1 //===- FastISelEmitter.cpp - Generate an instruction selector -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits code for use by the "fast" instruction 11 // selection algorithm. See the comments at the top of 12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background. 13 // 14 // This file scans through the target's tablegen instruction-info files 15 // and extracts instructions with obvious-looking patterns, and it emits 16 // code to look up these instructions by type and operator. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "FastISelEmitter.h" 21 #include "Record.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/VectorExtras.h" 25 using namespace llvm; 26 27 namespace { 28 29 /// InstructionMemo - This class holds additional information about an 30 /// instruction needed to emit code for it. 31 /// 32 struct InstructionMemo { 33 std::string Name; 34 const CodeGenRegisterClass *RC; 35 std::string SubRegNo; 36 std::vector<std::string>* PhysRegs; 37 }; 38 39 /// OperandsSignature - This class holds a description of a list of operand 40 /// types. It has utility methods for emitting text based on the operands. 41 /// 42 struct OperandsSignature { 43 std::vector<std::string> Operands; 44 45 bool operator<(const OperandsSignature &O) const { 46 return Operands < O.Operands; 47 } 48 49 bool empty() const { return Operands.empty(); } 50 51 /// initialize - Examine the given pattern and initialize the contents 52 /// of the Operands array accordingly. Return true if all the operands 53 /// are supported, false otherwise. 54 /// 55 bool initialize(TreePatternNode *InstPatNode, 56 const CodeGenTarget &Target, 57 MVT::SimpleValueType VT) { 58 59 if (!InstPatNode->isLeaf()) { 60 if (InstPatNode->getOperator()->getName() == "imm") { 61 Operands.push_back("i"); 62 return true; 63 } 64 if (InstPatNode->getOperator()->getName() == "fpimm") { 65 Operands.push_back("f"); 66 return true; 67 } 68 } 69 70 const CodeGenRegisterClass *DstRC = 0; 71 72 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 73 TreePatternNode *Op = InstPatNode->getChild(i); 74 75 // For now, filter out any operand with a predicate. 76 // For now, filter out any operand with multiple values. 77 if (!Op->getPredicateFns().empty() || 78 Op->getNumTypes() != 1) 79 return false; 80 81 assert(Op->hasTypeSet(0) && "Type infererence not done?"); 82 // For now, all the operands must have the same type. 83 if (Op->getType(0) != VT) 84 return false; 85 86 if (!Op->isLeaf()) { 87 if (Op->getOperator()->getName() == "imm") { 88 Operands.push_back("i"); 89 continue; 90 } 91 if (Op->getOperator()->getName() == "fpimm") { 92 Operands.push_back("f"); 93 continue; 94 } 95 // For now, ignore other non-leaf nodes. 96 return false; 97 } 98 DefInit *OpDI = dynamic_cast<DefInit*>(Op->getLeafValue()); 99 if (!OpDI) 100 return false; 101 Record *OpLeafRec = OpDI->getDef(); 102 // For now, the only other thing we accept is register operands. 103 104 const CodeGenRegisterClass *RC = 0; 105 if (OpLeafRec->isSubClassOf("RegisterClass")) 106 RC = &Target.getRegisterClass(OpLeafRec); 107 else if (OpLeafRec->isSubClassOf("Register")) 108 RC = Target.getRegisterClassForRegister(OpLeafRec); 109 else 110 return false; 111 112 // For now, this needs to be a register class of some sort. 113 if (!RC) 114 return false; 115 116 // For now, all the operands must have the same register class or be 117 // a strict subclass of the destination. 118 if (DstRC) { 119 if (DstRC != RC && !DstRC->hasSubClass(RC)) 120 return false; 121 } else 122 DstRC = RC; 123 Operands.push_back("r"); 124 } 125 return true; 126 } 127 128 void PrintParameters(raw_ostream &OS) const { 129 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 130 if (Operands[i] == "r") { 131 OS << "unsigned Op" << i << ", bool Op" << i << "IsKill"; 132 } else if (Operands[i] == "i") { 133 OS << "uint64_t imm" << i; 134 } else if (Operands[i] == "f") { 135 OS << "ConstantFP *f" << i; 136 } else { 137 assert("Unknown operand kind!"); 138 abort(); 139 } 140 if (i + 1 != e) 141 OS << ", "; 142 } 143 } 144 145 void PrintArguments(raw_ostream &OS, 146 const std::vector<std::string>& PR) const { 147 assert(PR.size() == Operands.size()); 148 bool PrintedArg = false; 149 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 150 if (PR[i] != "") 151 // Implicit physical register operand. 152 continue; 153 154 if (PrintedArg) 155 OS << ", "; 156 if (Operands[i] == "r") { 157 OS << "Op" << i << ", Op" << i << "IsKill"; 158 PrintedArg = true; 159 } else if (Operands[i] == "i") { 160 OS << "imm" << i; 161 PrintedArg = true; 162 } else if (Operands[i] == "f") { 163 OS << "f" << i; 164 PrintedArg = true; 165 } else { 166 assert("Unknown operand kind!"); 167 abort(); 168 } 169 } 170 } 171 172 void PrintArguments(raw_ostream &OS) const { 173 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 174 if (Operands[i] == "r") { 175 OS << "Op" << i << ", Op" << i << "IsKill"; 176 } else if (Operands[i] == "i") { 177 OS << "imm" << i; 178 } else if (Operands[i] == "f") { 179 OS << "f" << i; 180 } else { 181 assert("Unknown operand kind!"); 182 abort(); 183 } 184 if (i + 1 != e) 185 OS << ", "; 186 } 187 } 188 189 190 void PrintManglingSuffix(raw_ostream &OS, 191 const std::vector<std::string>& PR) const { 192 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 193 if (PR[i] != "") 194 // Implicit physical register operand. e.g. Instruction::Mul expect to 195 // select to a binary op. On x86, mul may take a single operand with 196 // the other operand being implicit. We must emit something that looks 197 // like a binary instruction except for the very inner FastEmitInst_* 198 // call. 199 continue; 200 OS << Operands[i]; 201 } 202 } 203 204 void PrintManglingSuffix(raw_ostream &OS) const { 205 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 206 OS << Operands[i]; 207 } 208 } 209 }; 210 211 class FastISelMap { 212 typedef std::map<std::string, InstructionMemo> PredMap; 213 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; 214 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; 215 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; 216 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> 217 OperandsOpcodeTypeRetPredMap; 218 219 OperandsOpcodeTypeRetPredMap SimplePatterns; 220 221 std::string InstNS; 222 223 public: 224 explicit FastISelMap(std::string InstNS); 225 226 void CollectPatterns(CodeGenDAGPatterns &CGP); 227 void PrintFunctionDefinitions(raw_ostream &OS); 228 }; 229 230 } 231 232 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { 233 return CGP.getSDNodeInfo(Op).getEnumName(); 234 } 235 236 static std::string getLegalCName(std::string OpName) { 237 std::string::size_type pos = OpName.find("::"); 238 if (pos != std::string::npos) 239 OpName.replace(pos, 2, "_"); 240 return OpName; 241 } 242 243 FastISelMap::FastISelMap(std::string instns) 244 : InstNS(instns) { 245 } 246 247 void FastISelMap::CollectPatterns(CodeGenDAGPatterns &CGP) { 248 const CodeGenTarget &Target = CGP.getTargetInfo(); 249 250 // Determine the target's namespace name. 251 InstNS = Target.getInstNamespace() + "::"; 252 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); 253 254 // Scan through all the patterns and record the simple ones. 255 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), 256 E = CGP.ptm_end(); I != E; ++I) { 257 const PatternToMatch &Pattern = *I; 258 259 // For now, just look at Instructions, so that we don't have to worry 260 // about emitting multiple instructions for a pattern. 261 TreePatternNode *Dst = Pattern.getDstPattern(); 262 if (Dst->isLeaf()) continue; 263 Record *Op = Dst->getOperator(); 264 if (!Op->isSubClassOf("Instruction")) 265 continue; 266 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); 267 if (II.Operands.size() == 0) 268 continue; 269 270 // For now, ignore multi-instruction patterns. 271 bool MultiInsts = false; 272 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { 273 TreePatternNode *ChildOp = Dst->getChild(i); 274 if (ChildOp->isLeaf()) 275 continue; 276 if (ChildOp->getOperator()->isSubClassOf("Instruction")) { 277 MultiInsts = true; 278 break; 279 } 280 } 281 if (MultiInsts) 282 continue; 283 284 // For now, ignore instructions where the first operand is not an 285 // output register. 286 const CodeGenRegisterClass *DstRC = 0; 287 std::string SubRegNo; 288 if (Op->getName() != "EXTRACT_SUBREG") { 289 Record *Op0Rec = II.Operands[0].Rec; 290 if (!Op0Rec->isSubClassOf("RegisterClass")) 291 continue; 292 DstRC = &Target.getRegisterClass(Op0Rec); 293 if (!DstRC) 294 continue; 295 } else { 296 // If this isn't a leaf, then continue since the register classes are 297 // a bit too complicated for now. 298 if (!Dst->getChild(1)->isLeaf()) continue; 299 300 DefInit *SR = dynamic_cast<DefInit*>(Dst->getChild(1)->getLeafValue()); 301 if (SR) 302 SubRegNo = getQualifiedName(SR->getDef()); 303 else 304 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); 305 } 306 307 // Inspect the pattern. 308 TreePatternNode *InstPatNode = Pattern.getSrcPattern(); 309 if (!InstPatNode) continue; 310 if (InstPatNode->isLeaf()) continue; 311 312 // Ignore multiple result nodes for now. 313 if (InstPatNode->getNumTypes() > 1) continue; 314 315 Record *InstPatOp = InstPatNode->getOperator(); 316 std::string OpcodeName = getOpcodeName(InstPatOp, CGP); 317 MVT::SimpleValueType RetVT = MVT::isVoid; 318 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0); 319 MVT::SimpleValueType VT = RetVT; 320 if (InstPatNode->getNumChildren()) { 321 assert(InstPatNode->getChild(0)->getNumTypes() == 1); 322 VT = InstPatNode->getChild(0)->getType(0); 323 } 324 325 // For now, filter out instructions which just set a register to 326 // an Operand or an immediate, like MOV32ri. 327 if (InstPatOp->isSubClassOf("Operand")) 328 continue; 329 330 // For now, filter out any instructions with predicates. 331 if (!InstPatNode->getPredicateFns().empty()) 332 continue; 333 334 // Check all the operands. 335 OperandsSignature Operands; 336 if (!Operands.initialize(InstPatNode, Target, VT)) 337 continue; 338 339 std::vector<std::string>* PhysRegInputs = new std::vector<std::string>(); 340 if (!InstPatNode->isLeaf() && 341 (InstPatNode->getOperator()->getName() == "imm" || 342 InstPatNode->getOperator()->getName() == "fpimmm")) 343 PhysRegInputs->push_back(""); 344 else if (!InstPatNode->isLeaf()) { 345 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 346 TreePatternNode *Op = InstPatNode->getChild(i); 347 if (!Op->isLeaf()) { 348 PhysRegInputs->push_back(""); 349 continue; 350 } 351 352 DefInit *OpDI = dynamic_cast<DefInit*>(Op->getLeafValue()); 353 Record *OpLeafRec = OpDI->getDef(); 354 std::string PhysReg; 355 if (OpLeafRec->isSubClassOf("Register")) { 356 PhysReg += static_cast<StringInit*>(OpLeafRec->getValue( \ 357 "Namespace")->getValue())->getValue(); 358 PhysReg += "::"; 359 360 std::vector<CodeGenRegister> Regs = Target.getRegisters(); 361 for (unsigned i = 0; i < Regs.size(); ++i) { 362 if (Regs[i].TheDef == OpLeafRec) { 363 PhysReg += Regs[i].getName(); 364 break; 365 } 366 } 367 } 368 369 PhysRegInputs->push_back(PhysReg); 370 } 371 } else 372 PhysRegInputs->push_back(""); 373 374 // Get the predicate that guards this pattern. 375 std::string PredicateCheck = Pattern.getPredicateCheck(); 376 377 // Ok, we found a pattern that we can handle. Remember it. 378 InstructionMemo Memo = { 379 Pattern.getDstPattern()->getOperator()->getName(), 380 DstRC, 381 SubRegNo, 382 PhysRegInputs 383 }; 384 if (SimplePatterns[Operands][OpcodeName][VT][RetVT] 385 .count(PredicateCheck)) 386 throw TGError(Pattern.getSrcRecord()->getLoc(), "Duplicate record!"); 387 388 SimplePatterns[Operands][OpcodeName][VT][RetVT][PredicateCheck] = Memo; 389 } 390 } 391 392 void FastISelMap::PrintFunctionDefinitions(raw_ostream &OS) { 393 // Now emit code for all the patterns that we collected. 394 for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), 395 OE = SimplePatterns.end(); OI != OE; ++OI) { 396 const OperandsSignature &Operands = OI->first; 397 const OpcodeTypeRetPredMap &OTM = OI->second; 398 399 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 400 I != E; ++I) { 401 const std::string &Opcode = I->first; 402 const TypeRetPredMap &TM = I->second; 403 404 OS << "// FastEmit functions for " << Opcode << ".\n"; 405 OS << "\n"; 406 407 // Emit one function for each opcode,type pair. 408 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 409 TI != TE; ++TI) { 410 MVT::SimpleValueType VT = TI->first; 411 const RetPredMap &RM = TI->second; 412 if (RM.size() != 1) { 413 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 414 RI != RE; ++RI) { 415 MVT::SimpleValueType RetVT = RI->first; 416 const PredMap &PM = RI->second; 417 bool HasPred = false; 418 419 OS << "unsigned FastEmit_" 420 << getLegalCName(Opcode) 421 << "_" << getLegalCName(getName(VT)) 422 << "_" << getLegalCName(getName(RetVT)) << "_"; 423 Operands.PrintManglingSuffix(OS); 424 OS << "("; 425 Operands.PrintParameters(OS); 426 OS << ") {\n"; 427 428 // Emit code for each possible instruction. There may be 429 // multiple if there are subtarget concerns. 430 for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); 431 PI != PE; ++PI) { 432 std::string PredicateCheck = PI->first; 433 const InstructionMemo &Memo = PI->second; 434 435 if (PredicateCheck.empty()) { 436 assert(!HasPred && 437 "Multiple instructions match, at least one has " 438 "a predicate and at least one doesn't!"); 439 } else { 440 OS << " if (" + PredicateCheck + ") {\n"; 441 OS << " "; 442 HasPred = true; 443 } 444 445 for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { 446 if ((*Memo.PhysRegs)[i] != "") 447 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, " 448 << "TII.get(TargetOpcode::COPY), " 449 << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n"; 450 } 451 452 OS << " return FastEmitInst_"; 453 if (Memo.SubRegNo.empty()) { 454 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs); 455 OS << "(" << InstNS << Memo.Name << ", "; 456 OS << InstNS << Memo.RC->getName() << "RegisterClass"; 457 if (!Operands.empty()) 458 OS << ", "; 459 Operands.PrintArguments(OS, *Memo.PhysRegs); 460 OS << ");\n"; 461 } else { 462 OS << "extractsubreg(" << getName(RetVT); 463 OS << ", Op0, Op0IsKill, "; 464 OS << Memo.SubRegNo; 465 OS << ");\n"; 466 } 467 468 if (HasPred) 469 OS << " }\n"; 470 471 } 472 // Return 0 if none of the predicates were satisfied. 473 if (HasPred) 474 OS << " return 0;\n"; 475 OS << "}\n"; 476 OS << "\n"; 477 } 478 479 // Emit one function for the type that demultiplexes on return type. 480 OS << "unsigned FastEmit_" 481 << getLegalCName(Opcode) << "_" 482 << getLegalCName(getName(VT)) << "_"; 483 Operands.PrintManglingSuffix(OS); 484 OS << "(MVT RetVT"; 485 if (!Operands.empty()) 486 OS << ", "; 487 Operands.PrintParameters(OS); 488 OS << ") {\nswitch (RetVT.SimpleTy) {\n"; 489 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 490 RI != RE; ++RI) { 491 MVT::SimpleValueType RetVT = RI->first; 492 OS << " case " << getName(RetVT) << ": return FastEmit_" 493 << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) 494 << "_" << getLegalCName(getName(RetVT)) << "_"; 495 Operands.PrintManglingSuffix(OS); 496 OS << "("; 497 Operands.PrintArguments(OS); 498 OS << ");\n"; 499 } 500 OS << " default: return 0;\n}\n}\n\n"; 501 502 } else { 503 // Non-variadic return type. 504 OS << "unsigned FastEmit_" 505 << getLegalCName(Opcode) << "_" 506 << getLegalCName(getName(VT)) << "_"; 507 Operands.PrintManglingSuffix(OS); 508 OS << "(MVT RetVT"; 509 if (!Operands.empty()) 510 OS << ", "; 511 Operands.PrintParameters(OS); 512 OS << ") {\n"; 513 514 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) 515 << ")\n return 0;\n"; 516 517 const PredMap &PM = RM.begin()->second; 518 bool HasPred = false; 519 520 // Emit code for each possible instruction. There may be 521 // multiple if there are subtarget concerns. 522 for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); PI != PE; 523 ++PI) { 524 std::string PredicateCheck = PI->first; 525 const InstructionMemo &Memo = PI->second; 526 527 if (PredicateCheck.empty()) { 528 assert(!HasPred && 529 "Multiple instructions match, at least one has " 530 "a predicate and at least one doesn't!"); 531 } else { 532 OS << " if (" + PredicateCheck + ") {\n"; 533 OS << " "; 534 HasPred = true; 535 } 536 537 for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { 538 if ((*Memo.PhysRegs)[i] != "") 539 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, " 540 << "TII.get(TargetOpcode::COPY), " 541 << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n"; 542 } 543 544 OS << " return FastEmitInst_"; 545 546 if (Memo.SubRegNo.empty()) { 547 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs); 548 OS << "(" << InstNS << Memo.Name << ", "; 549 OS << InstNS << Memo.RC->getName() << "RegisterClass"; 550 if (!Operands.empty()) 551 OS << ", "; 552 Operands.PrintArguments(OS, *Memo.PhysRegs); 553 OS << ");\n"; 554 } else { 555 OS << "extractsubreg(RetVT, Op0, Op0IsKill, "; 556 OS << Memo.SubRegNo; 557 OS << ");\n"; 558 } 559 560 if (HasPred) 561 OS << " }\n"; 562 } 563 564 // Return 0 if none of the predicates were satisfied. 565 if (HasPred) 566 OS << " return 0;\n"; 567 OS << "}\n"; 568 OS << "\n"; 569 } 570 } 571 572 // Emit one function for the opcode that demultiplexes based on the type. 573 OS << "unsigned FastEmit_" 574 << getLegalCName(Opcode) << "_"; 575 Operands.PrintManglingSuffix(OS); 576 OS << "(MVT VT, MVT RetVT"; 577 if (!Operands.empty()) 578 OS << ", "; 579 Operands.PrintParameters(OS); 580 OS << ") {\n"; 581 OS << " switch (VT.SimpleTy) {\n"; 582 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 583 TI != TE; ++TI) { 584 MVT::SimpleValueType VT = TI->first; 585 std::string TypeName = getName(VT); 586 OS << " case " << TypeName << ": return FastEmit_" 587 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; 588 Operands.PrintManglingSuffix(OS); 589 OS << "(RetVT"; 590 if (!Operands.empty()) 591 OS << ", "; 592 Operands.PrintArguments(OS); 593 OS << ");\n"; 594 } 595 OS << " default: return 0;\n"; 596 OS << " }\n"; 597 OS << "}\n"; 598 OS << "\n"; 599 } 600 601 OS << "// Top-level FastEmit function.\n"; 602 OS << "\n"; 603 604 // Emit one function for the operand signature that demultiplexes based 605 // on opcode and type. 606 OS << "unsigned FastEmit_"; 607 Operands.PrintManglingSuffix(OS); 608 OS << "(MVT VT, MVT RetVT, unsigned Opcode"; 609 if (!Operands.empty()) 610 OS << ", "; 611 Operands.PrintParameters(OS); 612 OS << ") {\n"; 613 OS << " switch (Opcode) {\n"; 614 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 615 I != E; ++I) { 616 const std::string &Opcode = I->first; 617 618 OS << " case " << Opcode << ": return FastEmit_" 619 << getLegalCName(Opcode) << "_"; 620 Operands.PrintManglingSuffix(OS); 621 OS << "(VT, RetVT"; 622 if (!Operands.empty()) 623 OS << ", "; 624 Operands.PrintArguments(OS); 625 OS << ");\n"; 626 } 627 OS << " default: return 0;\n"; 628 OS << " }\n"; 629 OS << "}\n"; 630 OS << "\n"; 631 } 632 } 633 634 void FastISelEmitter::run(raw_ostream &OS) { 635 const CodeGenTarget &Target = CGP.getTargetInfo(); 636 637 // Determine the target's namespace name. 638 std::string InstNS = Target.getInstNamespace() + "::"; 639 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); 640 641 EmitSourceFileHeader("\"Fast\" Instruction Selector for the " + 642 Target.getName() + " target", OS); 643 644 FastISelMap F(InstNS); 645 F.CollectPatterns(CGP); 646 F.PrintFunctionDefinitions(OS); 647 } 648 649 FastISelEmitter::FastISelEmitter(RecordKeeper &R) 650 : Records(R), 651 CGP(R) { 652 } 653 654