1 //===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits code for use by the "fast" instruction
11 // selection algorithm. See the comments at the top of
12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
13 //
14 // This file scans through the target's tablegen instruction-info files
15 // and extracts instructions with obvious-looking patterns, and it emits
16 // code to look up these instructions by type and operator.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "CodeGenDAGPatterns.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 using namespace llvm;
28 
29 
30 /// InstructionMemo - This class holds additional information about an
31 /// instruction needed to emit code for it.
32 ///
33 namespace {
34 struct InstructionMemo {
35   std::string Name;
36   const CodeGenRegisterClass *RC;
37   std::string SubRegNo;
38   std::vector<std::string>* PhysRegs;
39   std::string PredicateCheck;
40 };
41 } // End anonymous namespace
42 
43 /// ImmPredicateSet - This uniques predicates (represented as a string) and
44 /// gives them unique (small) integer ID's that start at 0.
45 namespace {
46 class ImmPredicateSet {
47   DenseMap<TreePattern *, unsigned> ImmIDs;
48   std::vector<TreePredicateFn> PredsByName;
49 public:
50 
51   unsigned getIDFor(TreePredicateFn Pred) {
52     unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
53     if (Entry == 0) {
54       PredsByName.push_back(Pred);
55       Entry = PredsByName.size();
56     }
57     return Entry-1;
58   }
59 
60   const TreePredicateFn &getPredicate(unsigned i) {
61     assert(i < PredsByName.size());
62     return PredsByName[i];
63   }
64 
65   typedef std::vector<TreePredicateFn>::const_iterator iterator;
66   iterator begin() const { return PredsByName.begin(); }
67   iterator end() const { return PredsByName.end(); }
68 
69 };
70 } // End anonymous namespace
71 
72 /// OperandsSignature - This class holds a description of a list of operand
73 /// types. It has utility methods for emitting text based on the operands.
74 ///
75 namespace {
76 struct OperandsSignature {
77   class OpKind {
78     enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
79     char Repr;
80   public:
81 
82     OpKind() : Repr(OK_Invalid) {}
83 
84     bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
85     bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
86 
87     static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
88     static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
89     static OpKind getImm(unsigned V) {
90       assert((unsigned)OK_Imm+V < 128 &&
91              "Too many integer predicates for the 'Repr' char");
92       OpKind K; K.Repr = OK_Imm+V; return K;
93     }
94 
95     bool isReg() const { return Repr == OK_Reg; }
96     bool isFP() const  { return Repr == OK_FP; }
97     bool isImm() const { return Repr >= OK_Imm; }
98 
99     unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
100 
101     void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
102                              bool StripImmCodes) const {
103       if (isReg())
104         OS << 'r';
105       else if (isFP())
106         OS << 'f';
107       else {
108         OS << 'i';
109         if (!StripImmCodes)
110           if (unsigned Code = getImmCode())
111             OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
112       }
113     }
114   };
115 
116 
117   SmallVector<OpKind, 3> Operands;
118 
119   bool operator<(const OperandsSignature &O) const {
120     return Operands < O.Operands;
121   }
122   bool operator==(const OperandsSignature &O) const {
123     return Operands == O.Operands;
124   }
125 
126   bool empty() const { return Operands.empty(); }
127 
128   bool hasAnyImmediateCodes() const {
129     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
130       if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
131         return true;
132     return false;
133   }
134 
135   /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
136   /// to zero.
137   OperandsSignature getWithoutImmCodes() const {
138     OperandsSignature Result;
139     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
140       if (!Operands[i].isImm())
141         Result.Operands.push_back(Operands[i]);
142       else
143         Result.Operands.push_back(OpKind::getImm(0));
144     return Result;
145   }
146 
147   void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
148     bool EmittedAnything = false;
149     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
150       if (!Operands[i].isImm()) continue;
151 
152       unsigned Code = Operands[i].getImmCode();
153       if (Code == 0) continue;
154 
155       if (EmittedAnything)
156         OS << " &&\n        ";
157 
158       TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
159 
160       // Emit the type check.
161       OS << "VT == "
162          << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0))
163          << " && ";
164 
165 
166       OS << PredFn.getFnName() << "(imm" << i <<')';
167       EmittedAnything = true;
168     }
169   }
170 
171   /// initialize - Examine the given pattern and initialize the contents
172   /// of the Operands array accordingly. Return true if all the operands
173   /// are supported, false otherwise.
174   ///
175   bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
176                   MVT::SimpleValueType VT,
177                   ImmPredicateSet &ImmediatePredicates,
178                   const CodeGenRegisterClass *OrigDstRC) {
179     if (InstPatNode->isLeaf())
180       return false;
181 
182     if (InstPatNode->getOperator()->getName() == "imm") {
183       Operands.push_back(OpKind::getImm(0));
184       return true;
185     }
186 
187     if (InstPatNode->getOperator()->getName() == "fpimm") {
188       Operands.push_back(OpKind::getFP());
189       return true;
190     }
191 
192     const CodeGenRegisterClass *DstRC = nullptr;
193 
194     for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
195       TreePatternNode *Op = InstPatNode->getChild(i);
196 
197       // Handle imm operands specially.
198       if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
199         unsigned PredNo = 0;
200         if (!Op->getPredicateFns().empty()) {
201           TreePredicateFn PredFn = Op->getPredicateFns()[0];
202           // If there is more than one predicate weighing in on this operand
203           // then we don't handle it.  This doesn't typically happen for
204           // immediates anyway.
205           if (Op->getPredicateFns().size() > 1 ||
206               !PredFn.isImmediatePattern())
207             return false;
208           // Ignore any instruction with 'FastIselShouldIgnore', these are
209           // not needed and just bloat the fast instruction selector.  For
210           // example, X86 doesn't need to generate code to match ADD16ri8 since
211           // ADD16ri will do just fine.
212           Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
213           if (Rec->getValueAsBit("FastIselShouldIgnore"))
214             return false;
215 
216           PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
217         }
218 
219         // Handle unmatched immediate sizes here.
220         //if (Op->getType(0) != VT)
221         //  return false;
222 
223         Operands.push_back(OpKind::getImm(PredNo));
224         continue;
225       }
226 
227 
228       // For now, filter out any operand with a predicate.
229       // For now, filter out any operand with multiple values.
230       if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1)
231         return false;
232 
233       if (!Op->isLeaf()) {
234          if (Op->getOperator()->getName() == "fpimm") {
235           Operands.push_back(OpKind::getFP());
236           continue;
237         }
238         // For now, ignore other non-leaf nodes.
239         return false;
240       }
241 
242       assert(Op->hasTypeSet(0) && "Type infererence not done?");
243 
244       // For now, all the operands must have the same type (if they aren't
245       // immediates).  Note that this causes us to reject variable sized shifts
246       // on X86.
247       if (Op->getType(0) != VT)
248         return false;
249 
250       DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
251       if (!OpDI)
252         return false;
253       Record *OpLeafRec = OpDI->getDef();
254 
255       // For now, the only other thing we accept is register operands.
256       const CodeGenRegisterClass *RC = nullptr;
257       if (OpLeafRec->isSubClassOf("RegisterOperand"))
258         OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
259       if (OpLeafRec->isSubClassOf("RegisterClass"))
260         RC = &Target.getRegisterClass(OpLeafRec);
261       else if (OpLeafRec->isSubClassOf("Register"))
262         RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
263       else if (OpLeafRec->isSubClassOf("ValueType")) {
264         RC = OrigDstRC;
265       } else
266         return false;
267 
268       // For now, this needs to be a register class of some sort.
269       if (!RC)
270         return false;
271 
272       // For now, all the operands must have the same register class or be
273       // a strict subclass of the destination.
274       if (DstRC) {
275         if (DstRC != RC && !DstRC->hasSubClass(RC))
276           return false;
277       } else
278         DstRC = RC;
279       Operands.push_back(OpKind::getReg());
280     }
281     return true;
282   }
283 
284   void PrintParameters(raw_ostream &OS) const {
285     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
286       if (Operands[i].isReg()) {
287         OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
288       } else if (Operands[i].isImm()) {
289         OS << "uint64_t imm" << i;
290       } else if (Operands[i].isFP()) {
291         OS << "const ConstantFP *f" << i;
292       } else {
293         llvm_unreachable("Unknown operand kind!");
294       }
295       if (i + 1 != e)
296         OS << ", ";
297     }
298   }
299 
300   void PrintArguments(raw_ostream &OS,
301                       const std::vector<std::string> &PR) const {
302     assert(PR.size() == Operands.size());
303     bool PrintedArg = false;
304     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
305       if (PR[i] != "")
306         // Implicit physical register operand.
307         continue;
308 
309       if (PrintedArg)
310         OS << ", ";
311       if (Operands[i].isReg()) {
312         OS << "Op" << i << ", Op" << i << "IsKill";
313         PrintedArg = true;
314       } else if (Operands[i].isImm()) {
315         OS << "imm" << i;
316         PrintedArg = true;
317       } else if (Operands[i].isFP()) {
318         OS << "f" << i;
319         PrintedArg = true;
320       } else {
321         llvm_unreachable("Unknown operand kind!");
322       }
323     }
324   }
325 
326   void PrintArguments(raw_ostream &OS) const {
327     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
328       if (Operands[i].isReg()) {
329         OS << "Op" << i << ", Op" << i << "IsKill";
330       } else if (Operands[i].isImm()) {
331         OS << "imm" << i;
332       } else if (Operands[i].isFP()) {
333         OS << "f" << i;
334       } else {
335         llvm_unreachable("Unknown operand kind!");
336       }
337       if (i + 1 != e)
338         OS << ", ";
339     }
340   }
341 
342 
343   void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
344                            ImmPredicateSet &ImmPredicates,
345                            bool StripImmCodes = false) const {
346     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
347       if (PR[i] != "")
348         // Implicit physical register operand. e.g. Instruction::Mul expect to
349         // select to a binary op. On x86, mul may take a single operand with
350         // the other operand being implicit. We must emit something that looks
351         // like a binary instruction except for the very inner fastEmitInst_*
352         // call.
353         continue;
354       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
355     }
356   }
357 
358   void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
359                            bool StripImmCodes = false) const {
360     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
361       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
362   }
363 };
364 } // End anonymous namespace
365 
366 namespace {
367 class FastISelMap {
368   // A multimap is needed instead of a "plain" map because the key is
369   // the instruction's complexity (an int) and they are not unique.
370   typedef std::multimap<int, InstructionMemo> PredMap;
371   typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
372   typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
373   typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
374   typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
375             OperandsOpcodeTypeRetPredMap;
376 
377   OperandsOpcodeTypeRetPredMap SimplePatterns;
378 
379   // This is used to check that there are no duplicate predicates
380   typedef std::multimap<std::string, bool> PredCheckMap;
381   typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
382   typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
383   typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
384   typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
385             OperandsOpcodeTypeRetPredCheckMap;
386 
387   OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
388 
389   std::map<OperandsSignature, std::vector<OperandsSignature> >
390     SignaturesWithConstantForms;
391 
392   std::string InstNS;
393   ImmPredicateSet ImmediatePredicates;
394 public:
395   explicit FastISelMap(std::string InstNS);
396 
397   void collectPatterns(CodeGenDAGPatterns &CGP);
398   void printImmediatePredicates(raw_ostream &OS);
399   void printFunctionDefinitions(raw_ostream &OS);
400 private:
401   void emitInstructionCode(raw_ostream &OS,
402                            const OperandsSignature &Operands,
403                            const PredMap &PM,
404                            const std::string &RetVTName);
405 };
406 } // End anonymous namespace
407 
408 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
409   return CGP.getSDNodeInfo(Op).getEnumName();
410 }
411 
412 static std::string getLegalCName(std::string OpName) {
413   std::string::size_type pos = OpName.find("::");
414   if (pos != std::string::npos)
415     OpName.replace(pos, 2, "_");
416   return OpName;
417 }
418 
419 FastISelMap::FastISelMap(std::string instns)
420   : InstNS(instns) {
421 }
422 
423 static std::string PhyRegForNode(TreePatternNode *Op,
424                                  const CodeGenTarget &Target) {
425   std::string PhysReg;
426 
427   if (!Op->isLeaf())
428     return PhysReg;
429 
430   Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
431   if (!OpLeafRec->isSubClassOf("Register"))
432     return PhysReg;
433 
434   PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
435                ->getValue();
436   PhysReg += "::";
437   PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
438   return PhysReg;
439 }
440 
441 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
442   const CodeGenTarget &Target = CGP.getTargetInfo();
443 
444   // Determine the target's namespace name.
445   InstNS = Target.getInstNamespace() + "::";
446   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
447 
448   // Scan through all the patterns and record the simple ones.
449   for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
450        E = CGP.ptm_end(); I != E; ++I) {
451     const PatternToMatch &Pattern = *I;
452 
453     // For now, just look at Instructions, so that we don't have to worry
454     // about emitting multiple instructions for a pattern.
455     TreePatternNode *Dst = Pattern.getDstPattern();
456     if (Dst->isLeaf()) continue;
457     Record *Op = Dst->getOperator();
458     if (!Op->isSubClassOf("Instruction"))
459       continue;
460     CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
461     if (II.Operands.empty())
462       continue;
463 
464     // For now, ignore multi-instruction patterns.
465     bool MultiInsts = false;
466     for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
467       TreePatternNode *ChildOp = Dst->getChild(i);
468       if (ChildOp->isLeaf())
469         continue;
470       if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
471         MultiInsts = true;
472         break;
473       }
474     }
475     if (MultiInsts)
476       continue;
477 
478     // For now, ignore instructions where the first operand is not an
479     // output register.
480     const CodeGenRegisterClass *DstRC = nullptr;
481     std::string SubRegNo;
482     if (Op->getName() != "EXTRACT_SUBREG") {
483       Record *Op0Rec = II.Operands[0].Rec;
484       if (Op0Rec->isSubClassOf("RegisterOperand"))
485         Op0Rec = Op0Rec->getValueAsDef("RegClass");
486       if (!Op0Rec->isSubClassOf("RegisterClass"))
487         continue;
488       DstRC = &Target.getRegisterClass(Op0Rec);
489       if (!DstRC)
490         continue;
491     } else {
492       // If this isn't a leaf, then continue since the register classes are
493       // a bit too complicated for now.
494       if (!Dst->getChild(1)->isLeaf()) continue;
495 
496       DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
497       if (SR)
498         SubRegNo = getQualifiedName(SR->getDef());
499       else
500         SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
501     }
502 
503     // Inspect the pattern.
504     TreePatternNode *InstPatNode = Pattern.getSrcPattern();
505     if (!InstPatNode) continue;
506     if (InstPatNode->isLeaf()) continue;
507 
508     // Ignore multiple result nodes for now.
509     if (InstPatNode->getNumTypes() > 1) continue;
510 
511     Record *InstPatOp = InstPatNode->getOperator();
512     std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
513     MVT::SimpleValueType RetVT = MVT::isVoid;
514     if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0);
515     MVT::SimpleValueType VT = RetVT;
516     if (InstPatNode->getNumChildren()) {
517       assert(InstPatNode->getChild(0)->getNumTypes() == 1);
518       VT = InstPatNode->getChild(0)->getType(0);
519     }
520 
521     // For now, filter out any instructions with predicates.
522     if (!InstPatNode->getPredicateFns().empty())
523       continue;
524 
525     // Check all the operands.
526     OperandsSignature Operands;
527     if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
528                              DstRC))
529       continue;
530 
531     std::vector<std::string>* PhysRegInputs = new std::vector<std::string>();
532     if (InstPatNode->getOperator()->getName() == "imm" ||
533         InstPatNode->getOperator()->getName() == "fpimm")
534       PhysRegInputs->push_back("");
535     else {
536       // Compute the PhysRegs used by the given pattern, and check that
537       // the mapping from the src to dst patterns is simple.
538       bool FoundNonSimplePattern = false;
539       unsigned DstIndex = 0;
540       for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
541         std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
542         if (PhysReg.empty()) {
543           if (DstIndex >= Dst->getNumChildren() ||
544               Dst->getChild(DstIndex)->getName() !=
545               InstPatNode->getChild(i)->getName()) {
546             FoundNonSimplePattern = true;
547             break;
548           }
549           ++DstIndex;
550         }
551 
552         PhysRegInputs->push_back(PhysReg);
553       }
554 
555       if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
556         FoundNonSimplePattern = true;
557 
558       if (FoundNonSimplePattern)
559         continue;
560     }
561 
562     // Check if the operands match one of the patterns handled by FastISel.
563     std::string ManglingSuffix;
564     raw_string_ostream SuffixOS(ManglingSuffix);
565     Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
566     SuffixOS.flush();
567     if (!StringSwitch<bool>(ManglingSuffix)
568         .Cases("", "r", "rr", "ri", "rf", true)
569         .Cases("rri", "i", "f", true)
570         .Default(false))
571       continue;
572 
573     // Get the predicate that guards this pattern.
574     std::string PredicateCheck = Pattern.getPredicateCheck();
575 
576     // Ok, we found a pattern that we can handle. Remember it.
577     InstructionMemo Memo = {
578       Pattern.getDstPattern()->getOperator()->getName(),
579       DstRC,
580       SubRegNo,
581       PhysRegInputs,
582       PredicateCheck
583     };
584 
585     int complexity = Pattern.getPatternComplexity(CGP);
586 
587     if (SimplePatternsCheck[Operands][OpcodeName][VT]
588          [RetVT].count(PredicateCheck)) {
589       PrintFatalError(Pattern.getSrcRecord()->getLoc(),
590                     "Duplicate predicate in FastISel table!");
591     }
592     SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
593             std::make_pair(PredicateCheck, true));
594 
595        // Note: Instructions with the same complexity will appear in the order
596           // that they are encountered.
597     SimplePatterns[Operands][OpcodeName][VT][RetVT].insert(
598       std::make_pair(complexity, Memo));
599 
600     // If any of the operands were immediates with predicates on them, strip
601     // them down to a signature that doesn't have predicates so that we can
602     // associate them with the stripped predicate version.
603     if (Operands.hasAnyImmediateCodes()) {
604       SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
605         .push_back(Operands);
606     }
607   }
608 }
609 
610 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
611   if (ImmediatePredicates.begin() == ImmediatePredicates.end())
612     return;
613 
614   OS << "\n// FastEmit Immediate Predicate functions.\n";
615   for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
616        E = ImmediatePredicates.end(); I != E; ++I) {
617     OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
618     OS << I->getImmediatePredicateCode() << "\n}\n";
619   }
620 
621   OS << "\n\n";
622 }
623 
624 void FastISelMap::emitInstructionCode(raw_ostream &OS,
625                                       const OperandsSignature &Operands,
626                                       const PredMap &PM,
627                                       const std::string &RetVTName) {
628   // Emit code for each possible instruction. There may be
629   // multiple if there are subtarget concerns.  A reverse iterator
630   // is used to produce the ones with highest complexity first.
631 
632   bool OneHadNoPredicate = false;
633   for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
634        PI != PE; ++PI) {
635     const InstructionMemo &Memo = PI->second;
636     std::string PredicateCheck = Memo.PredicateCheck;
637 
638     if (PredicateCheck.empty()) {
639       assert(!OneHadNoPredicate &&
640              "Multiple instructions match and more than one had "
641              "no predicate!");
642       OneHadNoPredicate = true;
643     } else {
644       if (OneHadNoPredicate) {
645         // FIXME: This should be a PrintError once the x86 target
646         // fixes PR21575.
647         PrintWarning("Multiple instructions match and one with no "
648                      "predicate came before one with a predicate!  "
649                      "name:" + Memo.Name + "  predicate: " +
650                      PredicateCheck);
651       }
652       OS << "  if (" + PredicateCheck + ") {\n";
653       OS << "  ";
654     }
655 
656     for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
657       if ((*Memo.PhysRegs)[i] != "")
658         OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
659            << "TII.get(TargetOpcode::COPY), "
660            << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
661     }
662 
663     OS << "  return fastEmitInst_";
664     if (Memo.SubRegNo.empty()) {
665       Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
666      ImmediatePredicates, true);
667       OS << "(" << InstNS << Memo.Name << ", ";
668       OS << "&" << InstNS << Memo.RC->getName() << "RegClass";
669       if (!Operands.empty())
670         OS << ", ";
671       Operands.PrintArguments(OS, *Memo.PhysRegs);
672       OS << ");\n";
673     } else {
674       OS << "extractsubreg(" << RetVTName
675          << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
676     }
677 
678     if (!PredicateCheck.empty()) {
679       OS << "  }\n";
680     }
681   }
682   // Return 0 if all of the possibilities had predicates but none
683   // were satisfied.
684   if (!OneHadNoPredicate)
685     OS << "  return 0;\n";
686   OS << "}\n";
687   OS << "\n";
688 }
689 
690 
691 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
692   // Now emit code for all the patterns that we collected.
693   for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
694        OE = SimplePatterns.end(); OI != OE; ++OI) {
695     const OperandsSignature &Operands = OI->first;
696     const OpcodeTypeRetPredMap &OTM = OI->second;
697 
698     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
699          I != E; ++I) {
700       const std::string &Opcode = I->first;
701       const TypeRetPredMap &TM = I->second;
702 
703       OS << "// FastEmit functions for " << Opcode << ".\n";
704       OS << "\n";
705 
706       // Emit one function for each opcode,type pair.
707       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
708            TI != TE; ++TI) {
709         MVT::SimpleValueType VT = TI->first;
710         const RetPredMap &RM = TI->second;
711         if (RM.size() != 1) {
712           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
713                RI != RE; ++RI) {
714             MVT::SimpleValueType RetVT = RI->first;
715             const PredMap &PM = RI->second;
716 
717             OS << "unsigned fastEmit_"
718                << getLegalCName(Opcode)
719                << "_" << getLegalCName(getName(VT))
720                << "_" << getLegalCName(getName(RetVT)) << "_";
721             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
722             OS << "(";
723             Operands.PrintParameters(OS);
724             OS << ") {\n";
725 
726             emitInstructionCode(OS, Operands, PM, getName(RetVT));
727           }
728 
729           // Emit one function for the type that demultiplexes on return type.
730           OS << "unsigned fastEmit_"
731              << getLegalCName(Opcode) << "_"
732              << getLegalCName(getName(VT)) << "_";
733           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
734           OS << "(MVT RetVT";
735           if (!Operands.empty())
736             OS << ", ";
737           Operands.PrintParameters(OS);
738           OS << ") {\nswitch (RetVT.SimpleTy) {\n";
739           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
740                RI != RE; ++RI) {
741             MVT::SimpleValueType RetVT = RI->first;
742             OS << "  case " << getName(RetVT) << ": return fastEmit_"
743                << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
744                << "_" << getLegalCName(getName(RetVT)) << "_";
745             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
746             OS << "(";
747             Operands.PrintArguments(OS);
748             OS << ");\n";
749           }
750           OS << "  default: return 0;\n}\n}\n\n";
751 
752         } else {
753           // Non-variadic return type.
754           OS << "unsigned fastEmit_"
755              << getLegalCName(Opcode) << "_"
756              << getLegalCName(getName(VT)) << "_";
757           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
758           OS << "(MVT RetVT";
759           if (!Operands.empty())
760             OS << ", ";
761           Operands.PrintParameters(OS);
762           OS << ") {\n";
763 
764           OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
765              << ")\n    return 0;\n";
766 
767           const PredMap &PM = RM.begin()->second;
768 
769           emitInstructionCode(OS, Operands, PM, "RetVT");
770         }
771       }
772 
773       // Emit one function for the opcode that demultiplexes based on the type.
774       OS << "unsigned fastEmit_"
775          << getLegalCName(Opcode) << "_";
776       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
777       OS << "(MVT VT, MVT RetVT";
778       if (!Operands.empty())
779         OS << ", ";
780       Operands.PrintParameters(OS);
781       OS << ") {\n";
782       OS << "  switch (VT.SimpleTy) {\n";
783       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
784            TI != TE; ++TI) {
785         MVT::SimpleValueType VT = TI->first;
786         std::string TypeName = getName(VT);
787         OS << "  case " << TypeName << ": return fastEmit_"
788            << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
789         Operands.PrintManglingSuffix(OS, ImmediatePredicates);
790         OS << "(RetVT";
791         if (!Operands.empty())
792           OS << ", ";
793         Operands.PrintArguments(OS);
794         OS << ");\n";
795       }
796       OS << "  default: return 0;\n";
797       OS << "  }\n";
798       OS << "}\n";
799       OS << "\n";
800     }
801 
802     OS << "// Top-level FastEmit function.\n";
803     OS << "\n";
804 
805     // Emit one function for the operand signature that demultiplexes based
806     // on opcode and type.
807     OS << "unsigned fastEmit_";
808     Operands.PrintManglingSuffix(OS, ImmediatePredicates);
809     OS << "(MVT VT, MVT RetVT, unsigned Opcode";
810     if (!Operands.empty())
811       OS << ", ";
812     Operands.PrintParameters(OS);
813     OS << ") ";
814     if (!Operands.hasAnyImmediateCodes())
815       OS << "override ";
816     OS << "{\n";
817 
818     // If there are any forms of this signature available that operate on
819     // constrained forms of the immediate (e.g., 32-bit sext immediate in a
820     // 64-bit operand), check them first.
821 
822     std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
823       = SignaturesWithConstantForms.find(Operands);
824     if (MI != SignaturesWithConstantForms.end()) {
825       // Unique any duplicates out of the list.
826       std::sort(MI->second.begin(), MI->second.end());
827       MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
828                        MI->second.end());
829 
830       // Check each in order it was seen.  It would be nice to have a good
831       // relative ordering between them, but we're not going for optimality
832       // here.
833       for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
834         OS << "  if (";
835         MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
836         OS << ")\n    if (unsigned Reg = fastEmit_";
837         MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
838         OS << "(VT, RetVT, Opcode";
839         if (!MI->second[i].empty())
840           OS << ", ";
841         MI->second[i].PrintArguments(OS);
842         OS << "))\n      return Reg;\n\n";
843       }
844 
845       // Done with this, remove it.
846       SignaturesWithConstantForms.erase(MI);
847     }
848 
849     OS << "  switch (Opcode) {\n";
850     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
851          I != E; ++I) {
852       const std::string &Opcode = I->first;
853 
854       OS << "  case " << Opcode << ": return fastEmit_"
855          << getLegalCName(Opcode) << "_";
856       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
857       OS << "(VT, RetVT";
858       if (!Operands.empty())
859         OS << ", ";
860       Operands.PrintArguments(OS);
861       OS << ");\n";
862     }
863     OS << "  default: return 0;\n";
864     OS << "  }\n";
865     OS << "}\n";
866     OS << "\n";
867   }
868 
869   // TODO: SignaturesWithConstantForms should be empty here.
870 }
871 
872 namespace llvm {
873 
874 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
875   CodeGenDAGPatterns CGP(RK);
876   const CodeGenTarget &Target = CGP.getTargetInfo();
877   emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
878                        Target.getName() + " target", OS);
879 
880   // Determine the target's namespace name.
881   std::string InstNS = Target.getInstNamespace() + "::";
882   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
883 
884   FastISelMap F(InstNS);
885   F.collectPatterns(CGP);
886   F.printImmediatePredicates(OS);
887   F.printFunctionDefinitions(OS);
888 }
889 
890 } // End llvm namespace
891