1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits code for use by the "fast" instruction 11 // selection algorithm. See the comments at the top of 12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background. 13 // 14 // This file scans through the target's tablegen instruction-info files 15 // and extracts instructions with obvious-looking patterns, and it emits 16 // code to look up these instructions by type and operator. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "CodeGenDAGPatterns.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <utility> 28 using namespace llvm; 29 30 31 /// InstructionMemo - This class holds additional information about an 32 /// instruction needed to emit code for it. 33 /// 34 namespace { 35 struct InstructionMemo { 36 std::string Name; 37 const CodeGenRegisterClass *RC; 38 std::string SubRegNo; 39 std::vector<std::string> PhysRegs; 40 std::string PredicateCheck; 41 42 InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC, 43 std::string SubRegNo, std::vector<std::string> PhysRegs, 44 std::string PredicateCheck) 45 : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)), 46 PhysRegs(std::move(PhysRegs)), 47 PredicateCheck(std::move(PredicateCheck)) {} 48 49 // Make sure we do not copy InstructionMemo. 50 InstructionMemo(const InstructionMemo &Other) = delete; 51 InstructionMemo(InstructionMemo &&Other) = default; 52 }; 53 } // End anonymous namespace 54 55 /// ImmPredicateSet - This uniques predicates (represented as a string) and 56 /// gives them unique (small) integer ID's that start at 0. 57 namespace { 58 class ImmPredicateSet { 59 DenseMap<TreePattern *, unsigned> ImmIDs; 60 std::vector<TreePredicateFn> PredsByName; 61 public: 62 63 unsigned getIDFor(TreePredicateFn Pred) { 64 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; 65 if (Entry == 0) { 66 PredsByName.push_back(Pred); 67 Entry = PredsByName.size(); 68 } 69 return Entry-1; 70 } 71 72 const TreePredicateFn &getPredicate(unsigned i) { 73 assert(i < PredsByName.size()); 74 return PredsByName[i]; 75 } 76 77 typedef std::vector<TreePredicateFn>::const_iterator iterator; 78 iterator begin() const { return PredsByName.begin(); } 79 iterator end() const { return PredsByName.end(); } 80 81 }; 82 } // End anonymous namespace 83 84 /// OperandsSignature - This class holds a description of a list of operand 85 /// types. It has utility methods for emitting text based on the operands. 86 /// 87 namespace { 88 struct OperandsSignature { 89 class OpKind { 90 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; 91 char Repr; 92 public: 93 94 OpKind() : Repr(OK_Invalid) {} 95 96 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } 97 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } 98 99 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } 100 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; } 101 static OpKind getImm(unsigned V) { 102 assert((unsigned)OK_Imm+V < 128 && 103 "Too many integer predicates for the 'Repr' char"); 104 OpKind K; K.Repr = OK_Imm+V; return K; 105 } 106 107 bool isReg() const { return Repr == OK_Reg; } 108 bool isFP() const { return Repr == OK_FP; } 109 bool isImm() const { return Repr >= OK_Imm; } 110 111 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } 112 113 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 114 bool StripImmCodes) const { 115 if (isReg()) 116 OS << 'r'; 117 else if (isFP()) 118 OS << 'f'; 119 else { 120 OS << 'i'; 121 if (!StripImmCodes) 122 if (unsigned Code = getImmCode()) 123 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); 124 } 125 } 126 }; 127 128 129 SmallVector<OpKind, 3> Operands; 130 131 bool operator<(const OperandsSignature &O) const { 132 return Operands < O.Operands; 133 } 134 bool operator==(const OperandsSignature &O) const { 135 return Operands == O.Operands; 136 } 137 138 bool empty() const { return Operands.empty(); } 139 140 bool hasAnyImmediateCodes() const { 141 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 142 if (Operands[i].isImm() && Operands[i].getImmCode() != 0) 143 return true; 144 return false; 145 } 146 147 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced 148 /// to zero. 149 OperandsSignature getWithoutImmCodes() const { 150 OperandsSignature Result; 151 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 152 if (!Operands[i].isImm()) 153 Result.Operands.push_back(Operands[i]); 154 else 155 Result.Operands.push_back(OpKind::getImm(0)); 156 return Result; 157 } 158 159 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { 160 bool EmittedAnything = false; 161 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 162 if (!Operands[i].isImm()) continue; 163 164 unsigned Code = Operands[i].getImmCode(); 165 if (Code == 0) continue; 166 167 if (EmittedAnything) 168 OS << " &&\n "; 169 170 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); 171 172 // Emit the type check. 173 TreePattern *TP = PredFn.getOrigPatFragRecord(); 174 ValueTypeByHwMode VVT = TP->getTree(0)->getType(0); 175 assert(VVT.isSimple() && 176 "Cannot use variable value types with fast isel"); 177 OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && "; 178 179 OS << PredFn.getFnName() << "(imm" << i <<')'; 180 EmittedAnything = true; 181 } 182 } 183 184 /// initialize - Examine the given pattern and initialize the contents 185 /// of the Operands array accordingly. Return true if all the operands 186 /// are supported, false otherwise. 187 /// 188 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, 189 MVT::SimpleValueType VT, 190 ImmPredicateSet &ImmediatePredicates, 191 const CodeGenRegisterClass *OrigDstRC) { 192 if (InstPatNode->isLeaf()) 193 return false; 194 195 if (InstPatNode->getOperator()->getName() == "imm") { 196 Operands.push_back(OpKind::getImm(0)); 197 return true; 198 } 199 200 if (InstPatNode->getOperator()->getName() == "fpimm") { 201 Operands.push_back(OpKind::getFP()); 202 return true; 203 } 204 205 const CodeGenRegisterClass *DstRC = nullptr; 206 207 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 208 TreePatternNode *Op = InstPatNode->getChild(i); 209 210 // Handle imm operands specially. 211 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { 212 unsigned PredNo = 0; 213 if (!Op->getPredicateFns().empty()) { 214 TreePredicateFn PredFn = Op->getPredicateFns()[0]; 215 // If there is more than one predicate weighing in on this operand 216 // then we don't handle it. This doesn't typically happen for 217 // immediates anyway. 218 if (Op->getPredicateFns().size() > 1 || 219 !PredFn.isImmediatePattern()) 220 return false; 221 // Ignore any instruction with 'FastIselShouldIgnore', these are 222 // not needed and just bloat the fast instruction selector. For 223 // example, X86 doesn't need to generate code to match ADD16ri8 since 224 // ADD16ri will do just fine. 225 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); 226 if (Rec->getValueAsBit("FastIselShouldIgnore")) 227 return false; 228 229 PredNo = ImmediatePredicates.getIDFor(PredFn)+1; 230 } 231 232 Operands.push_back(OpKind::getImm(PredNo)); 233 continue; 234 } 235 236 237 // For now, filter out any operand with a predicate. 238 // For now, filter out any operand with multiple values. 239 if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1) 240 return false; 241 242 if (!Op->isLeaf()) { 243 if (Op->getOperator()->getName() == "fpimm") { 244 Operands.push_back(OpKind::getFP()); 245 continue; 246 } 247 // For now, ignore other non-leaf nodes. 248 return false; 249 } 250 251 assert(Op->hasConcreteType(0) && "Type infererence not done?"); 252 253 // For now, all the operands must have the same type (if they aren't 254 // immediates). Note that this causes us to reject variable sized shifts 255 // on X86. 256 if (Op->getSimpleType(0) != VT) 257 return false; 258 259 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); 260 if (!OpDI) 261 return false; 262 Record *OpLeafRec = OpDI->getDef(); 263 264 // For now, the only other thing we accept is register operands. 265 const CodeGenRegisterClass *RC = nullptr; 266 if (OpLeafRec->isSubClassOf("RegisterOperand")) 267 OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); 268 if (OpLeafRec->isSubClassOf("RegisterClass")) 269 RC = &Target.getRegisterClass(OpLeafRec); 270 else if (OpLeafRec->isSubClassOf("Register")) 271 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); 272 else if (OpLeafRec->isSubClassOf("ValueType")) { 273 RC = OrigDstRC; 274 } else 275 return false; 276 277 // For now, this needs to be a register class of some sort. 278 if (!RC) 279 return false; 280 281 // For now, all the operands must have the same register class or be 282 // a strict subclass of the destination. 283 if (DstRC) { 284 if (DstRC != RC && !DstRC->hasSubClass(RC)) 285 return false; 286 } else 287 DstRC = RC; 288 Operands.push_back(OpKind::getReg()); 289 } 290 return true; 291 } 292 293 void PrintParameters(raw_ostream &OS) const { 294 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 295 if (Operands[i].isReg()) { 296 OS << "unsigned Op" << i << ", bool Op" << i << "IsKill"; 297 } else if (Operands[i].isImm()) { 298 OS << "uint64_t imm" << i; 299 } else if (Operands[i].isFP()) { 300 OS << "const ConstantFP *f" << i; 301 } else { 302 llvm_unreachable("Unknown operand kind!"); 303 } 304 if (i + 1 != e) 305 OS << ", "; 306 } 307 } 308 309 void PrintArguments(raw_ostream &OS, 310 const std::vector<std::string> &PR) const { 311 assert(PR.size() == Operands.size()); 312 bool PrintedArg = false; 313 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 314 if (PR[i] != "") 315 // Implicit physical register operand. 316 continue; 317 318 if (PrintedArg) 319 OS << ", "; 320 if (Operands[i].isReg()) { 321 OS << "Op" << i << ", Op" << i << "IsKill"; 322 PrintedArg = true; 323 } else if (Operands[i].isImm()) { 324 OS << "imm" << i; 325 PrintedArg = true; 326 } else if (Operands[i].isFP()) { 327 OS << "f" << i; 328 PrintedArg = true; 329 } else { 330 llvm_unreachable("Unknown operand kind!"); 331 } 332 } 333 } 334 335 void PrintArguments(raw_ostream &OS) const { 336 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 337 if (Operands[i].isReg()) { 338 OS << "Op" << i << ", Op" << i << "IsKill"; 339 } else if (Operands[i].isImm()) { 340 OS << "imm" << i; 341 } else if (Operands[i].isFP()) { 342 OS << "f" << i; 343 } else { 344 llvm_unreachable("Unknown operand kind!"); 345 } 346 if (i + 1 != e) 347 OS << ", "; 348 } 349 } 350 351 352 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, 353 ImmPredicateSet &ImmPredicates, 354 bool StripImmCodes = false) const { 355 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 356 if (PR[i] != "") 357 // Implicit physical register operand. e.g. Instruction::Mul expect to 358 // select to a binary op. On x86, mul may take a single operand with 359 // the other operand being implicit. We must emit something that looks 360 // like a binary instruction except for the very inner fastEmitInst_* 361 // call. 362 continue; 363 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 364 } 365 } 366 367 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 368 bool StripImmCodes = false) const { 369 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 370 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 371 } 372 }; 373 } // End anonymous namespace 374 375 namespace { 376 class FastISelMap { 377 // A multimap is needed instead of a "plain" map because the key is 378 // the instruction's complexity (an int) and they are not unique. 379 typedef std::multimap<int, InstructionMemo> PredMap; 380 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; 381 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; 382 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; 383 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> 384 OperandsOpcodeTypeRetPredMap; 385 386 OperandsOpcodeTypeRetPredMap SimplePatterns; 387 388 // This is used to check that there are no duplicate predicates 389 typedef std::multimap<std::string, bool> PredCheckMap; 390 typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap; 391 typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap; 392 typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap; 393 typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap> 394 OperandsOpcodeTypeRetPredCheckMap; 395 396 OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck; 397 398 std::map<OperandsSignature, std::vector<OperandsSignature> > 399 SignaturesWithConstantForms; 400 401 StringRef InstNS; 402 ImmPredicateSet ImmediatePredicates; 403 public: 404 explicit FastISelMap(StringRef InstNS); 405 406 void collectPatterns(CodeGenDAGPatterns &CGP); 407 void printImmediatePredicates(raw_ostream &OS); 408 void printFunctionDefinitions(raw_ostream &OS); 409 private: 410 void emitInstructionCode(raw_ostream &OS, 411 const OperandsSignature &Operands, 412 const PredMap &PM, 413 const std::string &RetVTName); 414 }; 415 } // End anonymous namespace 416 417 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { 418 return CGP.getSDNodeInfo(Op).getEnumName(); 419 } 420 421 static std::string getLegalCName(std::string OpName) { 422 std::string::size_type pos = OpName.find("::"); 423 if (pos != std::string::npos) 424 OpName.replace(pos, 2, "_"); 425 return OpName; 426 } 427 428 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {} 429 430 static std::string PhyRegForNode(TreePatternNode *Op, 431 const CodeGenTarget &Target) { 432 std::string PhysReg; 433 434 if (!Op->isLeaf()) 435 return PhysReg; 436 437 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); 438 if (!OpLeafRec->isSubClassOf("Register")) 439 return PhysReg; 440 441 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) 442 ->getValue(); 443 PhysReg += "::"; 444 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); 445 return PhysReg; 446 } 447 448 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { 449 const CodeGenTarget &Target = CGP.getTargetInfo(); 450 451 // Scan through all the patterns and record the simple ones. 452 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), 453 E = CGP.ptm_end(); I != E; ++I) { 454 const PatternToMatch &Pattern = *I; 455 456 // For now, just look at Instructions, so that we don't have to worry 457 // about emitting multiple instructions for a pattern. 458 TreePatternNode *Dst = Pattern.getDstPattern(); 459 if (Dst->isLeaf()) continue; 460 Record *Op = Dst->getOperator(); 461 if (!Op->isSubClassOf("Instruction")) 462 continue; 463 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); 464 if (II.Operands.empty()) 465 continue; 466 467 // Allow instructions to be marked as unavailable for FastISel for 468 // certain cases, i.e. an ISA has two 'and' instruction which differ 469 // by what registers they can use but are otherwise identical for 470 // codegen purposes. 471 if (II.FastISelShouldIgnore) 472 continue; 473 474 // For now, ignore multi-instruction patterns. 475 bool MultiInsts = false; 476 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { 477 TreePatternNode *ChildOp = Dst->getChild(i); 478 if (ChildOp->isLeaf()) 479 continue; 480 if (ChildOp->getOperator()->isSubClassOf("Instruction")) { 481 MultiInsts = true; 482 break; 483 } 484 } 485 if (MultiInsts) 486 continue; 487 488 // For now, ignore instructions where the first operand is not an 489 // output register. 490 const CodeGenRegisterClass *DstRC = nullptr; 491 std::string SubRegNo; 492 if (Op->getName() != "EXTRACT_SUBREG") { 493 Record *Op0Rec = II.Operands[0].Rec; 494 if (Op0Rec->isSubClassOf("RegisterOperand")) 495 Op0Rec = Op0Rec->getValueAsDef("RegClass"); 496 if (!Op0Rec->isSubClassOf("RegisterClass")) 497 continue; 498 DstRC = &Target.getRegisterClass(Op0Rec); 499 if (!DstRC) 500 continue; 501 } else { 502 // If this isn't a leaf, then continue since the register classes are 503 // a bit too complicated for now. 504 if (!Dst->getChild(1)->isLeaf()) continue; 505 506 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 507 if (SR) 508 SubRegNo = getQualifiedName(SR->getDef()); 509 else 510 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); 511 } 512 513 // Inspect the pattern. 514 TreePatternNode *InstPatNode = Pattern.getSrcPattern(); 515 if (!InstPatNode) continue; 516 if (InstPatNode->isLeaf()) continue; 517 518 // Ignore multiple result nodes for now. 519 if (InstPatNode->getNumTypes() > 1) continue; 520 521 Record *InstPatOp = InstPatNode->getOperator(); 522 std::string OpcodeName = getOpcodeName(InstPatOp, CGP); 523 MVT::SimpleValueType RetVT = MVT::isVoid; 524 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0); 525 MVT::SimpleValueType VT = RetVT; 526 if (InstPatNode->getNumChildren()) { 527 assert(InstPatNode->getChild(0)->getNumTypes() == 1); 528 VT = InstPatNode->getChild(0)->getSimpleType(0); 529 } 530 531 // For now, filter out any instructions with predicates. 532 if (!InstPatNode->getPredicateFns().empty()) 533 continue; 534 535 // Check all the operands. 536 OperandsSignature Operands; 537 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, 538 DstRC)) 539 continue; 540 541 std::vector<std::string> PhysRegInputs; 542 if (InstPatNode->getOperator()->getName() == "imm" || 543 InstPatNode->getOperator()->getName() == "fpimm") 544 PhysRegInputs.push_back(""); 545 else { 546 // Compute the PhysRegs used by the given pattern, and check that 547 // the mapping from the src to dst patterns is simple. 548 bool FoundNonSimplePattern = false; 549 unsigned DstIndex = 0; 550 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 551 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); 552 if (PhysReg.empty()) { 553 if (DstIndex >= Dst->getNumChildren() || 554 Dst->getChild(DstIndex)->getName() != 555 InstPatNode->getChild(i)->getName()) { 556 FoundNonSimplePattern = true; 557 break; 558 } 559 ++DstIndex; 560 } 561 562 PhysRegInputs.push_back(PhysReg); 563 } 564 565 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) 566 FoundNonSimplePattern = true; 567 568 if (FoundNonSimplePattern) 569 continue; 570 } 571 572 // Check if the operands match one of the patterns handled by FastISel. 573 std::string ManglingSuffix; 574 raw_string_ostream SuffixOS(ManglingSuffix); 575 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true); 576 SuffixOS.flush(); 577 if (!StringSwitch<bool>(ManglingSuffix) 578 .Cases("", "r", "rr", "ri", "i", "f", true) 579 .Default(false)) 580 continue; 581 582 // Get the predicate that guards this pattern. 583 std::string PredicateCheck = Pattern.getPredicateCheck(); 584 585 // Ok, we found a pattern that we can handle. Remember it. 586 InstructionMemo Memo( 587 Pattern.getDstPattern()->getOperator()->getName(), 588 DstRC, 589 SubRegNo, 590 PhysRegInputs, 591 PredicateCheck 592 ); 593 594 int complexity = Pattern.getPatternComplexity(CGP); 595 596 if (SimplePatternsCheck[Operands][OpcodeName][VT] 597 [RetVT].count(PredicateCheck)) { 598 PrintFatalError(Pattern.getSrcRecord()->getLoc(), 599 "Duplicate predicate in FastISel table!"); 600 } 601 SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert( 602 std::make_pair(PredicateCheck, true)); 603 604 // Note: Instructions with the same complexity will appear in the order 605 // that they are encountered. 606 SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity, 607 std::move(Memo)); 608 609 // If any of the operands were immediates with predicates on them, strip 610 // them down to a signature that doesn't have predicates so that we can 611 // associate them with the stripped predicate version. 612 if (Operands.hasAnyImmediateCodes()) { 613 SignaturesWithConstantForms[Operands.getWithoutImmCodes()] 614 .push_back(Operands); 615 } 616 } 617 } 618 619 void FastISelMap::printImmediatePredicates(raw_ostream &OS) { 620 if (ImmediatePredicates.begin() == ImmediatePredicates.end()) 621 return; 622 623 OS << "\n// FastEmit Immediate Predicate functions.\n"; 624 for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(), 625 E = ImmediatePredicates.end(); I != E; ++I) { 626 OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n"; 627 OS << I->getImmediatePredicateCode() << "\n}\n"; 628 } 629 630 OS << "\n\n"; 631 } 632 633 void FastISelMap::emitInstructionCode(raw_ostream &OS, 634 const OperandsSignature &Operands, 635 const PredMap &PM, 636 const std::string &RetVTName) { 637 // Emit code for each possible instruction. There may be 638 // multiple if there are subtarget concerns. A reverse iterator 639 // is used to produce the ones with highest complexity first. 640 641 bool OneHadNoPredicate = false; 642 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend(); 643 PI != PE; ++PI) { 644 const InstructionMemo &Memo = PI->second; 645 std::string PredicateCheck = Memo.PredicateCheck; 646 647 if (PredicateCheck.empty()) { 648 assert(!OneHadNoPredicate && 649 "Multiple instructions match and more than one had " 650 "no predicate!"); 651 OneHadNoPredicate = true; 652 } else { 653 if (OneHadNoPredicate) { 654 PrintFatalError("Multiple instructions match and one with no " 655 "predicate came before one with a predicate! " 656 "name:" + Memo.Name + " predicate: " + PredicateCheck); 657 } 658 OS << " if (" + PredicateCheck + ") {\n"; 659 OS << " "; 660 } 661 662 for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) { 663 if (Memo.PhysRegs[i] != "") 664 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, " 665 << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i] 666 << ").addReg(Op" << i << ");\n"; 667 } 668 669 OS << " return fastEmitInst_"; 670 if (Memo.SubRegNo.empty()) { 671 Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates, 672 true); 673 OS << "(" << InstNS << "::" << Memo.Name << ", "; 674 OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass"; 675 if (!Operands.empty()) 676 OS << ", "; 677 Operands.PrintArguments(OS, Memo.PhysRegs); 678 OS << ");\n"; 679 } else { 680 OS << "extractsubreg(" << RetVTName 681 << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n"; 682 } 683 684 if (!PredicateCheck.empty()) { 685 OS << " }\n"; 686 } 687 } 688 // Return 0 if all of the possibilities had predicates but none 689 // were satisfied. 690 if (!OneHadNoPredicate) 691 OS << " return 0;\n"; 692 OS << "}\n"; 693 OS << "\n"; 694 } 695 696 697 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { 698 // Now emit code for all the patterns that we collected. 699 for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), 700 OE = SimplePatterns.end(); OI != OE; ++OI) { 701 const OperandsSignature &Operands = OI->first; 702 const OpcodeTypeRetPredMap &OTM = OI->second; 703 704 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 705 I != E; ++I) { 706 const std::string &Opcode = I->first; 707 const TypeRetPredMap &TM = I->second; 708 709 OS << "// FastEmit functions for " << Opcode << ".\n"; 710 OS << "\n"; 711 712 // Emit one function for each opcode,type pair. 713 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 714 TI != TE; ++TI) { 715 MVT::SimpleValueType VT = TI->first; 716 const RetPredMap &RM = TI->second; 717 if (RM.size() != 1) { 718 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 719 RI != RE; ++RI) { 720 MVT::SimpleValueType RetVT = RI->first; 721 const PredMap &PM = RI->second; 722 723 OS << "unsigned fastEmit_" 724 << getLegalCName(Opcode) 725 << "_" << getLegalCName(getName(VT)) 726 << "_" << getLegalCName(getName(RetVT)) << "_"; 727 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 728 OS << "("; 729 Operands.PrintParameters(OS); 730 OS << ") {\n"; 731 732 emitInstructionCode(OS, Operands, PM, getName(RetVT)); 733 } 734 735 // Emit one function for the type that demultiplexes on return type. 736 OS << "unsigned fastEmit_" 737 << getLegalCName(Opcode) << "_" 738 << getLegalCName(getName(VT)) << "_"; 739 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 740 OS << "(MVT RetVT"; 741 if (!Operands.empty()) 742 OS << ", "; 743 Operands.PrintParameters(OS); 744 OS << ") {\nswitch (RetVT.SimpleTy) {\n"; 745 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 746 RI != RE; ++RI) { 747 MVT::SimpleValueType RetVT = RI->first; 748 OS << " case " << getName(RetVT) << ": return fastEmit_" 749 << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) 750 << "_" << getLegalCName(getName(RetVT)) << "_"; 751 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 752 OS << "("; 753 Operands.PrintArguments(OS); 754 OS << ");\n"; 755 } 756 OS << " default: return 0;\n}\n}\n\n"; 757 758 } else { 759 // Non-variadic return type. 760 OS << "unsigned fastEmit_" 761 << getLegalCName(Opcode) << "_" 762 << getLegalCName(getName(VT)) << "_"; 763 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 764 OS << "(MVT RetVT"; 765 if (!Operands.empty()) 766 OS << ", "; 767 Operands.PrintParameters(OS); 768 OS << ") {\n"; 769 770 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) 771 << ")\n return 0;\n"; 772 773 const PredMap &PM = RM.begin()->second; 774 775 emitInstructionCode(OS, Operands, PM, "RetVT"); 776 } 777 } 778 779 // Emit one function for the opcode that demultiplexes based on the type. 780 OS << "unsigned fastEmit_" 781 << getLegalCName(Opcode) << "_"; 782 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 783 OS << "(MVT VT, MVT RetVT"; 784 if (!Operands.empty()) 785 OS << ", "; 786 Operands.PrintParameters(OS); 787 OS << ") {\n"; 788 OS << " switch (VT.SimpleTy) {\n"; 789 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 790 TI != TE; ++TI) { 791 MVT::SimpleValueType VT = TI->first; 792 std::string TypeName = getName(VT); 793 OS << " case " << TypeName << ": return fastEmit_" 794 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; 795 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 796 OS << "(RetVT"; 797 if (!Operands.empty()) 798 OS << ", "; 799 Operands.PrintArguments(OS); 800 OS << ");\n"; 801 } 802 OS << " default: return 0;\n"; 803 OS << " }\n"; 804 OS << "}\n"; 805 OS << "\n"; 806 } 807 808 OS << "// Top-level FastEmit function.\n"; 809 OS << "\n"; 810 811 // Emit one function for the operand signature that demultiplexes based 812 // on opcode and type. 813 OS << "unsigned fastEmit_"; 814 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 815 OS << "(MVT VT, MVT RetVT, unsigned Opcode"; 816 if (!Operands.empty()) 817 OS << ", "; 818 Operands.PrintParameters(OS); 819 OS << ") "; 820 if (!Operands.hasAnyImmediateCodes()) 821 OS << "override "; 822 OS << "{\n"; 823 824 // If there are any forms of this signature available that operate on 825 // constrained forms of the immediate (e.g., 32-bit sext immediate in a 826 // 64-bit operand), check them first. 827 828 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI 829 = SignaturesWithConstantForms.find(Operands); 830 if (MI != SignaturesWithConstantForms.end()) { 831 // Unique any duplicates out of the list. 832 llvm::sort(MI->second.begin(), MI->second.end()); 833 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), 834 MI->second.end()); 835 836 // Check each in order it was seen. It would be nice to have a good 837 // relative ordering between them, but we're not going for optimality 838 // here. 839 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { 840 OS << " if ("; 841 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); 842 OS << ")\n if (unsigned Reg = fastEmit_"; 843 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); 844 OS << "(VT, RetVT, Opcode"; 845 if (!MI->second[i].empty()) 846 OS << ", "; 847 MI->second[i].PrintArguments(OS); 848 OS << "))\n return Reg;\n\n"; 849 } 850 851 // Done with this, remove it. 852 SignaturesWithConstantForms.erase(MI); 853 } 854 855 OS << " switch (Opcode) {\n"; 856 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 857 I != E; ++I) { 858 const std::string &Opcode = I->first; 859 860 OS << " case " << Opcode << ": return fastEmit_" 861 << getLegalCName(Opcode) << "_"; 862 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 863 OS << "(VT, RetVT"; 864 if (!Operands.empty()) 865 OS << ", "; 866 Operands.PrintArguments(OS); 867 OS << ");\n"; 868 } 869 OS << " default: return 0;\n"; 870 OS << " }\n"; 871 OS << "}\n"; 872 OS << "\n"; 873 } 874 875 // TODO: SignaturesWithConstantForms should be empty here. 876 } 877 878 namespace llvm { 879 880 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { 881 CodeGenDAGPatterns CGP(RK); 882 const CodeGenTarget &Target = CGP.getTargetInfo(); 883 emitSourceFileHeader("\"Fast\" Instruction Selector for the " + 884 Target.getName().str() + " target", OS); 885 886 // Determine the target's namespace name. 887 StringRef InstNS = Target.getInstNamespace(); 888 assert(!InstNS.empty() && "Can't determine target-specific namespace!"); 889 890 FastISelMap F(InstNS); 891 F.collectPatterns(CGP); 892 F.printImmediatePredicates(OS); 893 F.printFunctionDefinitions(OS); 894 } 895 896 } // End llvm namespace 897