1 //===- FastISelEmitter.cpp - Generate an instruction selector -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits code for use by the "fast" instruction 11 // selection algorithm. See the comments at the top of 12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background. 13 // 14 // This file scans through the target's tablegen instruction-info files 15 // and extracts instructions with obvious-looking patterns, and it emits 16 // code to look up these instructions by type and operator. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "CodeGenDAGPatterns.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <utility> 28 using namespace llvm; 29 30 31 /// InstructionMemo - This class holds additional information about an 32 /// instruction needed to emit code for it. 33 /// 34 namespace { 35 struct InstructionMemo { 36 std::string Name; 37 const CodeGenRegisterClass *RC; 38 std::string SubRegNo; 39 std::vector<std::string>* PhysRegs; 40 std::string PredicateCheck; 41 }; 42 } // End anonymous namespace 43 44 /// ImmPredicateSet - This uniques predicates (represented as a string) and 45 /// gives them unique (small) integer ID's that start at 0. 46 namespace { 47 class ImmPredicateSet { 48 DenseMap<TreePattern *, unsigned> ImmIDs; 49 std::vector<TreePredicateFn> PredsByName; 50 public: 51 52 unsigned getIDFor(TreePredicateFn Pred) { 53 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; 54 if (Entry == 0) { 55 PredsByName.push_back(Pred); 56 Entry = PredsByName.size(); 57 } 58 return Entry-1; 59 } 60 61 const TreePredicateFn &getPredicate(unsigned i) { 62 assert(i < PredsByName.size()); 63 return PredsByName[i]; 64 } 65 66 typedef std::vector<TreePredicateFn>::const_iterator iterator; 67 iterator begin() const { return PredsByName.begin(); } 68 iterator end() const { return PredsByName.end(); } 69 70 }; 71 } // End anonymous namespace 72 73 /// OperandsSignature - This class holds a description of a list of operand 74 /// types. It has utility methods for emitting text based on the operands. 75 /// 76 namespace { 77 struct OperandsSignature { 78 class OpKind { 79 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; 80 char Repr; 81 public: 82 83 OpKind() : Repr(OK_Invalid) {} 84 85 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } 86 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } 87 88 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } 89 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; } 90 static OpKind getImm(unsigned V) { 91 assert((unsigned)OK_Imm+V < 128 && 92 "Too many integer predicates for the 'Repr' char"); 93 OpKind K; K.Repr = OK_Imm+V; return K; 94 } 95 96 bool isReg() const { return Repr == OK_Reg; } 97 bool isFP() const { return Repr == OK_FP; } 98 bool isImm() const { return Repr >= OK_Imm; } 99 100 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } 101 102 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 103 bool StripImmCodes) const { 104 if (isReg()) 105 OS << 'r'; 106 else if (isFP()) 107 OS << 'f'; 108 else { 109 OS << 'i'; 110 if (!StripImmCodes) 111 if (unsigned Code = getImmCode()) 112 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); 113 } 114 } 115 }; 116 117 118 SmallVector<OpKind, 3> Operands; 119 120 bool operator<(const OperandsSignature &O) const { 121 return Operands < O.Operands; 122 } 123 bool operator==(const OperandsSignature &O) const { 124 return Operands == O.Operands; 125 } 126 127 bool empty() const { return Operands.empty(); } 128 129 bool hasAnyImmediateCodes() const { 130 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 131 if (Operands[i].isImm() && Operands[i].getImmCode() != 0) 132 return true; 133 return false; 134 } 135 136 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced 137 /// to zero. 138 OperandsSignature getWithoutImmCodes() const { 139 OperandsSignature Result; 140 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 141 if (!Operands[i].isImm()) 142 Result.Operands.push_back(Operands[i]); 143 else 144 Result.Operands.push_back(OpKind::getImm(0)); 145 return Result; 146 } 147 148 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { 149 bool EmittedAnything = false; 150 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 151 if (!Operands[i].isImm()) continue; 152 153 unsigned Code = Operands[i].getImmCode(); 154 if (Code == 0) continue; 155 156 if (EmittedAnything) 157 OS << " &&\n "; 158 159 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); 160 161 // Emit the type check. 162 OS << "VT == " 163 << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0)) 164 << " && "; 165 166 167 OS << PredFn.getFnName() << "(imm" << i <<')'; 168 EmittedAnything = true; 169 } 170 } 171 172 /// initialize - Examine the given pattern and initialize the contents 173 /// of the Operands array accordingly. Return true if all the operands 174 /// are supported, false otherwise. 175 /// 176 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, 177 MVT::SimpleValueType VT, 178 ImmPredicateSet &ImmediatePredicates, 179 const CodeGenRegisterClass *OrigDstRC) { 180 if (InstPatNode->isLeaf()) 181 return false; 182 183 if (InstPatNode->getOperator()->getName() == "imm") { 184 Operands.push_back(OpKind::getImm(0)); 185 return true; 186 } 187 188 if (InstPatNode->getOperator()->getName() == "fpimm") { 189 Operands.push_back(OpKind::getFP()); 190 return true; 191 } 192 193 const CodeGenRegisterClass *DstRC = nullptr; 194 195 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 196 TreePatternNode *Op = InstPatNode->getChild(i); 197 198 // Handle imm operands specially. 199 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { 200 unsigned PredNo = 0; 201 if (!Op->getPredicateFns().empty()) { 202 TreePredicateFn PredFn = Op->getPredicateFns()[0]; 203 // If there is more than one predicate weighing in on this operand 204 // then we don't handle it. This doesn't typically happen for 205 // immediates anyway. 206 if (Op->getPredicateFns().size() > 1 || 207 !PredFn.isImmediatePattern()) 208 return false; 209 // Ignore any instruction with 'FastIselShouldIgnore', these are 210 // not needed and just bloat the fast instruction selector. For 211 // example, X86 doesn't need to generate code to match ADD16ri8 since 212 // ADD16ri will do just fine. 213 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); 214 if (Rec->getValueAsBit("FastIselShouldIgnore")) 215 return false; 216 217 PredNo = ImmediatePredicates.getIDFor(PredFn)+1; 218 } 219 220 // Handle unmatched immediate sizes here. 221 //if (Op->getType(0) != VT) 222 // return false; 223 224 Operands.push_back(OpKind::getImm(PredNo)); 225 continue; 226 } 227 228 229 // For now, filter out any operand with a predicate. 230 // For now, filter out any operand with multiple values. 231 if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1) 232 return false; 233 234 if (!Op->isLeaf()) { 235 if (Op->getOperator()->getName() == "fpimm") { 236 Operands.push_back(OpKind::getFP()); 237 continue; 238 } 239 // For now, ignore other non-leaf nodes. 240 return false; 241 } 242 243 assert(Op->hasTypeSet(0) && "Type infererence not done?"); 244 245 // For now, all the operands must have the same type (if they aren't 246 // immediates). Note that this causes us to reject variable sized shifts 247 // on X86. 248 if (Op->getType(0) != VT) 249 return false; 250 251 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); 252 if (!OpDI) 253 return false; 254 Record *OpLeafRec = OpDI->getDef(); 255 256 // For now, the only other thing we accept is register operands. 257 const CodeGenRegisterClass *RC = nullptr; 258 if (OpLeafRec->isSubClassOf("RegisterOperand")) 259 OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); 260 if (OpLeafRec->isSubClassOf("RegisterClass")) 261 RC = &Target.getRegisterClass(OpLeafRec); 262 else if (OpLeafRec->isSubClassOf("Register")) 263 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); 264 else if (OpLeafRec->isSubClassOf("ValueType")) { 265 RC = OrigDstRC; 266 } else 267 return false; 268 269 // For now, this needs to be a register class of some sort. 270 if (!RC) 271 return false; 272 273 // For now, all the operands must have the same register class or be 274 // a strict subclass of the destination. 275 if (DstRC) { 276 if (DstRC != RC && !DstRC->hasSubClass(RC)) 277 return false; 278 } else 279 DstRC = RC; 280 Operands.push_back(OpKind::getReg()); 281 } 282 return true; 283 } 284 285 void PrintParameters(raw_ostream &OS) const { 286 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 287 if (Operands[i].isReg()) { 288 OS << "unsigned Op" << i << ", bool Op" << i << "IsKill"; 289 } else if (Operands[i].isImm()) { 290 OS << "uint64_t imm" << i; 291 } else if (Operands[i].isFP()) { 292 OS << "const ConstantFP *f" << i; 293 } else { 294 llvm_unreachable("Unknown operand kind!"); 295 } 296 if (i + 1 != e) 297 OS << ", "; 298 } 299 } 300 301 void PrintArguments(raw_ostream &OS, 302 const std::vector<std::string> &PR) const { 303 assert(PR.size() == Operands.size()); 304 bool PrintedArg = false; 305 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 306 if (PR[i] != "") 307 // Implicit physical register operand. 308 continue; 309 310 if (PrintedArg) 311 OS << ", "; 312 if (Operands[i].isReg()) { 313 OS << "Op" << i << ", Op" << i << "IsKill"; 314 PrintedArg = true; 315 } else if (Operands[i].isImm()) { 316 OS << "imm" << i; 317 PrintedArg = true; 318 } else if (Operands[i].isFP()) { 319 OS << "f" << i; 320 PrintedArg = true; 321 } else { 322 llvm_unreachable("Unknown operand kind!"); 323 } 324 } 325 } 326 327 void PrintArguments(raw_ostream &OS) const { 328 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 329 if (Operands[i].isReg()) { 330 OS << "Op" << i << ", Op" << i << "IsKill"; 331 } else if (Operands[i].isImm()) { 332 OS << "imm" << i; 333 } else if (Operands[i].isFP()) { 334 OS << "f" << i; 335 } else { 336 llvm_unreachable("Unknown operand kind!"); 337 } 338 if (i + 1 != e) 339 OS << ", "; 340 } 341 } 342 343 344 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, 345 ImmPredicateSet &ImmPredicates, 346 bool StripImmCodes = false) const { 347 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 348 if (PR[i] != "") 349 // Implicit physical register operand. e.g. Instruction::Mul expect to 350 // select to a binary op. On x86, mul may take a single operand with 351 // the other operand being implicit. We must emit something that looks 352 // like a binary instruction except for the very inner fastEmitInst_* 353 // call. 354 continue; 355 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 356 } 357 } 358 359 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 360 bool StripImmCodes = false) const { 361 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 362 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 363 } 364 }; 365 } // End anonymous namespace 366 367 namespace { 368 class FastISelMap { 369 // A multimap is needed instead of a "plain" map because the key is 370 // the instruction's complexity (an int) and they are not unique. 371 typedef std::multimap<int, InstructionMemo> PredMap; 372 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; 373 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; 374 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; 375 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> 376 OperandsOpcodeTypeRetPredMap; 377 378 OperandsOpcodeTypeRetPredMap SimplePatterns; 379 380 // This is used to check that there are no duplicate predicates 381 typedef std::multimap<std::string, bool> PredCheckMap; 382 typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap; 383 typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap; 384 typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap; 385 typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap> 386 OperandsOpcodeTypeRetPredCheckMap; 387 388 OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck; 389 390 std::map<OperandsSignature, std::vector<OperandsSignature> > 391 SignaturesWithConstantForms; 392 393 std::string InstNS; 394 ImmPredicateSet ImmediatePredicates; 395 public: 396 explicit FastISelMap(std::string InstNS); 397 398 void collectPatterns(CodeGenDAGPatterns &CGP); 399 void printImmediatePredicates(raw_ostream &OS); 400 void printFunctionDefinitions(raw_ostream &OS); 401 private: 402 void emitInstructionCode(raw_ostream &OS, 403 const OperandsSignature &Operands, 404 const PredMap &PM, 405 const std::string &RetVTName); 406 }; 407 } // End anonymous namespace 408 409 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { 410 return CGP.getSDNodeInfo(Op).getEnumName(); 411 } 412 413 static std::string getLegalCName(std::string OpName) { 414 std::string::size_type pos = OpName.find("::"); 415 if (pos != std::string::npos) 416 OpName.replace(pos, 2, "_"); 417 return OpName; 418 } 419 420 FastISelMap::FastISelMap(std::string instns) : InstNS(std::move(instns)) {} 421 422 static std::string PhyRegForNode(TreePatternNode *Op, 423 const CodeGenTarget &Target) { 424 std::string PhysReg; 425 426 if (!Op->isLeaf()) 427 return PhysReg; 428 429 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); 430 if (!OpLeafRec->isSubClassOf("Register")) 431 return PhysReg; 432 433 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) 434 ->getValue(); 435 PhysReg += "::"; 436 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); 437 return PhysReg; 438 } 439 440 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { 441 const CodeGenTarget &Target = CGP.getTargetInfo(); 442 443 // Determine the target's namespace name. 444 InstNS = Target.getInstNamespace() + "::"; 445 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); 446 447 // Scan through all the patterns and record the simple ones. 448 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), 449 E = CGP.ptm_end(); I != E; ++I) { 450 const PatternToMatch &Pattern = *I; 451 452 // For now, just look at Instructions, so that we don't have to worry 453 // about emitting multiple instructions for a pattern. 454 TreePatternNode *Dst = Pattern.getDstPattern(); 455 if (Dst->isLeaf()) continue; 456 Record *Op = Dst->getOperator(); 457 if (!Op->isSubClassOf("Instruction")) 458 continue; 459 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); 460 if (II.Operands.empty()) 461 continue; 462 463 // For now, ignore multi-instruction patterns. 464 bool MultiInsts = false; 465 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { 466 TreePatternNode *ChildOp = Dst->getChild(i); 467 if (ChildOp->isLeaf()) 468 continue; 469 if (ChildOp->getOperator()->isSubClassOf("Instruction")) { 470 MultiInsts = true; 471 break; 472 } 473 } 474 if (MultiInsts) 475 continue; 476 477 // For now, ignore instructions where the first operand is not an 478 // output register. 479 const CodeGenRegisterClass *DstRC = nullptr; 480 std::string SubRegNo; 481 if (Op->getName() != "EXTRACT_SUBREG") { 482 Record *Op0Rec = II.Operands[0].Rec; 483 if (Op0Rec->isSubClassOf("RegisterOperand")) 484 Op0Rec = Op0Rec->getValueAsDef("RegClass"); 485 if (!Op0Rec->isSubClassOf("RegisterClass")) 486 continue; 487 DstRC = &Target.getRegisterClass(Op0Rec); 488 if (!DstRC) 489 continue; 490 } else { 491 // If this isn't a leaf, then continue since the register classes are 492 // a bit too complicated for now. 493 if (!Dst->getChild(1)->isLeaf()) continue; 494 495 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 496 if (SR) 497 SubRegNo = getQualifiedName(SR->getDef()); 498 else 499 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); 500 } 501 502 // Inspect the pattern. 503 TreePatternNode *InstPatNode = Pattern.getSrcPattern(); 504 if (!InstPatNode) continue; 505 if (InstPatNode->isLeaf()) continue; 506 507 // Ignore multiple result nodes for now. 508 if (InstPatNode->getNumTypes() > 1) continue; 509 510 Record *InstPatOp = InstPatNode->getOperator(); 511 std::string OpcodeName = getOpcodeName(InstPatOp, CGP); 512 MVT::SimpleValueType RetVT = MVT::isVoid; 513 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0); 514 MVT::SimpleValueType VT = RetVT; 515 if (InstPatNode->getNumChildren()) { 516 assert(InstPatNode->getChild(0)->getNumTypes() == 1); 517 VT = InstPatNode->getChild(0)->getType(0); 518 } 519 520 // For now, filter out any instructions with predicates. 521 if (!InstPatNode->getPredicateFns().empty()) 522 continue; 523 524 // Check all the operands. 525 OperandsSignature Operands; 526 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, 527 DstRC)) 528 continue; 529 530 std::vector<std::string>* PhysRegInputs = new std::vector<std::string>(); 531 if (InstPatNode->getOperator()->getName() == "imm" || 532 InstPatNode->getOperator()->getName() == "fpimm") 533 PhysRegInputs->push_back(""); 534 else { 535 // Compute the PhysRegs used by the given pattern, and check that 536 // the mapping from the src to dst patterns is simple. 537 bool FoundNonSimplePattern = false; 538 unsigned DstIndex = 0; 539 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 540 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); 541 if (PhysReg.empty()) { 542 if (DstIndex >= Dst->getNumChildren() || 543 Dst->getChild(DstIndex)->getName() != 544 InstPatNode->getChild(i)->getName()) { 545 FoundNonSimplePattern = true; 546 break; 547 } 548 ++DstIndex; 549 } 550 551 PhysRegInputs->push_back(PhysReg); 552 } 553 554 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) 555 FoundNonSimplePattern = true; 556 557 if (FoundNonSimplePattern) 558 continue; 559 } 560 561 // Check if the operands match one of the patterns handled by FastISel. 562 std::string ManglingSuffix; 563 raw_string_ostream SuffixOS(ManglingSuffix); 564 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true); 565 SuffixOS.flush(); 566 if (!StringSwitch<bool>(ManglingSuffix) 567 .Cases("", "r", "rr", "ri", "i", "f", true) 568 .Default(false)) 569 continue; 570 571 // Get the predicate that guards this pattern. 572 std::string PredicateCheck = Pattern.getPredicateCheck(); 573 574 // Ok, we found a pattern that we can handle. Remember it. 575 InstructionMemo Memo = { 576 Pattern.getDstPattern()->getOperator()->getName(), 577 DstRC, 578 SubRegNo, 579 PhysRegInputs, 580 PredicateCheck 581 }; 582 583 int complexity = Pattern.getPatternComplexity(CGP); 584 585 if (SimplePatternsCheck[Operands][OpcodeName][VT] 586 [RetVT].count(PredicateCheck)) { 587 PrintFatalError(Pattern.getSrcRecord()->getLoc(), 588 "Duplicate predicate in FastISel table!"); 589 } 590 SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert( 591 std::make_pair(PredicateCheck, true)); 592 593 // Note: Instructions with the same complexity will appear in the order 594 // that they are encountered. 595 SimplePatterns[Operands][OpcodeName][VT][RetVT].insert( 596 std::make_pair(complexity, Memo)); 597 598 // If any of the operands were immediates with predicates on them, strip 599 // them down to a signature that doesn't have predicates so that we can 600 // associate them with the stripped predicate version. 601 if (Operands.hasAnyImmediateCodes()) { 602 SignaturesWithConstantForms[Operands.getWithoutImmCodes()] 603 .push_back(Operands); 604 } 605 } 606 } 607 608 void FastISelMap::printImmediatePredicates(raw_ostream &OS) { 609 if (ImmediatePredicates.begin() == ImmediatePredicates.end()) 610 return; 611 612 OS << "\n// FastEmit Immediate Predicate functions.\n"; 613 for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(), 614 E = ImmediatePredicates.end(); I != E; ++I) { 615 OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n"; 616 OS << I->getImmediatePredicateCode() << "\n}\n"; 617 } 618 619 OS << "\n\n"; 620 } 621 622 void FastISelMap::emitInstructionCode(raw_ostream &OS, 623 const OperandsSignature &Operands, 624 const PredMap &PM, 625 const std::string &RetVTName) { 626 // Emit code for each possible instruction. There may be 627 // multiple if there are subtarget concerns. A reverse iterator 628 // is used to produce the ones with highest complexity first. 629 630 bool OneHadNoPredicate = false; 631 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend(); 632 PI != PE; ++PI) { 633 const InstructionMemo &Memo = PI->second; 634 std::string PredicateCheck = Memo.PredicateCheck; 635 636 if (PredicateCheck.empty()) { 637 assert(!OneHadNoPredicate && 638 "Multiple instructions match and more than one had " 639 "no predicate!"); 640 OneHadNoPredicate = true; 641 } else { 642 if (OneHadNoPredicate) { 643 // FIXME: This should be a PrintError once the x86 target 644 // fixes PR21575. 645 PrintWarning("Multiple instructions match and one with no " 646 "predicate came before one with a predicate! " 647 "name:" + Memo.Name + " predicate: " + 648 PredicateCheck); 649 } 650 OS << " if (" + PredicateCheck + ") {\n"; 651 OS << " "; 652 } 653 654 for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { 655 if ((*Memo.PhysRegs)[i] != "") 656 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, " 657 << "TII.get(TargetOpcode::COPY), " 658 << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n"; 659 } 660 661 OS << " return fastEmitInst_"; 662 if (Memo.SubRegNo.empty()) { 663 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs, 664 ImmediatePredicates, true); 665 OS << "(" << InstNS << Memo.Name << ", "; 666 OS << "&" << InstNS << Memo.RC->getName() << "RegClass"; 667 if (!Operands.empty()) 668 OS << ", "; 669 Operands.PrintArguments(OS, *Memo.PhysRegs); 670 OS << ");\n"; 671 } else { 672 OS << "extractsubreg(" << RetVTName 673 << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n"; 674 } 675 676 if (!PredicateCheck.empty()) { 677 OS << " }\n"; 678 } 679 } 680 // Return 0 if all of the possibilities had predicates but none 681 // were satisfied. 682 if (!OneHadNoPredicate) 683 OS << " return 0;\n"; 684 OS << "}\n"; 685 OS << "\n"; 686 } 687 688 689 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { 690 // Now emit code for all the patterns that we collected. 691 for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), 692 OE = SimplePatterns.end(); OI != OE; ++OI) { 693 const OperandsSignature &Operands = OI->first; 694 const OpcodeTypeRetPredMap &OTM = OI->second; 695 696 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 697 I != E; ++I) { 698 const std::string &Opcode = I->first; 699 const TypeRetPredMap &TM = I->second; 700 701 OS << "// FastEmit functions for " << Opcode << ".\n"; 702 OS << "\n"; 703 704 // Emit one function for each opcode,type pair. 705 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 706 TI != TE; ++TI) { 707 MVT::SimpleValueType VT = TI->first; 708 const RetPredMap &RM = TI->second; 709 if (RM.size() != 1) { 710 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 711 RI != RE; ++RI) { 712 MVT::SimpleValueType RetVT = RI->first; 713 const PredMap &PM = RI->second; 714 715 OS << "unsigned fastEmit_" 716 << getLegalCName(Opcode) 717 << "_" << getLegalCName(getName(VT)) 718 << "_" << getLegalCName(getName(RetVT)) << "_"; 719 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 720 OS << "("; 721 Operands.PrintParameters(OS); 722 OS << ") {\n"; 723 724 emitInstructionCode(OS, Operands, PM, getName(RetVT)); 725 } 726 727 // Emit one function for the type that demultiplexes on return type. 728 OS << "unsigned fastEmit_" 729 << getLegalCName(Opcode) << "_" 730 << getLegalCName(getName(VT)) << "_"; 731 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 732 OS << "(MVT RetVT"; 733 if (!Operands.empty()) 734 OS << ", "; 735 Operands.PrintParameters(OS); 736 OS << ") {\nswitch (RetVT.SimpleTy) {\n"; 737 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 738 RI != RE; ++RI) { 739 MVT::SimpleValueType RetVT = RI->first; 740 OS << " case " << getName(RetVT) << ": return fastEmit_" 741 << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) 742 << "_" << getLegalCName(getName(RetVT)) << "_"; 743 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 744 OS << "("; 745 Operands.PrintArguments(OS); 746 OS << ");\n"; 747 } 748 OS << " default: return 0;\n}\n}\n\n"; 749 750 } else { 751 // Non-variadic return type. 752 OS << "unsigned fastEmit_" 753 << getLegalCName(Opcode) << "_" 754 << getLegalCName(getName(VT)) << "_"; 755 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 756 OS << "(MVT RetVT"; 757 if (!Operands.empty()) 758 OS << ", "; 759 Operands.PrintParameters(OS); 760 OS << ") {\n"; 761 762 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) 763 << ")\n return 0;\n"; 764 765 const PredMap &PM = RM.begin()->second; 766 767 emitInstructionCode(OS, Operands, PM, "RetVT"); 768 } 769 } 770 771 // Emit one function for the opcode that demultiplexes based on the type. 772 OS << "unsigned fastEmit_" 773 << getLegalCName(Opcode) << "_"; 774 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 775 OS << "(MVT VT, MVT RetVT"; 776 if (!Operands.empty()) 777 OS << ", "; 778 Operands.PrintParameters(OS); 779 OS << ") {\n"; 780 OS << " switch (VT.SimpleTy) {\n"; 781 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 782 TI != TE; ++TI) { 783 MVT::SimpleValueType VT = TI->first; 784 std::string TypeName = getName(VT); 785 OS << " case " << TypeName << ": return fastEmit_" 786 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; 787 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 788 OS << "(RetVT"; 789 if (!Operands.empty()) 790 OS << ", "; 791 Operands.PrintArguments(OS); 792 OS << ");\n"; 793 } 794 OS << " default: return 0;\n"; 795 OS << " }\n"; 796 OS << "}\n"; 797 OS << "\n"; 798 } 799 800 OS << "// Top-level FastEmit function.\n"; 801 OS << "\n"; 802 803 // Emit one function for the operand signature that demultiplexes based 804 // on opcode and type. 805 OS << "unsigned fastEmit_"; 806 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 807 OS << "(MVT VT, MVT RetVT, unsigned Opcode"; 808 if (!Operands.empty()) 809 OS << ", "; 810 Operands.PrintParameters(OS); 811 OS << ") "; 812 if (!Operands.hasAnyImmediateCodes()) 813 OS << "override "; 814 OS << "{\n"; 815 816 // If there are any forms of this signature available that operate on 817 // constrained forms of the immediate (e.g., 32-bit sext immediate in a 818 // 64-bit operand), check them first. 819 820 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI 821 = SignaturesWithConstantForms.find(Operands); 822 if (MI != SignaturesWithConstantForms.end()) { 823 // Unique any duplicates out of the list. 824 std::sort(MI->second.begin(), MI->second.end()); 825 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), 826 MI->second.end()); 827 828 // Check each in order it was seen. It would be nice to have a good 829 // relative ordering between them, but we're not going for optimality 830 // here. 831 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { 832 OS << " if ("; 833 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); 834 OS << ")\n if (unsigned Reg = fastEmit_"; 835 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); 836 OS << "(VT, RetVT, Opcode"; 837 if (!MI->second[i].empty()) 838 OS << ", "; 839 MI->second[i].PrintArguments(OS); 840 OS << "))\n return Reg;\n\n"; 841 } 842 843 // Done with this, remove it. 844 SignaturesWithConstantForms.erase(MI); 845 } 846 847 OS << " switch (Opcode) {\n"; 848 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 849 I != E; ++I) { 850 const std::string &Opcode = I->first; 851 852 OS << " case " << Opcode << ": return fastEmit_" 853 << getLegalCName(Opcode) << "_"; 854 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 855 OS << "(VT, RetVT"; 856 if (!Operands.empty()) 857 OS << ", "; 858 Operands.PrintArguments(OS); 859 OS << ");\n"; 860 } 861 OS << " default: return 0;\n"; 862 OS << " }\n"; 863 OS << "}\n"; 864 OS << "\n"; 865 } 866 867 // TODO: SignaturesWithConstantForms should be empty here. 868 } 869 870 namespace llvm { 871 872 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { 873 CodeGenDAGPatterns CGP(RK); 874 const CodeGenTarget &Target = CGP.getTargetInfo(); 875 emitSourceFileHeader("\"Fast\" Instruction Selector for the " + 876 Target.getName() + " target", OS); 877 878 // Determine the target's namespace name. 879 std::string InstNS = Target.getInstNamespace() + "::"; 880 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); 881 882 FastISelMap F(InstNS); 883 F.collectPatterns(CGP); 884 F.printImmediatePredicates(OS); 885 F.printFunctionDefinitions(OS); 886 } 887 888 } // End llvm namespace 889