "(imm" << i <<')';
180       EmittedAnything = true;
181     }
182   }
183 
184   /// initialize - Examine the given pattern and initialize the contents
185   /// of the Operands array accordingly. Return true if all the operands
186   /// are supported, false otherwise.
187   ///
188   bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
189                   MVT::SimpleValueType VT,
190                   ImmPredicateSet &ImmediatePredicates,
191                   const CodeGenRegisterClass *OrigDstRC) {
192     if (InstPatNode->isLeaf())
193       return false;
194 
195     if (InstPatNode->getOperator()->getName() == "imm") {
196       Operands.push_back(OpKind::getImm(0));
197       return true;
198     }
199 
200     if (InstPatNode->getOperator()->getName() == "fpimm") {
201       Operands.push_back(OpKind::getFP());
202       return true;
203     }
204 
205     const CodeGenRegisterClass *DstRC = nullptr;
206 
207     for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
208       TreePatternNode *Op = InstPatNode->getChild(i);
209 
210       // Handle imm operands specially.
211       if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
212         unsigned PredNo = 0;
213         if (!Op->getPredicateCalls().empty()) {
214           TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn;
215           // If there is more than one predicate weighing in on this operand
216           // then we don't handle it.  This doesn't typically happen for
217           // immediates anyway.
218           if (Op->getPredicateCalls().size() > 1 ||
219               !PredFn.isImmediatePattern() || PredFn.usesOperands())
220             return false;
221           // Ignore any instruction with 'FastIselShouldIgnore', these are
222           // not needed and just bloat the fast instruction selector.  For
223           // example, X86 doesn't need to generate code to match ADD16ri8 since
224           // ADD16ri will do just fine.
225           Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
226           if (Rec->getValueAsBit("FastIselShouldIgnore"))
227             return false;
228 
229           PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
230         }
231 
232         Operands.push_back(OpKind::getImm(PredNo));
233         continue;
234       }
235 
236 
237       // For now, filter out any operand with a predicate.
238       // For now, filter out any operand with multiple values.
239       if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1)
240         return false;
241 
242       if (!Op->isLeaf()) {
243          if (Op->getOperator()->getName() == "fpimm") {
244           Operands.push_back(OpKind::getFP());
245           continue;
246         }
247         // For now, ignore other non-leaf nodes.
248         return false;
249       }
250 
251       assert(Op->hasConcreteType(0) && "Type infererence not done?");
252 
253       // For now, all the operands must have the same type (if they aren't
254       // immediates).  Note that this causes us to reject variable sized shifts
255       // on X86.
256       if (Op->getSimpleType(0) != VT)
257         return false;
258 
259       DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
260       if (!OpDI)
261         return false;
262       Record *OpLeafRec = OpDI->getDef();
263 
264       // For now, the only other thing we accept is register operands.
265       const CodeGenRegisterClass *RC = nullptr;
266       if (OpLeafRec->isSubClassOf("RegisterOperand"))
267         OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
268       if (OpLeafRec->isSubClassOf("RegisterClass"))
269         RC = &Target.getRegisterClass(OpLeafRec);
270       else if (OpLeafRec->isSubClassOf("Register"))
271         RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
272       else if (OpLeafRec->isSubClassOf("ValueType")) {
273         RC = OrigDstRC;
274       } else
275         return false;
276 
277       // For now, this needs to be a register class of some sort.
278       if (!RC)
279         return false;
280 
281       // For now, all the operands must have the same register class or be
282       // a strict subclass of the destination.
283       if (DstRC) {
284         if (DstRC != RC && !DstRC->hasSubClass(RC))
285           return false;
286       } else
287         DstRC = RC;
288       Operands.push_back(OpKind::getReg());
289     }
290     return true;
291   }
292 
293   void PrintParameters(raw_ostream &OS) const {
294     ListSeparator LS;
295     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
296       OS << LS;
297       if (Operands[i].isReg()) {
298         OS << "unsigned Op" << i;
299       } else if (Operands[i].isImm()) {
300         OS << "uint64_t imm" << i;
301       } else if (Operands[i].isFP()) {
302         OS << "const ConstantFP *f" << i;
303       } else {
304         llvm_unreachable("Unknown operand kind!");
305       }
306     }
307   }
308 
309   void PrintArguments(raw_ostream &OS,
310                       const std::vector<std::string> &PR) const {
311     assert(PR.size() == Operands.size());
312     ListSeparator LS;
313     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
314       if (PR[i] != "")
315         // Implicit physical register operand.
316         continue;
317 
318       OS << LS;
319       if (Operands[i].isReg()) {
320         OS << "Op" << i;
321       } else if (Operands[i].isImm()) {
322         OS << "imm" << i;
323       } else if (Operands[i].isFP()) {
324         OS << "f" << i;
325       } else {
326         llvm_unreachable("Unknown operand kind!");
327       }
328     }
329   }
330 
331   void PrintArguments(raw_ostream &OS) const {
332     ListSeparator LS;
333     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
334       OS << LS;
335       if (Operands[i].isReg()) {
336         OS << "Op" << i;
337       } else if (Operands[i].isImm()) {
338         OS << "imm" << i;
339       } else if (Operands[i].isFP()) {
340         OS << "f" << i;
341       } else {
342         llvm_unreachable("Unknown operand kind!");
343       }
344     }
345   }
346 
347 
348   void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
349                            ImmPredicateSet &ImmPredicates,
350                            bool StripImmCodes = false) const {
351     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
352       if (PR[i] != "")
353         // Implicit physical register operand. e.g. Instruction::Mul expect to
354         // select to a binary op. On x86, mul may take a single operand with
355         // the other operand being implicit. We must emit something that looks
356         // like a binary instruction except for the very inner fastEmitInst_*
357         // call.
358         continue;
359       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
360     }
361   }
362 
363   void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
364                            bool StripImmCodes = false) const {
365     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
366       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
367   }
368 };
369 } // End anonymous namespace
370 
371 namespace {
372 class FastISelMap {
373   // A multimap is needed instead of a "plain" map because the key is
374   // the instruction's complexity (an int) and they are not unique.
375   typedef std::multimap<int, InstructionMemo> PredMap;
376   typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
377   typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
378   typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
379   typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
380             OperandsOpcodeTypeRetPredMap;
381 
382   OperandsOpcodeTypeRetPredMap SimplePatterns;
383 
384   // This is used to check that there are no duplicate predicates
385   typedef std::multimap<std::string, bool> PredCheckMap;
386   typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
387   typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
388   typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
389   typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
390             OperandsOpcodeTypeRetPredCheckMap;
391 
392   OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
393 
394   std::map<OperandsSignature, std::vector<OperandsSignature> >
395     SignaturesWithConstantForms;
396 
397   StringRef InstNS;
398   ImmPredicateSet ImmediatePredicates;
399 public:
400   explicit FastISelMap(StringRef InstNS);
401 
402   void collectPatterns(CodeGenDAGPatterns &CGP);
403   void printImmediatePredicates(raw_ostream &OS);
404   void printFunctionDefinitions(raw_ostream &OS);
405 private:
406   void emitInstructionCode(raw_ostream &OS,
407                            const OperandsSignature &Operands,
408                            const PredMap &PM,
409                            const std::string &RetVTName);
410 };
411 } // End anonymous namespace
412 
413 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
414   return std::string(CGP.getSDNodeInfo(Op).getEnumName());
415 }
416 
417 static std::string getLegalCName(std::string OpName) {
418   std::string::size_type pos = OpName.find("::");
419   if (pos != std::string::npos)
420     OpName.replace(pos, 2, "_");
421   return OpName;
422 }
423 
424 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
425 
426 static std::string PhyRegForNode(TreePatternNode *Op,
427                                  const CodeGenTarget &Target) {
428   std::string PhysReg;
429 
430   if (!Op->isLeaf())
431     return PhysReg;
432 
433   Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
434   if (!OpLeafRec->isSubClassOf("Register"))
435     return PhysReg;
436 
437   PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
438                ->getValue();
439   PhysReg += "::";
440   PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
441   return PhysReg;
442 }
443 
444 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
445   const CodeGenTarget &Target = CGP.getTargetInfo();
446 
447   // Scan through all the patterns and record the simple ones.
448   for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
449        E = CGP.ptm_end(); I != E; ++I) {
450     const PatternToMatch &Pattern = *I;
451 
452     // For now, just look at Instructions, so that we don't have to worry
453     // about emitting multiple instructions for a pattern.
454     TreePatternNode *Dst = Pattern.getDstPattern();
455     if (Dst->isLeaf()) continue;
456     Record *Op = Dst->getOperator();
457     if (!Op->isSubClassOf("Instruction"))
458       continue;
459     CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
460     if (II.Operands.empty())
461       continue;
462 
463     // Allow instructions to be marked as unavailable for FastISel for
464     // certain cases, i.e. an ISA has two 'and' instruction which differ
465     // by what registers they can use but are otherwise identical for
466     // codegen purposes.
467     if (II.FastISelShouldIgnore)
468       continue;
469 
470     // For now, ignore multi-instruction patterns.
471     bool MultiInsts = false;
472     for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
473       TreePatternNode *ChildOp = Dst->getChild(i);
474       if (ChildOp->isLeaf())
475         continue;
476       if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
477         MultiInsts = true;
478         break;
479       }
480     }
481     if (MultiInsts)
482       continue;
483 
484     // For now, ignore instructions where the first operand is not an
485     // output register.
486     const CodeGenRegisterClass *DstRC = nullptr;
487     std::string SubRegNo;
488     if (Op->getName() != "EXTRACT_SUBREG") {
489       Record *Op0Rec = II.Operands[0].Rec;
490       if (Op0Rec->isSubClassOf("RegisterOperand"))
491         Op0Rec = Op0Rec->getValueAsDef("RegClass");
492       if (!Op0Rec->isSubClassOf("RegisterClass"))
493         continue;
494       DstRC = &Target.getRegisterClass(Op0Rec);
495       if (!DstRC)
496         continue;
497     } else {
498       // If this isn't a leaf, then continue since the register classes are
499       // a bit too complicated for now.
500       if (!Dst->getChild(1)->isLeaf()) continue;
501 
502       DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
503       if (SR)
504         SubRegNo = getQualifiedName(SR->getDef());
505       else
506         SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
507     }
508 
509     // Inspect the pattern.
510     TreePatternNode *InstPatNode = Pattern.getSrcPattern();
511     if (!InstPatNode) continue;
512     if (InstPatNode->isLeaf()) continue;
513 
514     // Ignore multiple result nodes for now.
515     if (InstPatNode->getNumTypes() > 1) continue;
516 
517     Record *InstPatOp = InstPatNode->getOperator();
518     std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
519     MVT::SimpleValueType RetVT = MVT::isVoid;
520     if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0);
521     MVT::SimpleValueType VT = RetVT;
522     if (InstPatNode->getNumChildren()) {
523       assert(InstPatNode->getChild(0)->getNumTypes() == 1);
524       VT = InstPatNode->getChild(0)->getSimpleType(0);
525     }
526 
527     // For now, filter out any instructions with predicates.
528     if (!InstPatNode->getPredicateCalls().empty())
529       continue;
530 
531     // Check all the operands.
532     OperandsSignature Operands;
533     if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
534                              DstRC))
535       continue;
536 
537     std::vector<std::string> PhysRegInputs;
538     if (InstPatNode->getOperator()->getName() == "imm" ||
539         InstPatNode->getOperator()->getName() == "fpimm")
540       PhysRegInputs.push_back("");
541     else {
542       // Compute the PhysRegs used by the given pattern, and check that
543       // the mapping from the src to dst patterns is simple.
544       bool FoundNonSimplePattern = false;
545       unsigned DstIndex = 0;
546       for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
547         std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
548         if (PhysReg.empty()) {
549           if (DstIndex >= Dst->getNumChildren() ||
550               Dst->getChild(DstIndex)->getName() !=
551               InstPatNode->getChild(i)->getName()) {
552             FoundNonSimplePattern = true;
553             break;
554           }
555           ++DstIndex;
556         }
557 
558         PhysRegInputs.push_back(PhysReg);
559       }
560 
561       if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
562         FoundNonSimplePattern = true;
563 
564       if (FoundNonSimplePattern)
565         continue;
566     }
567 
568     // Check if the operands match one of the patterns handled by FastISel.
569     std::string ManglingSuffix;
570     raw_string_ostream SuffixOS(ManglingSuffix);
571     Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
572     if (!StringSwitch<bool>(ManglingSuffix)
573         .Cases("", "r", "rr", "ri", "i", "f", true)
574         .Default(false))
575       continue;
576 
577     // Get the predicate that guards this pattern.
578     std::string PredicateCheck = Pattern.getPredicateCheck();
579 
580     // Ok, we found a pattern that we can handle. Remember it.
581     InstructionMemo Memo(
582       Pattern.getDstPattern()->getOperator()->getName(),
583       DstRC,
584       SubRegNo,
585       PhysRegInputs,
586       PredicateCheck
587     );
588 
589     int complexity = Pattern.getPatternComplexity(CGP);
590 
591     if (SimplePatternsCheck[Operands][OpcodeName][VT]
592          [RetVT].count(PredicateCheck)) {
593       PrintFatalError(Pattern.getSrcRecord()->getLoc(),
594                     "Duplicate predicate in FastISel table!");
595     }
596     SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
597             std::make_pair(PredicateCheck, true));
598 
599        // Note: Instructions with the same complexity will appear in the order
600           // that they are encountered.
601     SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
602                                                             std::move(Memo));
603 
604     // If any of the operands were immediates with predicates on them, strip
605     // them down to a signature that doesn't have predicates so that we can
606     // associate them with the stripped predicate version.
607     if (Operands.hasAnyImmediateCodes()) {
608       SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
609         .push_back(Operands);
610     }
611   }
612 }
613 
614 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
615   if (ImmediatePredicates.begin() == ImmediatePredicates.end())
616     return;
617 
618   OS << "\n// FastEmit Immediate Predicate functions.\n";
619   for (auto ImmediatePredicate : ImmediatePredicates) {
620     OS << "static bool " << ImmediatePredicate.getFnName()
621        << "(int64_t Imm) {\n";
622     OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n";
623   }
624 
625   OS << "\n\n";
626 }
627 
628 void FastISelMap::emitInstructionCode(raw_ostream &OS,
629                                       const OperandsSignature &Operands,
630                                       const PredMap &PM,
631                                       const std::string &RetVTName) {
632   // Emit code for each possible instruction. There may be
633   // multiple if there are subtarget concerns.  A reverse iterator
634   // is used to produce the ones with highest complexity first.
635 
636   bool OneHadNoPredicate = false;
637   for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
638        PI != PE; ++PI) {
639     const InstructionMemo &Memo = PI->second;
640     std::string PredicateCheck = Memo.PredicateCheck;
641 
642     if (PredicateCheck.empty()) {
643       assert(!OneHadNoPredicate &&
644              "Multiple instructions match and more than one had "
645              "no predicate!");
646       OneHadNoPredicate = true;
647     } else {
648       if (OneHadNoPredicate) {
649         PrintFatalError("Multiple instructions match and one with no "
650                         "predicate came before one with a predicate!  "
651                         "name:" + Memo.Name + "  predicate: " + PredicateCheck);
652       }
653       OS << "  if (" + PredicateCheck + ") {\n";
654       OS << "  ";
655     }
656 
657     for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
658       if (Memo.PhysRegs[i] != "")
659         OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
660            << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
661            << ").addReg(Op" << i << ");\n";
662     }
663 
664     OS << "  return fastEmitInst_";
665     if (Memo.SubRegNo.empty()) {
666       Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
667                                    true);
668       OS << "(" << InstNS << "::" << Memo.Name << ", ";
669       OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
670       if (!Operands.empty())
671         OS << ", ";
672       Operands.PrintArguments(OS, Memo.PhysRegs);
673       OS << ");\n";
674     } else {
675       OS << "extractsubreg(" << RetVTName
676          << ", Op0, " << Memo.SubRegNo << ");\n";
677     }
678 
679     if (!PredicateCheck.empty()) {
680       OS << "  }\n";
681     }
682   }
683   // Return 0 if all of the possibilities had predicates but none
684   // were satisfied.
685   if (!OneHadNoPredicate)
686     OS << "  return 0;\n";
687   OS << "}\n";
688   OS << "\n";
689 }
690 
691 
692 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
693   // Now emit code for all the patterns that we collected.
694   for (const auto &SimplePattern : SimplePatterns) {
695     const OperandsSignature &Operands = SimplePattern.first;
696     const OpcodeTypeRetPredMap &OTM = SimplePattern.second;
697 
698     for (const auto &I : OTM) {
699       const std::string &Opcode = I.first;
700       const TypeRetPredMap &TM = I.second;
701 
702       OS << "// FastEmit functions for " << Opcode << ".\n";
703       OS << "\n";
704 
705       // Emit one function for each opcode,type pair.
706       for (const auto &TI : TM) {
707         MVT::SimpleValueType VT = TI.first;
708         const RetPredMap &RM = TI.second;
709         if (RM.size() != 1) {
710           for (const auto &RI : RM) {
711             MVT::SimpleValueType RetVT = RI.first;
712             const PredMap &PM = RI.second;
713 
714             OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
715                << getLegalCName(std::string(getName(VT))) << "_"
716                << getLegalCName(std::string(getName(RetVT))) << "_";
717             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
718             OS << "(";
719             Operands.PrintParameters(OS);
720             OS << ") {\n";
721 
722             emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT)));
723           }
724 
725           // Emit one function for the type that demultiplexes on return type.
726           OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
727              << getLegalCName(std::string(getName(VT))) << "_";
728           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
729           OS << "(MVT RetVT";
730           if (!Operands.empty())
731             OS << ", ";
732           Operands.PrintParameters(OS);
733           OS << ") {\nswitch (RetVT.SimpleTy) {\n";
734           for (const auto &RI : RM) {
735             MVT::SimpleValueType RetVT = RI.first;
736             OS << "  case " << getName(RetVT) << ": return fastEmit_"
737                << getLegalCName(Opcode) << "_"
738                << getLegalCName(std::string(getName(VT))) << "_"
739                << getLegalCName(std::string(getName(RetVT))) << "_";
740             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
741             OS << "(";
742             Operands.PrintArguments(OS);
743             OS << ");\n";
744           }
745           OS << "  default: return 0;\n}\n}\n\n";
746 
747         } else {
748           // Non-variadic return type.
749           OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
750              << getLegalCName(std::string(getName(VT))) << "_";
751           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
752           OS << "(MVT RetVT";
753           if (!Operands.empty())
754             OS << ", ";
755           Operands.PrintParameters(OS);
756           OS << ") {\n";
757 
758           OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
759              << ")\n    return 0;\n";
760 
761           const PredMap &PM = RM.begin()->second;
762 
763           emitInstructionCode(OS, Operands, PM, "RetVT");
764         }
765       }
766 
767       // Emit one function for the opcode that demultiplexes based on the type.
768       OS << "unsigned fastEmit_"
769          << getLegalCName(Opcode) << "_";
770       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
771       OS << "(MVT VT, MVT RetVT";
772       if (!Operands.empty())
773         OS << ", ";
774       Operands.PrintParameters(OS);
775       OS << ") {\n";
776       OS << "  switch (VT.SimpleTy) {\n";
777       for (const auto &TI : TM) {
778         MVT::SimpleValueType VT = TI.first;
779         std::string TypeName = std::string(getName(VT));
780         OS << "  case " << TypeName << ": return fastEmit_"
781            << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
782         Operands.PrintManglingSuffix(OS, ImmediatePredicates);
783         OS << "(RetVT";
784         if (!Operands.empty())
785           OS << ", ";
786         Operands.PrintArguments(OS);
787         OS << ");\n";
788       }
789       OS << "  default: return 0;\n";
790       OS << "  }\n";
791       OS << "}\n";
792       OS << "\n";
793     }
794 
795     OS << "// Top-level FastEmit function.\n";
796     OS << "\n";
797 
798     // Emit one function for the operand signature that demultiplexes based
799     // on opcode and type.
800     OS << "unsigned fastEmit_";
801     Operands.PrintManglingSuffix(OS, ImmediatePredicates);
802     OS << "(MVT VT, MVT RetVT, unsigned Opcode";
803     if (!Operands.empty())
804       OS << ", ";
805     Operands.PrintParameters(OS);
806     OS << ") ";
807     if (!Operands.hasAnyImmediateCodes())
808       OS << "override ";
809     OS << "{\n";
810 
811     // If there are any forms of this signature available that operate on
812     // constrained forms of the immediate (e.g., 32-bit sext immediate in a
813     // 64-bit operand), check them first.
814 
815     std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
816       = SignaturesWithConstantForms.find(Operands);
817     if (MI != SignaturesWithConstantForms.end()) {
818       // Unique any duplicates out of the list.
819       llvm::sort(MI->second);
820       MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
821                        MI->second.end());
822 
823       // Check each in order it was seen.  It would be nice to have a good
824       // relative ordering between them, but we're not going for optimality
825       // here.
826       for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
827         OS << "  if (";
828         MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
829         OS << ")\n    if (unsigned Reg = fastEmit_";
830         MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
831         OS << "(VT, RetVT, Opcode";
832         if (!MI->second[i].empty())
833           OS << ", ";
834         MI->second[i].PrintArguments(OS);
835         OS << "))\n      return Reg;\n\n";
836       }
837 
838       // Done with this, remove it.
839       SignaturesWithConstantForms.erase(MI);
840     }
841 
842     OS << "  switch (Opcode) {\n";
843     for (const auto &I : OTM) {
844       const std::string &Opcode = I.first;
845 
846       OS << "  case " << Opcode << ": return fastEmit_"
847          << getLegalCName(Opcode) << "_";
848       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
849       OS << "(VT, RetVT";
850       if (!Operands.empty())
851         OS << ", ";
852       Operands.PrintArguments(OS);
853       OS << ");\n";
854     }
855     OS << "  default: return 0;\n";
856     OS << "  }\n";
857     OS << "}\n";
858     OS << "\n";
859   }
860 
861   // TODO: SignaturesWithConstantForms should be empty here.
862 }
863 
864 namespace llvm {
865 
866 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
867   CodeGenDAGPatterns CGP(RK);
868   const CodeGenTarget &Target = CGP.getTargetInfo();
869   emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
870                        Target.getName().str() + " target", OS);
871 
872   // Determine the target's namespace name.
873   StringRef InstNS = Target.getInstNamespace();
874   assert(!InstNS.empty() && "Can't determine target-specific namespace!");
875 
876   FastISelMap F(InstNS);
877   F.collectPatterns(CGP);
878   F.printImmediatePredicates(OS);
879   F.printFunctionDefinitions(OS);
880 }
881 
882 } // End llvm namespace
883