1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits code for use by the "fast" instruction 11 // selection algorithm. See the comments at the top of 12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background. 13 // 14 // This file scans through the target's tablegen instruction-info files 15 // and extracts instructions with obvious-looking patterns, and it emits 16 // code to look up these instructions by type and operator. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "CodeGenDAGPatterns.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <utility> 28 using namespace llvm; 29 30 31 /// InstructionMemo - This class holds additional information about an 32 /// instruction needed to emit code for it. 33 /// 34 namespace { 35 struct InstructionMemo { 36 std::string Name; 37 const CodeGenRegisterClass *RC; 38 std::string SubRegNo; 39 std::vector<std::string>* PhysRegs; 40 std::string PredicateCheck; 41 }; 42 } // End anonymous namespace 43 44 /// ImmPredicateSet - This uniques predicates (represented as a string) and 45 /// gives them unique (small) integer ID's that start at 0. 46 namespace { 47 class ImmPredicateSet { 48 DenseMap<TreePattern *, unsigned> ImmIDs; 49 std::vector<TreePredicateFn> PredsByName; 50 public: 51 52 unsigned getIDFor(TreePredicateFn Pred) { 53 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; 54 if (Entry == 0) { 55 PredsByName.push_back(Pred); 56 Entry = PredsByName.size(); 57 } 58 return Entry-1; 59 } 60 61 const TreePredicateFn &getPredicate(unsigned i) { 62 assert(i < PredsByName.size()); 63 return PredsByName[i]; 64 } 65 66 typedef std::vector<TreePredicateFn>::const_iterator iterator; 67 iterator begin() const { return PredsByName.begin(); } 68 iterator end() const { return PredsByName.end(); } 69 70 }; 71 } // End anonymous namespace 72 73 /// OperandsSignature - This class holds a description of a list of operand 74 /// types. It has utility methods for emitting text based on the operands. 75 /// 76 namespace { 77 struct OperandsSignature { 78 class OpKind { 79 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; 80 char Repr; 81 public: 82 83 OpKind() : Repr(OK_Invalid) {} 84 85 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } 86 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } 87 88 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } 89 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; } 90 static OpKind getImm(unsigned V) { 91 assert((unsigned)OK_Imm+V < 128 && 92 "Too many integer predicates for the 'Repr' char"); 93 OpKind K; K.Repr = OK_Imm+V; return K; 94 } 95 96 bool isReg() const { return Repr == OK_Reg; } 97 bool isFP() const { return Repr == OK_FP; } 98 bool isImm() const { return Repr >= OK_Imm; } 99 100 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } 101 102 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 103 bool StripImmCodes) const { 104 if (isReg()) 105 OS << 'r'; 106 else if (isFP()) 107 OS << 'f'; 108 else { 109 OS << 'i'; 110 if (!StripImmCodes) 111 if (unsigned Code = getImmCode()) 112 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); 113 } 114 } 115 }; 116 117 118 SmallVector<OpKind, 3> Operands; 119 120 bool operator<(const OperandsSignature &O) const { 121 return Operands < O.Operands; 122 } 123 bool operator==(const OperandsSignature &O) const { 124 return Operands == O.Operands; 125 } 126 127 bool empty() const { return Operands.empty(); } 128 129 bool hasAnyImmediateCodes() const { 130 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 131 if (Operands[i].isImm() && Operands[i].getImmCode() != 0) 132 return true; 133 return false; 134 } 135 136 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced 137 /// to zero. 138 OperandsSignature getWithoutImmCodes() const { 139 OperandsSignature Result; 140 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 141 if (!Operands[i].isImm()) 142 Result.Operands.push_back(Operands[i]); 143 else 144 Result.Operands.push_back(OpKind::getImm(0)); 145 return Result; 146 } 147 148 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { 149 bool EmittedAnything = false; 150 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 151 if (!Operands[i].isImm()) continue; 152 153 unsigned Code = Operands[i].getImmCode(); 154 if (Code == 0) continue; 155 156 if (EmittedAnything) 157 OS << " &&\n "; 158 159 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); 160 161 // Emit the type check. 162 OS << "VT == " 163 << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0)) 164 << " && "; 165 166 167 OS << PredFn.getFnName() << "(imm" << i <<')'; 168 EmittedAnything = true; 169 } 170 } 171 172 /// initialize - Examine the given pattern and initialize the contents 173 /// of the Operands array accordingly. Return true if all the operands 174 /// are supported, false otherwise. 175 /// 176 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, 177 MVT::SimpleValueType VT, 178 ImmPredicateSet &ImmediatePredicates, 179 const CodeGenRegisterClass *OrigDstRC) { 180 if (InstPatNode->isLeaf()) 181 return false; 182 183 if (InstPatNode->getOperator()->getName() == "imm") { 184 Operands.push_back(OpKind::getImm(0)); 185 return true; 186 } 187 188 if (InstPatNode->getOperator()->getName() == "fpimm") { 189 Operands.push_back(OpKind::getFP()); 190 return true; 191 } 192 193 const CodeGenRegisterClass *DstRC = nullptr; 194 195 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 196 TreePatternNode *Op = InstPatNode->getChild(i); 197 198 // Handle imm operands specially. 199 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { 200 unsigned PredNo = 0; 201 if (!Op->getPredicateFns().empty()) { 202 TreePredicateFn PredFn = Op->getPredicateFns()[0]; 203 // If there is more than one predicate weighing in on this operand 204 // then we don't handle it. This doesn't typically happen for 205 // immediates anyway. 206 if (Op->getPredicateFns().size() > 1 || 207 !PredFn.isImmediatePattern()) 208 return false; 209 // Ignore any instruction with 'FastIselShouldIgnore', these are 210 // not needed and just bloat the fast instruction selector. For 211 // example, X86 doesn't need to generate code to match ADD16ri8 since 212 // ADD16ri will do just fine. 213 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); 214 if (Rec->getValueAsBit("FastIselShouldIgnore")) 215 return false; 216 217 PredNo = ImmediatePredicates.getIDFor(PredFn)+1; 218 } 219 220 // Handle unmatched immediate sizes here. 221 //if (Op->getType(0) != VT) 222 // return false; 223 224 Operands.push_back(OpKind::getImm(PredNo)); 225 continue; 226 } 227 228 229 // For now, filter out any operand with a predicate. 230 // For now, filter out any operand with multiple values. 231 if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1) 232 return false; 233 234 if (!Op->isLeaf()) { 235 if (Op->getOperator()->getName() == "fpimm") { 236 Operands.push_back(OpKind::getFP()); 237 continue; 238 } 239 // For now, ignore other non-leaf nodes. 240 return false; 241 } 242 243 assert(Op->hasTypeSet(0) && "Type infererence not done?"); 244 245 // For now, all the operands must have the same type (if they aren't 246 // immediates). Note that this causes us to reject variable sized shifts 247 // on X86. 248 if (Op->getType(0) != VT) 249 return false; 250 251 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); 252 if (!OpDI) 253 return false; 254 Record *OpLeafRec = OpDI->getDef(); 255 256 // For now, the only other thing we accept is register operands. 257 const CodeGenRegisterClass *RC = nullptr; 258 if (OpLeafRec->isSubClassOf("RegisterOperand")) 259 OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); 260 if (OpLeafRec->isSubClassOf("RegisterClass")) 261 RC = &Target.getRegisterClass(OpLeafRec); 262 else if (OpLeafRec->isSubClassOf("Register")) 263 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); 264 else if (OpLeafRec->isSubClassOf("ValueType")) { 265 RC = OrigDstRC; 266 } else 267 return false; 268 269 // For now, this needs to be a register class of some sort. 270 if (!RC) 271 return false; 272 273 // For now, all the operands must have the same register class or be 274 // a strict subclass of the destination. 275 if (DstRC) { 276 if (DstRC != RC && !DstRC->hasSubClass(RC)) 277 return false; 278 } else 279 DstRC = RC; 280 Operands.push_back(OpKind::getReg()); 281 } 282 return true; 283 } 284 285 void PrintParameters(raw_ostream &OS) const { 286 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 287 if (Operands[i].isReg()) { 288 OS << "unsigned Op" << i << ", bool Op" << i << "IsKill"; 289 } else if (Operands[i].isImm()) { 290 OS << "uint64_t imm" << i; 291 } else if (Operands[i].isFP()) { 292 OS << "const ConstantFP *f" << i; 293 } else { 294 llvm_unreachable("Unknown operand kind!"); 295 } 296 if (i + 1 != e) 297 OS << ", "; 298 } 299 } 300 301 void PrintArguments(raw_ostream &OS, 302 const std::vector<std::string> &PR) const { 303 assert(PR.size() == Operands.size()); 304 bool PrintedArg = false; 305 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 306 if (PR[i] != "") 307 // Implicit physical register operand. 308 continue; 309 310 if (PrintedArg) 311 OS << ", "; 312 if (Operands[i].isReg()) { 313 OS << "Op" << i << ", Op" << i << "IsKill"; 314 PrintedArg = true; 315 } else if (Operands[i].isImm()) { 316 OS << "imm" << i; 317 PrintedArg = true; 318 } else if (Operands[i].isFP()) { 319 OS << "f" << i; 320 PrintedArg = true; 321 } else { 322 llvm_unreachable("Unknown operand kind!"); 323 } 324 } 325 } 326 327 void PrintArguments(raw_ostream &OS) const { 328 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 329 if (Operands[i].isReg()) { 330 OS << "Op" << i << ", Op" << i << "IsKill"; 331 } else if (Operands[i].isImm()) { 332 OS << "imm" << i; 333 } else if (Operands[i].isFP()) { 334 OS << "f" << i; 335 } else { 336 llvm_unreachable("Unknown operand kind!"); 337 } 338 if (i + 1 != e) 339 OS << ", "; 340 } 341 } 342 343 344 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, 345 ImmPredicateSet &ImmPredicates, 346 bool StripImmCodes = false) const { 347 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 348 if (PR[i] != "") 349 // Implicit physical register operand. e.g. Instruction::Mul expect to 350 // select to a binary op. On x86, mul may take a single operand with 351 // the other operand being implicit. We must emit something that looks 352 // like a binary instruction except for the very inner fastEmitInst_* 353 // call. 354 continue; 355 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 356 } 357 } 358 359 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 360 bool StripImmCodes = false) const { 361 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 362 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 363 } 364 }; 365 } // End anonymous namespace 366 367 namespace { 368 class FastISelMap { 369 // A multimap is needed instead of a "plain" map because the key is 370 // the instruction's complexity (an int) and they are not unique. 371 typedef std::multimap<int, InstructionMemo> PredMap; 372 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; 373 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; 374 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; 375 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> 376 OperandsOpcodeTypeRetPredMap; 377 378 OperandsOpcodeTypeRetPredMap SimplePatterns; 379 380 // This is used to check that there are no duplicate predicates 381 typedef std::multimap<std::string, bool> PredCheckMap; 382 typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap; 383 typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap; 384 typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap; 385 typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap> 386 OperandsOpcodeTypeRetPredCheckMap; 387 388 OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck; 389 390 std::map<OperandsSignature, std::vector<OperandsSignature> > 391 SignaturesWithConstantForms; 392 393 StringRef InstNS; 394 ImmPredicateSet ImmediatePredicates; 395 public: 396 explicit FastISelMap(StringRef InstNS); 397 398 void collectPatterns(CodeGenDAGPatterns &CGP); 399 void printImmediatePredicates(raw_ostream &OS); 400 void printFunctionDefinitions(raw_ostream &OS); 401 private: 402 void emitInstructionCode(raw_ostream &OS, 403 const OperandsSignature &Operands, 404 const PredMap &PM, 405 const std::string &RetVTName); 406 }; 407 } // End anonymous namespace 408 409 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { 410 return CGP.getSDNodeInfo(Op).getEnumName(); 411 } 412 413 static std::string getLegalCName(std::string OpName) { 414 std::string::size_type pos = OpName.find("::"); 415 if (pos != std::string::npos) 416 OpName.replace(pos, 2, "_"); 417 return OpName; 418 } 419 420 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {} 421 422 static std::string PhyRegForNode(TreePatternNode *Op, 423 const CodeGenTarget &Target) { 424 std::string PhysReg; 425 426 if (!Op->isLeaf()) 427 return PhysReg; 428 429 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); 430 if (!OpLeafRec->isSubClassOf("Register")) 431 return PhysReg; 432 433 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) 434 ->getValue(); 435 PhysReg += "::"; 436 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); 437 return PhysReg; 438 } 439 440 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { 441 const CodeGenTarget &Target = CGP.getTargetInfo(); 442 443 // Scan through all the patterns and record the simple ones. 444 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), 445 E = CGP.ptm_end(); I != E; ++I) { 446 const PatternToMatch &Pattern = *I; 447 448 // For now, just look at Instructions, so that we don't have to worry 449 // about emitting multiple instructions for a pattern. 450 TreePatternNode *Dst = Pattern.getDstPattern(); 451 if (Dst->isLeaf()) continue; 452 Record *Op = Dst->getOperator(); 453 if (!Op->isSubClassOf("Instruction")) 454 continue; 455 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); 456 if (II.Operands.empty()) 457 continue; 458 459 // For now, ignore multi-instruction patterns. 460 bool MultiInsts = false; 461 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { 462 TreePatternNode *ChildOp = Dst->getChild(i); 463 if (ChildOp->isLeaf()) 464 continue; 465 if (ChildOp->getOperator()->isSubClassOf("Instruction")) { 466 MultiInsts = true; 467 break; 468 } 469 } 470 if (MultiInsts) 471 continue; 472 473 // For now, ignore instructions where the first operand is not an 474 // output register. 475 const CodeGenRegisterClass *DstRC = nullptr; 476 std::string SubRegNo; 477 if (Op->getName() != "EXTRACT_SUBREG") { 478 Record *Op0Rec = II.Operands[0].Rec; 479 if (Op0Rec->isSubClassOf("RegisterOperand")) 480 Op0Rec = Op0Rec->getValueAsDef("RegClass"); 481 if (!Op0Rec->isSubClassOf("RegisterClass")) 482 continue; 483 DstRC = &Target.getRegisterClass(Op0Rec); 484 if (!DstRC) 485 continue; 486 } else { 487 // If this isn't a leaf, then continue since the register classes are 488 // a bit too complicated for now. 489 if (!Dst->getChild(1)->isLeaf()) continue; 490 491 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 492 if (SR) 493 SubRegNo = getQualifiedName(SR->getDef()); 494 else 495 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); 496 } 497 498 // Inspect the pattern. 499 TreePatternNode *InstPatNode = Pattern.getSrcPattern(); 500 if (!InstPatNode) continue; 501 if (InstPatNode->isLeaf()) continue; 502 503 // Ignore multiple result nodes for now. 504 if (InstPatNode->getNumTypes() > 1) continue; 505 506 Record *InstPatOp = InstPatNode->getOperator(); 507 std::string OpcodeName = getOpcodeName(InstPatOp, CGP); 508 MVT::SimpleValueType RetVT = MVT::isVoid; 509 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0); 510 MVT::SimpleValueType VT = RetVT; 511 if (InstPatNode->getNumChildren()) { 512 assert(InstPatNode->getChild(0)->getNumTypes() == 1); 513 VT = InstPatNode->getChild(0)->getType(0); 514 } 515 516 // For now, filter out any instructions with predicates. 517 if (!InstPatNode->getPredicateFns().empty()) 518 continue; 519 520 // Check all the operands. 521 OperandsSignature Operands; 522 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, 523 DstRC)) 524 continue; 525 526 std::vector<std::string>* PhysRegInputs = new std::vector<std::string>(); 527 if (InstPatNode->getOperator()->getName() == "imm" || 528 InstPatNode->getOperator()->getName() == "fpimm") 529 PhysRegInputs->push_back(""); 530 else { 531 // Compute the PhysRegs used by the given pattern, and check that 532 // the mapping from the src to dst patterns is simple. 533 bool FoundNonSimplePattern = false; 534 unsigned DstIndex = 0; 535 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 536 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); 537 if (PhysReg.empty()) { 538 if (DstIndex >= Dst->getNumChildren() || 539 Dst->getChild(DstIndex)->getName() != 540 InstPatNode->getChild(i)->getName()) { 541 FoundNonSimplePattern = true; 542 break; 543 } 544 ++DstIndex; 545 } 546 547 PhysRegInputs->push_back(PhysReg); 548 } 549 550 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) 551 FoundNonSimplePattern = true; 552 553 if (FoundNonSimplePattern) 554 continue; 555 } 556 557 // Check if the operands match one of the patterns handled by FastISel. 558 std::string ManglingSuffix; 559 raw_string_ostream SuffixOS(ManglingSuffix); 560 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true); 561 SuffixOS.flush(); 562 if (!StringSwitch<bool>(ManglingSuffix) 563 .Cases("", "r", "rr", "ri", "i", "f", true) 564 .Default(false)) 565 continue; 566 567 // Get the predicate that guards this pattern. 568 std::string PredicateCheck = Pattern.getPredicateCheck(); 569 570 // Ok, we found a pattern that we can handle. Remember it. 571 InstructionMemo Memo = { 572 Pattern.getDstPattern()->getOperator()->getName(), 573 DstRC, 574 SubRegNo, 575 PhysRegInputs, 576 PredicateCheck 577 }; 578 579 int complexity = Pattern.getPatternComplexity(CGP); 580 581 if (SimplePatternsCheck[Operands][OpcodeName][VT] 582 [RetVT].count(PredicateCheck)) { 583 PrintFatalError(Pattern.getSrcRecord()->getLoc(), 584 "Duplicate predicate in FastISel table!"); 585 } 586 SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert( 587 std::make_pair(PredicateCheck, true)); 588 589 // Note: Instructions with the same complexity will appear in the order 590 // that they are encountered. 591 SimplePatterns[Operands][OpcodeName][VT][RetVT].insert( 592 std::make_pair(complexity, Memo)); 593 594 // If any of the operands were immediates with predicates on them, strip 595 // them down to a signature that doesn't have predicates so that we can 596 // associate them with the stripped predicate version. 597 if (Operands.hasAnyImmediateCodes()) { 598 SignaturesWithConstantForms[Operands.getWithoutImmCodes()] 599 .push_back(Operands); 600 } 601 } 602 } 603 604 void FastISelMap::printImmediatePredicates(raw_ostream &OS) { 605 if (ImmediatePredicates.begin() == ImmediatePredicates.end()) 606 return; 607 608 OS << "\n// FastEmit Immediate Predicate functions.\n"; 609 for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(), 610 E = ImmediatePredicates.end(); I != E; ++I) { 611 OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n"; 612 OS << I->getImmediatePredicateCode() << "\n}\n"; 613 } 614 615 OS << "\n\n"; 616 } 617 618 void FastISelMap::emitInstructionCode(raw_ostream &OS, 619 const OperandsSignature &Operands, 620 const PredMap &PM, 621 const std::string &RetVTName) { 622 // Emit code for each possible instruction. There may be 623 // multiple if there are subtarget concerns. A reverse iterator 624 // is used to produce the ones with highest complexity first. 625 626 bool OneHadNoPredicate = false; 627 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend(); 628 PI != PE; ++PI) { 629 const InstructionMemo &Memo = PI->second; 630 std::string PredicateCheck = Memo.PredicateCheck; 631 632 if (PredicateCheck.empty()) { 633 assert(!OneHadNoPredicate && 634 "Multiple instructions match and more than one had " 635 "no predicate!"); 636 OneHadNoPredicate = true; 637 } else { 638 if (OneHadNoPredicate) { 639 PrintFatalError("Multiple instructions match and one with no " 640 "predicate came before one with a predicate! " 641 "name:" + Memo.Name + " predicate: " + PredicateCheck); 642 } 643 OS << " if (" + PredicateCheck + ") {\n"; 644 OS << " "; 645 } 646 647 for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { 648 if ((*Memo.PhysRegs)[i] != "") 649 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, " 650 << "TII.get(TargetOpcode::COPY), " 651 << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n"; 652 } 653 654 OS << " return fastEmitInst_"; 655 if (Memo.SubRegNo.empty()) { 656 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs, 657 ImmediatePredicates, true); 658 OS << "(" << InstNS << "::" << Memo.Name << ", "; 659 OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass"; 660 if (!Operands.empty()) 661 OS << ", "; 662 Operands.PrintArguments(OS, *Memo.PhysRegs); 663 OS << ");\n"; 664 } else { 665 OS << "extractsubreg(" << RetVTName 666 << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n"; 667 } 668 669 if (!PredicateCheck.empty()) { 670 OS << " }\n"; 671 } 672 } 673 // Return 0 if all of the possibilities had predicates but none 674 // were satisfied. 675 if (!OneHadNoPredicate) 676 OS << " return 0;\n"; 677 OS << "}\n"; 678 OS << "\n"; 679 } 680 681 682 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { 683 // Now emit code for all the patterns that we collected. 684 for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), 685 OE = SimplePatterns.end(); OI != OE; ++OI) { 686 const OperandsSignature &Operands = OI->first; 687 const OpcodeTypeRetPredMap &OTM = OI->second; 688 689 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 690 I != E; ++I) { 691 const std::string &Opcode = I->first; 692 const TypeRetPredMap &TM = I->second; 693 694 OS << "// FastEmit functions for " << Opcode << ".\n"; 695 OS << "\n"; 696 697 // Emit one function for each opcode,type pair. 698 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 699 TI != TE; ++TI) { 700 MVT::SimpleValueType VT = TI->first; 701 const RetPredMap &RM = TI->second; 702 if (RM.size() != 1) { 703 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 704 RI != RE; ++RI) { 705 MVT::SimpleValueType RetVT = RI->first; 706 const PredMap &PM = RI->second; 707 708 OS << "unsigned fastEmit_" 709 << getLegalCName(Opcode) 710 << "_" << getLegalCName(getName(VT)) 711 << "_" << getLegalCName(getName(RetVT)) << "_"; 712 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 713 OS << "("; 714 Operands.PrintParameters(OS); 715 OS << ") {\n"; 716 717 emitInstructionCode(OS, Operands, PM, getName(RetVT)); 718 } 719 720 // Emit one function for the type that demultiplexes on return type. 721 OS << "unsigned fastEmit_" 722 << getLegalCName(Opcode) << "_" 723 << getLegalCName(getName(VT)) << "_"; 724 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 725 OS << "(MVT RetVT"; 726 if (!Operands.empty()) 727 OS << ", "; 728 Operands.PrintParameters(OS); 729 OS << ") {\nswitch (RetVT.SimpleTy) {\n"; 730 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 731 RI != RE; ++RI) { 732 MVT::SimpleValueType RetVT = RI->first; 733 OS << " case " << getName(RetVT) << ": return fastEmit_" 734 << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) 735 << "_" << getLegalCName(getName(RetVT)) << "_"; 736 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 737 OS << "("; 738 Operands.PrintArguments(OS); 739 OS << ");\n"; 740 } 741 OS << " default: return 0;\n}\n}\n\n"; 742 743 } else { 744 // Non-variadic return type. 745 OS << "unsigned fastEmit_" 746 << getLegalCName(Opcode) << "_" 747 << getLegalCName(getName(VT)) << "_"; 748 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 749 OS << "(MVT RetVT"; 750 if (!Operands.empty()) 751 OS << ", "; 752 Operands.PrintParameters(OS); 753 OS << ") {\n"; 754 755 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) 756 << ")\n return 0;\n"; 757 758 const PredMap &PM = RM.begin()->second; 759 760 emitInstructionCode(OS, Operands, PM, "RetVT"); 761 } 762 } 763 764 // Emit one function for the opcode that demultiplexes based on the type. 765 OS << "unsigned fastEmit_" 766 << getLegalCName(Opcode) << "_"; 767 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 768 OS << "(MVT VT, MVT RetVT"; 769 if (!Operands.empty()) 770 OS << ", "; 771 Operands.PrintParameters(OS); 772 OS << ") {\n"; 773 OS << " switch (VT.SimpleTy) {\n"; 774 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 775 TI != TE; ++TI) { 776 MVT::SimpleValueType VT = TI->first; 777 std::string TypeName = getName(VT); 778 OS << " case " << TypeName << ": return fastEmit_" 779 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; 780 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 781 OS << "(RetVT"; 782 if (!Operands.empty()) 783 OS << ", "; 784 Operands.PrintArguments(OS); 785 OS << ");\n"; 786 } 787 OS << " default: return 0;\n"; 788 OS << " }\n"; 789 OS << "}\n"; 790 OS << "\n"; 791 } 792 793 OS << "// Top-level FastEmit function.\n"; 794 OS << "\n"; 795 796 // Emit one function for the operand signature that demultiplexes based 797 // on opcode and type. 798 OS << "unsigned fastEmit_"; 799 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 800 OS << "(MVT VT, MVT RetVT, unsigned Opcode"; 801 if (!Operands.empty()) 802 OS << ", "; 803 Operands.PrintParameters(OS); 804 OS << ") "; 805 if (!Operands.hasAnyImmediateCodes()) 806 OS << "override "; 807 OS << "{\n"; 808 809 // If there are any forms of this signature available that operate on 810 // constrained forms of the immediate (e.g., 32-bit sext immediate in a 811 // 64-bit operand), check them first. 812 813 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI 814 = SignaturesWithConstantForms.find(Operands); 815 if (MI != SignaturesWithConstantForms.end()) { 816 // Unique any duplicates out of the list. 817 std::sort(MI->second.begin(), MI->second.end()); 818 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), 819 MI->second.end()); 820 821 // Check each in order it was seen. It would be nice to have a good 822 // relative ordering between them, but we're not going for optimality 823 // here. 824 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { 825 OS << " if ("; 826 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); 827 OS << ")\n if (unsigned Reg = fastEmit_"; 828 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); 829 OS << "(VT, RetVT, Opcode"; 830 if (!MI->second[i].empty()) 831 OS << ", "; 832 MI->second[i].PrintArguments(OS); 833 OS << "))\n return Reg;\n\n"; 834 } 835 836 // Done with this, remove it. 837 SignaturesWithConstantForms.erase(MI); 838 } 839 840 OS << " switch (Opcode) {\n"; 841 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 842 I != E; ++I) { 843 const std::string &Opcode = I->first; 844 845 OS << " case " << Opcode << ": return fastEmit_" 846 << getLegalCName(Opcode) << "_"; 847 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 848 OS << "(VT, RetVT"; 849 if (!Operands.empty()) 850 OS << ", "; 851 Operands.PrintArguments(OS); 852 OS << ");\n"; 853 } 854 OS << " default: return 0;\n"; 855 OS << " }\n"; 856 OS << "}\n"; 857 OS << "\n"; 858 } 859 860 // TODO: SignaturesWithConstantForms should be empty here. 861 } 862 863 namespace llvm { 864 865 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { 866 CodeGenDAGPatterns CGP(RK); 867 const CodeGenTarget &Target = CGP.getTargetInfo(); 868 emitSourceFileHeader("\"Fast\" Instruction Selector for the " + 869 Target.getName().str() + " target", OS); 870 871 // Determine the target's namespace name. 872 StringRef InstNS = Target.getInstNamespace(); 873 assert(!InstNS.empty() && "Can't determine target-specific namespace!"); 874 875 FastISelMap F(InstNS); 876 F.collectPatterns(CGP); 877 F.printImmediatePredicates(OS); 878 F.printFunctionDefinitions(OS); 879 } 880 881 } // End llvm namespace 882