1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "DAGISelMatcher.h" 11 #include "CodeGenDAGPatterns.h" 12 #include "CodeGenRegisters.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/StringMap.h" 15 #include "llvm/TableGen/Error.h" 16 #include "llvm/TableGen/Record.h" 17 #include <utility> 18 using namespace llvm; 19 20 21 /// getRegisterValueType - Look up and return the ValueType of the specified 22 /// register. If the register is a member of multiple register classes which 23 /// have different associated types, return MVT::Other. 24 static MVT::SimpleValueType getRegisterValueType(Record *R, 25 const CodeGenTarget &T) { 26 bool FoundRC = false; 27 MVT::SimpleValueType VT = MVT::Other; 28 const CodeGenRegister *Reg = T.getRegBank().getReg(R); 29 30 for (const auto &RC : T.getRegBank().getRegClasses()) { 31 if (!RC.contains(Reg)) 32 continue; 33 34 if (!FoundRC) { 35 FoundRC = true; 36 ValueTypeByHwMode VVT = RC.getValueTypeNum(0); 37 if (VVT.isSimple()) 38 VT = VVT.getSimple().SimpleTy; 39 continue; 40 } 41 42 // If this occurs in multiple register classes, they all have to agree. 43 #ifndef NDEBUG 44 ValueTypeByHwMode T = RC.getValueTypeNum(0); 45 assert((!T.isSimple() || T.getSimple().SimpleTy == VT) && 46 "ValueType mismatch between register classes for this register"); 47 #endif 48 } 49 return VT; 50 } 51 52 53 namespace { 54 class MatcherGen { 55 const PatternToMatch &Pattern; 56 const CodeGenDAGPatterns &CGP; 57 58 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts 59 /// out with all of the types removed. This allows us to insert type checks 60 /// as we scan the tree. 61 TreePatternNode *PatWithNoTypes; 62 63 /// VariableMap - A map from variable names ('$dst') to the recorded operand 64 /// number that they were captured as. These are biased by 1 to make 65 /// insertion easier. 66 StringMap<unsigned> VariableMap; 67 68 /// This maintains the recorded operand number that OPC_CheckComplexPattern 69 /// drops each sub-operand into. We don't want to insert these into 70 /// VariableMap because that leads to identity checking if they are 71 /// encountered multiple times. Biased by 1 like VariableMap for 72 /// consistency. 73 StringMap<unsigned> NamedComplexPatternOperands; 74 75 /// NextRecordedOperandNo - As we emit opcodes to record matched values in 76 /// the RecordedNodes array, this keeps track of which slot will be next to 77 /// record into. 78 unsigned NextRecordedOperandNo; 79 80 /// MatchedChainNodes - This maintains the position in the recorded nodes 81 /// array of all of the recorded input nodes that have chains. 82 SmallVector<unsigned, 2> MatchedChainNodes; 83 84 /// MatchedComplexPatterns - This maintains a list of all of the 85 /// ComplexPatterns that we need to check. The second element of each pair 86 /// is the recorded operand number of the input node. 87 SmallVector<std::pair<const TreePatternNode*, 88 unsigned>, 2> MatchedComplexPatterns; 89 90 /// PhysRegInputs - List list has an entry for each explicitly specified 91 /// physreg input to the pattern. The first elt is the Register node, the 92 /// second is the recorded slot number the input pattern match saved it in. 93 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs; 94 95 /// Matcher - This is the top level of the generated matcher, the result. 96 Matcher *TheMatcher; 97 98 /// CurPredicate - As we emit matcher nodes, this points to the latest check 99 /// which should have future checks stuck into its Next position. 100 Matcher *CurPredicate; 101 public: 102 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); 103 104 ~MatcherGen() { 105 delete PatWithNoTypes; 106 } 107 108 bool EmitMatcherCode(unsigned Variant); 109 void EmitResultCode(); 110 111 Matcher *GetMatcher() const { return TheMatcher; } 112 private: 113 void AddMatcher(Matcher *NewNode); 114 void InferPossibleTypes(unsigned ForceMode); 115 116 // Matcher Generation. 117 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes, 118 unsigned ForceMode); 119 void EmitLeafMatchCode(const TreePatternNode *N); 120 void EmitOperatorMatchCode(const TreePatternNode *N, 121 TreePatternNode *NodeNoTypes, 122 unsigned ForceMode); 123 124 /// If this is the first time a node with unique identifier Name has been 125 /// seen, record it. Otherwise, emit a check to make sure this is the same 126 /// node. Returns true if this is the first encounter. 127 bool recordUniqueNode(const std::string &Name); 128 129 // Result Code Generation. 130 unsigned getNamedArgumentSlot(StringRef Name) { 131 unsigned VarMapEntry = VariableMap[Name]; 132 assert(VarMapEntry != 0 && 133 "Variable referenced but not defined and not caught earlier!"); 134 return VarMapEntry-1; 135 } 136 137 /// GetInstPatternNode - Get the pattern for an instruction. 138 const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins, 139 const TreePatternNode *N); 140 141 void EmitResultOperand(const TreePatternNode *N, 142 SmallVectorImpl<unsigned> &ResultOps); 143 void EmitResultOfNamedOperand(const TreePatternNode *N, 144 SmallVectorImpl<unsigned> &ResultOps); 145 void EmitResultLeafAsOperand(const TreePatternNode *N, 146 SmallVectorImpl<unsigned> &ResultOps); 147 void EmitResultInstructionAsOperand(const TreePatternNode *N, 148 SmallVectorImpl<unsigned> &ResultOps); 149 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 150 SmallVectorImpl<unsigned> &ResultOps); 151 }; 152 153 } // end anon namespace. 154 155 MatcherGen::MatcherGen(const PatternToMatch &pattern, 156 const CodeGenDAGPatterns &cgp) 157 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), 158 TheMatcher(nullptr), CurPredicate(nullptr) { 159 // We need to produce the matcher tree for the patterns source pattern. To do 160 // this we need to match the structure as well as the types. To do the type 161 // matching, we want to figure out the fewest number of type checks we need to 162 // emit. For example, if there is only one integer type supported by a 163 // target, there should be no type comparisons at all for integer patterns! 164 // 165 // To figure out the fewest number of type checks needed, clone the pattern, 166 // remove the types, then perform type inference on the pattern as a whole. 167 // If there are unresolved types, emit an explicit check for those types, 168 // apply the type to the tree, then rerun type inference. Iterate until all 169 // types are resolved. 170 // 171 PatWithNoTypes = Pattern.getSrcPattern()->clone(); 172 PatWithNoTypes->RemoveAllTypes(); 173 174 // If there are types that are manifestly known, infer them. 175 InferPossibleTypes(Pattern.ForceMode); 176 } 177 178 /// InferPossibleTypes - As we emit the pattern, we end up generating type 179 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we 180 /// want to propagate implied types as far throughout the tree as possible so 181 /// that we avoid doing redundant type checks. This does the type propagation. 182 void MatcherGen::InferPossibleTypes(unsigned ForceMode) { 183 // TP - Get *SOME* tree pattern, we don't care which. It is only used for 184 // diagnostics, which we know are impossible at this point. 185 TreePattern &TP = *CGP.pf_begin()->second; 186 TP.getInfer().CodeGen = true; 187 TP.getInfer().ForceMode = ForceMode; 188 189 bool MadeChange = true; 190 while (MadeChange) 191 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, 192 true/*Ignore reg constraints*/); 193 } 194 195 196 /// AddMatcher - Add a matcher node to the current graph we're building. 197 void MatcherGen::AddMatcher(Matcher *NewNode) { 198 if (CurPredicate) 199 CurPredicate->setNext(NewNode); 200 else 201 TheMatcher = NewNode; 202 CurPredicate = NewNode; 203 } 204 205 206 //===----------------------------------------------------------------------===// 207 // Pattern Match Generation 208 //===----------------------------------------------------------------------===// 209 210 /// EmitLeafMatchCode - Generate matching code for leaf nodes. 211 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { 212 assert(N->isLeaf() && "Not a leaf?"); 213 214 // Direct match against an integer constant. 215 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 216 // If this is the root of the dag we're matching, we emit a redundant opcode 217 // check to ensure that this gets folded into the normal top-level 218 // OpcodeSwitch. 219 if (N == Pattern.getSrcPattern()) { 220 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); 221 AddMatcher(new CheckOpcodeMatcher(NI)); 222 } 223 224 return AddMatcher(new CheckIntegerMatcher(II->getValue())); 225 } 226 227 // An UnsetInit represents a named node without any constraints. 228 if (isa<UnsetInit>(N->getLeafValue())) { 229 assert(N->hasName() && "Unnamed ? leaf"); 230 return; 231 } 232 233 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 234 if (!DI) { 235 errs() << "Unknown leaf kind: " << *N << "\n"; 236 abort(); 237 } 238 239 Record *LeafRec = DI->getDef(); 240 241 // A ValueType leaf node can represent a register when named, or itself when 242 // unnamed. 243 if (LeafRec->isSubClassOf("ValueType")) { 244 // A named ValueType leaf always matches: (add i32:$a, i32:$b). 245 if (N->hasName()) 246 return; 247 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). 248 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); 249 } 250 251 if (// Handle register references. Nothing to do here, they always match. 252 LeafRec->isSubClassOf("RegisterClass") || 253 LeafRec->isSubClassOf("RegisterOperand") || 254 LeafRec->isSubClassOf("PointerLikeRegClass") || 255 LeafRec->isSubClassOf("SubRegIndex") || 256 // Place holder for SRCVALUE nodes. Nothing to do here. 257 LeafRec->getName() == "srcvalue") 258 return; 259 260 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to 261 // record the register 262 if (LeafRec->isSubClassOf("Register")) { 263 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(), 264 NextRecordedOperandNo)); 265 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); 266 return; 267 } 268 269 if (LeafRec->isSubClassOf("CondCode")) 270 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); 271 272 if (LeafRec->isSubClassOf("ComplexPattern")) { 273 // We can't model ComplexPattern uses that don't have their name taken yet. 274 // The OPC_CheckComplexPattern operation implicitly records the results. 275 if (N->getName().empty()) { 276 std::string S; 277 raw_string_ostream OS(S); 278 OS << "We expect complex pattern uses to have names: " << *N; 279 PrintFatalError(OS.str()); 280 } 281 282 // Remember this ComplexPattern so that we can emit it after all the other 283 // structural matches are done. 284 unsigned InputOperand = VariableMap[N->getName()] - 1; 285 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand)); 286 return; 287 } 288 289 errs() << "Unknown leaf kind: " << *N << "\n"; 290 abort(); 291 } 292 293 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, 294 TreePatternNode *NodeNoTypes, 295 unsigned ForceMode) { 296 assert(!N->isLeaf() && "Not an operator?"); 297 298 if (N->getOperator()->isSubClassOf("ComplexPattern")) { 299 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is 300 // "MY_PAT:op1:op2". We should already have validated that the uses are 301 // consistent. 302 std::string PatternName = N->getOperator()->getName(); 303 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 304 PatternName += ":"; 305 PatternName += N->getChild(i)->getName(); 306 } 307 308 if (recordUniqueNode(PatternName)) { 309 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1); 310 MatchedComplexPatterns.push_back(NodeAndOpNum); 311 } 312 313 return; 314 } 315 316 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); 317 318 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is 319 // a constant without a predicate fn that has more than one bit set, handle 320 // this as a special case. This is usually for targets that have special 321 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit 322 // handling stuff). Using these instructions is often far more efficient 323 // than materializing the constant. Unfortunately, both the instcombiner 324 // and the dag combiner can often infer that bits are dead, and thus drop 325 // them from the mask in the dag. For example, it might turn 'AND X, 255' 326 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks 327 // to handle this. 328 if ((N->getOperator()->getName() == "and" || 329 N->getOperator()->getName() == "or") && 330 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() && 331 N->getPredicateFns().empty()) { 332 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) { 333 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. 334 // If this is at the root of the pattern, we emit a redundant 335 // CheckOpcode so that the following checks get factored properly under 336 // a single opcode check. 337 if (N == Pattern.getSrcPattern()) 338 AddMatcher(new CheckOpcodeMatcher(CInfo)); 339 340 // Emit the CheckAndImm/CheckOrImm node. 341 if (N->getOperator()->getName() == "and") 342 AddMatcher(new CheckAndImmMatcher(II->getValue())); 343 else 344 AddMatcher(new CheckOrImmMatcher(II->getValue())); 345 346 // Match the LHS of the AND as appropriate. 347 AddMatcher(new MoveChildMatcher(0)); 348 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode); 349 AddMatcher(new MoveParentMatcher()); 350 return; 351 } 352 } 353 } 354 355 // Check that the current opcode lines up. 356 AddMatcher(new CheckOpcodeMatcher(CInfo)); 357 358 // If this node has memory references (i.e. is a load or store), tell the 359 // interpreter to capture them in the memref array. 360 if (N->NodeHasProperty(SDNPMemOperand, CGP)) 361 AddMatcher(new RecordMemRefMatcher()); 362 363 // If this node has a chain, then the chain is operand #0 is the SDNode, and 364 // the child numbers of the node are all offset by one. 365 unsigned OpNo = 0; 366 if (N->NodeHasProperty(SDNPHasChain, CGP)) { 367 // Record the node and remember it in our chained nodes list. 368 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() + 369 "' chained node", 370 NextRecordedOperandNo)); 371 // Remember all of the input chains our pattern will match. 372 MatchedChainNodes.push_back(NextRecordedOperandNo++); 373 374 // Don't look at the input chain when matching the tree pattern to the 375 // SDNode. 376 OpNo = 1; 377 378 // If this node is not the root and the subtree underneath it produces a 379 // chain, then the result of matching the node is also produce a chain. 380 // Beyond that, this means that we're also folding (at least) the root node 381 // into the node that produce the chain (for example, matching 382 // "(add reg, (load ptr))" as a add_with_memory on X86). This is 383 // problematic, if the 'reg' node also uses the load (say, its chain). 384 // Graphically: 385 // 386 // [LD] 387 // ^ ^ 388 // | \ DAG's like cheese. 389 // / | 390 // / [YY] 391 // | ^ 392 // [XX]--/ 393 // 394 // It would be invalid to fold XX and LD. In this case, folding the two 395 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' 396 // To prevent this, we emit a dynamic check for legality before allowing 397 // this to be folded. 398 // 399 const TreePatternNode *Root = Pattern.getSrcPattern(); 400 if (N != Root) { // Not the root of the pattern. 401 // If there is a node between the root and this node, then we definitely 402 // need to emit the check. 403 bool NeedCheck = !Root->hasChild(N); 404 405 // If it *is* an immediate child of the root, we can still need a check if 406 // the root SDNode has multiple inputs. For us, this means that it is an 407 // intrinsic, has multiple operands, or has other inputs like chain or 408 // glue). 409 if (!NeedCheck) { 410 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); 411 NeedCheck = 412 Root->getOperator() == CGP.get_intrinsic_void_sdnode() || 413 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || 414 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || 415 PInfo.getNumOperands() > 1 || 416 PInfo.hasProperty(SDNPHasChain) || 417 PInfo.hasProperty(SDNPInGlue) || 418 PInfo.hasProperty(SDNPOptInGlue); 419 } 420 421 if (NeedCheck) 422 AddMatcher(new CheckFoldableChainNodeMatcher()); 423 } 424 } 425 426 // If this node has an output glue and isn't the root, remember it. 427 if (N->NodeHasProperty(SDNPOutGlue, CGP) && 428 N != Pattern.getSrcPattern()) { 429 // TODO: This redundantly records nodes with both glues and chains. 430 431 // Record the node and remember it in our chained nodes list. 432 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() + 433 "' glue output node", 434 NextRecordedOperandNo)); 435 } 436 437 // If this node is known to have an input glue or if it *might* have an input 438 // glue, capture it as the glue input of the pattern. 439 if (N->NodeHasProperty(SDNPOptInGlue, CGP) || 440 N->NodeHasProperty(SDNPInGlue, CGP)) 441 AddMatcher(new CaptureGlueInputMatcher()); 442 443 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { 444 // Get the code suitable for matching this child. Move to the child, check 445 // it then move back to the parent. 446 AddMatcher(new MoveChildMatcher(OpNo)); 447 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode); 448 AddMatcher(new MoveParentMatcher()); 449 } 450 } 451 452 bool MatcherGen::recordUniqueNode(const std::string &Name) { 453 unsigned &VarMapEntry = VariableMap[Name]; 454 if (VarMapEntry == 0) { 455 // If it is a named node, we must emit a 'Record' opcode. 456 AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo)); 457 VarMapEntry = ++NextRecordedOperandNo; 458 return true; 459 } 460 461 // If we get here, this is a second reference to a specific name. Since 462 // we already have checked that the first reference is valid, we don't 463 // have to recursively match it, just check that it's the same as the 464 // previously named thing. 465 AddMatcher(new CheckSameMatcher(VarMapEntry-1)); 466 return false; 467 } 468 469 void MatcherGen::EmitMatchCode(const TreePatternNode *N, 470 TreePatternNode *NodeNoTypes, 471 unsigned ForceMode) { 472 // If N and NodeNoTypes don't agree on a type, then this is a case where we 473 // need to do a type check. Emit the check, apply the type to NodeNoTypes and 474 // reinfer any correlated types. 475 SmallVector<unsigned, 2> ResultsToTypeCheck; 476 477 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { 478 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; 479 NodeNoTypes->setType(i, N->getExtType(i)); 480 InferPossibleTypes(ForceMode); 481 ResultsToTypeCheck.push_back(i); 482 } 483 484 // If this node has a name associated with it, capture it in VariableMap. If 485 // we already saw this in the pattern, emit code to verify dagness. 486 if (!N->getName().empty()) 487 if (!recordUniqueNode(N->getName())) 488 return; 489 490 if (N->isLeaf()) 491 EmitLeafMatchCode(N); 492 else 493 EmitOperatorMatchCode(N, NodeNoTypes, ForceMode); 494 495 // If there are node predicates for this node, generate their checks. 496 for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) 497 AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i])); 498 499 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) 500 AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]), 501 ResultsToTypeCheck[i])); 502 } 503 504 /// EmitMatcherCode - Generate the code that matches the predicate of this 505 /// pattern for the specified Variant. If the variant is invalid this returns 506 /// true and does not generate code, if it is valid, it returns false. 507 bool MatcherGen::EmitMatcherCode(unsigned Variant) { 508 // If the root of the pattern is a ComplexPattern and if it is specified to 509 // match some number of root opcodes, these are considered to be our variants. 510 // Depending on which variant we're generating code for, emit the root opcode 511 // check. 512 if (const ComplexPattern *CP = 513 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) { 514 const std::vector<Record*> &OpNodes = CP->getRootNodes(); 515 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); 516 if (Variant >= OpNodes.size()) return true; 517 518 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); 519 } else { 520 if (Variant != 0) return true; 521 } 522 523 // Emit the matcher for the pattern structure and types. 524 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes, Pattern.ForceMode); 525 526 // If the pattern has a predicate on it (e.g. only enabled when a subtarget 527 // feature is around, do the check). 528 if (!Pattern.getPredicateCheck().empty()) 529 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); 530 531 // Now that we've completed the structural type match, emit any ComplexPattern 532 // checks (e.g. addrmode matches). We emit this after the structural match 533 // because they are generally more expensive to evaluate and more difficult to 534 // factor. 535 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { 536 const TreePatternNode *N = MatchedComplexPatterns[i].first; 537 538 // Remember where the results of this match get stuck. 539 if (N->isLeaf()) { 540 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1; 541 } else { 542 unsigned CurOp = NextRecordedOperandNo; 543 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 544 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1; 545 CurOp += N->getChild(i)->getNumMIResults(CGP); 546 } 547 } 548 549 // Get the slot we recorded the value in from the name on the node. 550 unsigned RecNodeEntry = MatchedComplexPatterns[i].second; 551 552 const ComplexPattern &CP = *N->getComplexPatternInfo(CGP); 553 554 // Emit a CheckComplexPat operation, which does the match (aborting if it 555 // fails) and pushes the matched operands onto the recorded nodes list. 556 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, 557 N->getName(), NextRecordedOperandNo)); 558 559 // Record the right number of operands. 560 NextRecordedOperandNo += CP.getNumOperands(); 561 if (CP.hasProperty(SDNPHasChain)) { 562 // If the complex pattern has a chain, then we need to keep track of the 563 // fact that we just recorded a chain input. The chain input will be 564 // matched as the last operand of the predicate if it was successful. 565 ++NextRecordedOperandNo; // Chained node operand. 566 567 // It is the last operand recorded. 568 assert(NextRecordedOperandNo > 1 && 569 "Should have recorded input/result chains at least!"); 570 MatchedChainNodes.push_back(NextRecordedOperandNo-1); 571 } 572 573 // TODO: Complex patterns can't have output glues, if they did, we'd want 574 // to record them. 575 } 576 577 return false; 578 } 579 580 581 //===----------------------------------------------------------------------===// 582 // Node Result Generation 583 //===----------------------------------------------------------------------===// 584 585 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, 586 SmallVectorImpl<unsigned> &ResultOps){ 587 assert(!N->getName().empty() && "Operand not named!"); 588 589 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) { 590 // Complex operands have already been completely selected, just find the 591 // right slot ant add the arguments directly. 592 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 593 ResultOps.push_back(SlotNo - 1 + i); 594 595 return; 596 } 597 598 unsigned SlotNo = getNamedArgumentSlot(N->getName()); 599 600 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target 601 // version of the immediate so that it doesn't get selected due to some other 602 // node use. 603 if (!N->isLeaf()) { 604 StringRef OperatorName = N->getOperator()->getName(); 605 if (OperatorName == "imm" || OperatorName == "fpimm") { 606 AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); 607 ResultOps.push_back(NextRecordedOperandNo++); 608 return; 609 } 610 } 611 612 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 613 ResultOps.push_back(SlotNo + i); 614 } 615 616 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, 617 SmallVectorImpl<unsigned> &ResultOps) { 618 assert(N->isLeaf() && "Must be a leaf"); 619 620 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 621 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0))); 622 ResultOps.push_back(NextRecordedOperandNo++); 623 return; 624 } 625 626 // If this is an explicit register reference, handle it. 627 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 628 Record *Def = DI->getDef(); 629 if (Def->isSubClassOf("Register")) { 630 const CodeGenRegister *Reg = 631 CGP.getTargetInfo().getRegBank().getReg(Def); 632 AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0))); 633 ResultOps.push_back(NextRecordedOperandNo++); 634 return; 635 } 636 637 if (Def->getName() == "zero_reg") { 638 AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0))); 639 ResultOps.push_back(NextRecordedOperandNo++); 640 return; 641 } 642 643 // Handle a reference to a register class. This is used 644 // in COPY_TO_SUBREG instructions. 645 if (Def->isSubClassOf("RegisterOperand")) 646 Def = Def->getValueAsDef("RegClass"); 647 if (Def->isSubClassOf("RegisterClass")) { 648 std::string Value = getQualifiedName(Def) + "RegClassID"; 649 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 650 ResultOps.push_back(NextRecordedOperandNo++); 651 return; 652 } 653 654 // Handle a subregister index. This is used for INSERT_SUBREG etc. 655 if (Def->isSubClassOf("SubRegIndex")) { 656 std::string Value = getQualifiedName(Def); 657 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 658 ResultOps.push_back(NextRecordedOperandNo++); 659 return; 660 } 661 } 662 663 errs() << "unhandled leaf node: \n"; 664 N->dump(); 665 } 666 667 /// GetInstPatternNode - Get the pattern for an instruction. 668 /// 669 const TreePatternNode *MatcherGen:: 670 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { 671 const TreePattern *InstPat = Inst.getPattern(); 672 673 // FIXME2?: Assume actual pattern comes before "implicit". 674 TreePatternNode *InstPatNode; 675 if (InstPat) 676 InstPatNode = InstPat->getTree(0); 677 else if (/*isRoot*/ N == Pattern.getDstPattern()) 678 InstPatNode = Pattern.getSrcPattern(); 679 else 680 return nullptr; 681 682 if (InstPatNode && !InstPatNode->isLeaf() && 683 InstPatNode->getOperator()->getName() == "set") 684 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); 685 686 return InstPatNode; 687 } 688 689 static bool 690 mayInstNodeLoadOrStore(const TreePatternNode *N, 691 const CodeGenDAGPatterns &CGP) { 692 Record *Op = N->getOperator(); 693 const CodeGenTarget &CGT = CGP.getTargetInfo(); 694 CodeGenInstruction &II = CGT.getInstruction(Op); 695 return II.mayLoad || II.mayStore; 696 } 697 698 static unsigned 699 numNodesThatMayLoadOrStore(const TreePatternNode *N, 700 const CodeGenDAGPatterns &CGP) { 701 if (N->isLeaf()) 702 return 0; 703 704 Record *OpRec = N->getOperator(); 705 if (!OpRec->isSubClassOf("Instruction")) 706 return 0; 707 708 unsigned Count = 0; 709 if (mayInstNodeLoadOrStore(N, CGP)) 710 ++Count; 711 712 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 713 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); 714 715 return Count; 716 } 717 718 void MatcherGen:: 719 EmitResultInstructionAsOperand(const TreePatternNode *N, 720 SmallVectorImpl<unsigned> &OutputOps) { 721 Record *Op = N->getOperator(); 722 const CodeGenTarget &CGT = CGP.getTargetInfo(); 723 CodeGenInstruction &II = CGT.getInstruction(Op); 724 const DAGInstruction &Inst = CGP.getInstruction(Op); 725 726 // If we can, get the pattern for the instruction we're generating. We derive 727 // a variety of information from this pattern, such as whether it has a chain. 728 // 729 // FIXME2: This is extremely dubious for several reasons, not the least of 730 // which it gives special status to instructions with patterns that Pat<> 731 // nodes can't duplicate. 732 const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N); 733 734 // NodeHasChain - Whether the instruction node we're creating takes chains. 735 bool NodeHasChain = InstPatNode && 736 InstPatNode->TreeHasProperty(SDNPHasChain, CGP); 737 738 // Instructions which load and store from memory should have a chain, 739 // regardless of whether they happen to have an internal pattern saying so. 740 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP) 741 && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || 742 II.hasSideEffects)) 743 NodeHasChain = true; 744 745 bool isRoot = N == Pattern.getDstPattern(); 746 747 // TreeHasOutGlue - True if this tree has glue. 748 bool TreeHasInGlue = false, TreeHasOutGlue = false; 749 if (isRoot) { 750 const TreePatternNode *SrcPat = Pattern.getSrcPattern(); 751 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || 752 SrcPat->TreeHasProperty(SDNPInGlue, CGP); 753 754 // FIXME2: this is checking the entire pattern, not just the node in 755 // question, doing this just for the root seems like a total hack. 756 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); 757 } 758 759 // NumResults - This is the number of results produced by the instruction in 760 // the "outs" list. 761 unsigned NumResults = Inst.getNumResults(); 762 763 // Number of operands we know the output instruction must have. If it is 764 // variadic, we could have more operands. 765 unsigned NumFixedOperands = II.Operands.size(); 766 767 SmallVector<unsigned, 8> InstOps; 768 769 // Loop over all of the fixed operands of the instruction pattern, emitting 770 // code to fill them all in. The node 'N' usually has number children equal to 771 // the number of input operands of the instruction. However, in cases where 772 // there are predicate operands for an instruction, we need to fill in the 773 // 'execute always' values. Match up the node operands to the instruction 774 // operands to do this. 775 unsigned ChildNo = 0; 776 for (unsigned InstOpNo = NumResults, e = NumFixedOperands; 777 InstOpNo != e; ++InstOpNo) { 778 // Determine what to emit for this operand. 779 Record *OperandNode = II.Operands[InstOpNo].Rec; 780 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 781 !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { 782 // This is a predicate or optional def operand; emit the 783 // 'default ops' operands. 784 const DAGDefaultOperand &DefaultOp 785 = CGP.getDefaultOperand(OperandNode); 786 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) 787 EmitResultOperand(DefaultOp.DefaultOps[i], InstOps); 788 continue; 789 } 790 791 // Otherwise this is a normal operand or a predicate operand without 792 // 'execute always'; emit it. 793 794 // For operands with multiple sub-operands we may need to emit 795 // multiple child patterns to cover them all. However, ComplexPattern 796 // children may themselves emit multiple MI operands. 797 unsigned NumSubOps = 1; 798 if (OperandNode->isSubClassOf("Operand")) { 799 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 800 if (unsigned NumArgs = MIOpInfo->getNumArgs()) 801 NumSubOps = NumArgs; 802 } 803 804 unsigned FinalNumOps = InstOps.size() + NumSubOps; 805 while (InstOps.size() < FinalNumOps) { 806 const TreePatternNode *Child = N->getChild(ChildNo); 807 unsigned BeforeAddingNumOps = InstOps.size(); 808 EmitResultOperand(Child, InstOps); 809 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); 810 811 // If the operand is an instruction and it produced multiple results, just 812 // take the first one. 813 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) 814 InstOps.resize(BeforeAddingNumOps+1); 815 816 ++ChildNo; 817 } 818 } 819 820 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't 821 // expand suboperands, use default operands, or other features determined from 822 // the CodeGenInstruction after the fixed operands, which were handled 823 // above. Emit the remaining instructions implicitly added by the use for 824 // variable_ops. 825 if (II.Operands.isVariadic) { 826 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I) 827 EmitResultOperand(N->getChild(I), InstOps); 828 } 829 830 // If this node has input glue or explicitly specified input physregs, we 831 // need to add chained and glued copyfromreg nodes and materialize the glue 832 // input. 833 if (isRoot && !PhysRegInputs.empty()) { 834 // Emit all of the CopyToReg nodes for the input physical registers. These 835 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). 836 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) 837 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, 838 PhysRegInputs[i].first)); 839 // Even if the node has no other glue inputs, the resultant node must be 840 // glued to the CopyFromReg nodes we just generated. 841 TreeHasInGlue = true; 842 } 843 844 // Result order: node results, chain, glue 845 846 // Determine the result types. 847 SmallVector<MVT::SimpleValueType, 4> ResultVTs; 848 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) 849 ResultVTs.push_back(N->getSimpleType(i)); 850 851 // If this is the root instruction of a pattern that has physical registers in 852 // its result pattern, add output VTs for them. For example, X86 has: 853 // (set AL, (mul ...)) 854 // This also handles implicit results like: 855 // (implicit EFLAGS) 856 if (isRoot && !Pattern.getDstRegs().empty()) { 857 // If the root came from an implicit def in the instruction handling stuff, 858 // don't re-add it. 859 Record *HandledReg = nullptr; 860 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 861 HandledReg = II.ImplicitDefs[0]; 862 863 for (Record *Reg : Pattern.getDstRegs()) { 864 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 865 ResultVTs.push_back(getRegisterValueType(Reg, CGT)); 866 } 867 } 868 869 // If this is the root of the pattern and the pattern we're matching includes 870 // a node that is variadic, mark the generated node as variadic so that it 871 // gets the excess operands from the input DAG. 872 int NumFixedArityOperands = -1; 873 if (isRoot && 874 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)) 875 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); 876 877 // If this is the root node and multiple matched nodes in the input pattern 878 // have MemRefs in them, have the interpreter collect them and plop them onto 879 // this node. If there is just one node with MemRefs, leave them on that node 880 // even if it is not the root. 881 // 882 // FIXME3: This is actively incorrect for result patterns with multiple 883 // memory-referencing instructions. 884 bool PatternHasMemOperands = 885 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); 886 887 bool NodeHasMemRefs = false; 888 if (PatternHasMemOperands) { 889 unsigned NumNodesThatLoadOrStore = 890 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); 891 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && 892 NumNodesThatLoadOrStore == 1; 893 NodeHasMemRefs = 894 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || 895 NumNodesThatLoadOrStore != 1)); 896 } 897 898 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && 899 "Node has no result"); 900 901 AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(), 902 ResultVTs, InstOps, 903 NodeHasChain, TreeHasInGlue, TreeHasOutGlue, 904 NodeHasMemRefs, NumFixedArityOperands, 905 NextRecordedOperandNo)); 906 907 // The non-chain and non-glue results of the newly emitted node get recorded. 908 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { 909 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; 910 OutputOps.push_back(NextRecordedOperandNo++); 911 } 912 } 913 914 void MatcherGen:: 915 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 916 SmallVectorImpl<unsigned> &ResultOps) { 917 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); 918 919 // Emit the operand. 920 SmallVector<unsigned, 8> InputOps; 921 922 // FIXME2: Could easily generalize this to support multiple inputs and outputs 923 // to the SDNodeXForm. For now we just support one input and one output like 924 // the old instruction selector. 925 assert(N->getNumChildren() == 1); 926 EmitResultOperand(N->getChild(0), InputOps); 927 928 // The input currently must have produced exactly one result. 929 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); 930 931 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator())); 932 ResultOps.push_back(NextRecordedOperandNo++); 933 } 934 935 void MatcherGen::EmitResultOperand(const TreePatternNode *N, 936 SmallVectorImpl<unsigned> &ResultOps) { 937 // This is something selected from the pattern we matched. 938 if (!N->getName().empty()) 939 return EmitResultOfNamedOperand(N, ResultOps); 940 941 if (N->isLeaf()) 942 return EmitResultLeafAsOperand(N, ResultOps); 943 944 Record *OpRec = N->getOperator(); 945 if (OpRec->isSubClassOf("Instruction")) 946 return EmitResultInstructionAsOperand(N, ResultOps); 947 if (OpRec->isSubClassOf("SDNodeXForm")) 948 return EmitResultSDNodeXFormAsOperand(N, ResultOps); 949 errs() << "Unknown result node to emit code for: " << *N << '\n'; 950 PrintFatalError("Unknown node in result pattern!"); 951 } 952 953 void MatcherGen::EmitResultCode() { 954 // Patterns that match nodes with (potentially multiple) chain inputs have to 955 // merge them together into a token factor. This informs the generated code 956 // what all the chained nodes are. 957 if (!MatchedChainNodes.empty()) 958 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); 959 960 // Codegen the root of the result pattern, capturing the resulting values. 961 SmallVector<unsigned, 8> Ops; 962 EmitResultOperand(Pattern.getDstPattern(), Ops); 963 964 // At this point, we have however many values the result pattern produces. 965 // However, the input pattern might not need all of these. If there are 966 // excess values at the end (such as implicit defs of condition codes etc) 967 // just lop them off. This doesn't need to worry about glue or chains, just 968 // explicit results. 969 // 970 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); 971 972 // If the pattern also has (implicit) results, count them as well. 973 if (!Pattern.getDstRegs().empty()) { 974 // If the root came from an implicit def in the instruction handling stuff, 975 // don't re-add it. 976 Record *HandledReg = nullptr; 977 const TreePatternNode *DstPat = Pattern.getDstPattern(); 978 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ 979 const CodeGenTarget &CGT = CGP.getTargetInfo(); 980 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); 981 982 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 983 HandledReg = II.ImplicitDefs[0]; 984 } 985 986 for (Record *Reg : Pattern.getDstRegs()) { 987 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 988 ++NumSrcResults; 989 } 990 } 991 992 assert(Ops.size() >= NumSrcResults && "Didn't provide enough results"); 993 Ops.resize(NumSrcResults); 994 995 AddMatcher(new CompleteMatchMatcher(Ops, Pattern)); 996 } 997 998 999 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with 1000 /// the specified variant. If the variant number is invalid, this returns null. 1001 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, 1002 unsigned Variant, 1003 const CodeGenDAGPatterns &CGP) { 1004 MatcherGen Gen(Pattern, CGP); 1005 1006 // Generate the code for the matcher. 1007 if (Gen.EmitMatcherCode(Variant)) 1008 return nullptr; 1009 1010 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. 1011 // FIXME2: Split result code out to another table, and make the matcher end 1012 // with an "Emit <index>" command. This allows result generation stuff to be 1013 // shared and factored? 1014 1015 // If the match succeeds, then we generate Pattern. 1016 Gen.EmitResultCode(); 1017 1018 // Unconditional match. 1019 return Gen.GetMatcher(); 1020 } 1021