1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class wraps target description classes used by the various code 10 // generation TableGen backends. This makes it easier to access the data and 11 // provides a single place that needs to check it for validity. All of these 12 // classes abort on error conditions. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CodeGenTarget.h" 17 #include "CodeGenDAGPatterns.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Timer.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <algorithm> 28 using namespace llvm; 29 30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 32 33 static cl::opt<unsigned> 34 AsmParserNum("asmparsernum", cl::init(0), 35 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 36 cl::cat(AsmParserCat)); 37 38 static cl::opt<unsigned> 39 AsmWriterNum("asmwriternum", cl::init(0), 40 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 41 cl::cat(AsmWriterCat)); 42 43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 44 /// record corresponds to. 45 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 46 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 47 } 48 49 StringRef llvm::getName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "UNKNOWN"; 52 case MVT::iPTR: return "TLI.getPointerTy()"; 53 case MVT::iPTRAny: return "TLI.getPointerTy()"; 54 default: return getEnumName(T); 55 } 56 } 57 58 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 59 switch (T) { 60 case MVT::Other: return "MVT::Other"; 61 case MVT::i1: return "MVT::i1"; 62 case MVT::i8: return "MVT::i8"; 63 case MVT::i16: return "MVT::i16"; 64 case MVT::i32: return "MVT::i32"; 65 case MVT::i64: return "MVT::i64"; 66 case MVT::i128: return "MVT::i128"; 67 case MVT::Any: return "MVT::Any"; 68 case MVT::iAny: return "MVT::iAny"; 69 case MVT::fAny: return "MVT::fAny"; 70 case MVT::vAny: return "MVT::vAny"; 71 case MVT::f16: return "MVT::f16"; 72 case MVT::bf16: return "MVT::bf16"; 73 case MVT::f32: return "MVT::f32"; 74 case MVT::f64: return "MVT::f64"; 75 case MVT::f80: return "MVT::f80"; 76 case MVT::f128: return "MVT::f128"; 77 case MVT::ppcf128: return "MVT::ppcf128"; 78 case MVT::x86mmx: return "MVT::x86mmx"; 79 case MVT::x86amx: return "MVT::x86amx"; 80 case MVT::i64x8: return "MVT::i64x8"; 81 case MVT::Glue: return "MVT::Glue"; 82 case MVT::isVoid: return "MVT::isVoid"; 83 case MVT::v1i1: return "MVT::v1i1"; 84 case MVT::v2i1: return "MVT::v2i1"; 85 case MVT::v4i1: return "MVT::v4i1"; 86 case MVT::v8i1: return "MVT::v8i1"; 87 case MVT::v16i1: return "MVT::v16i1"; 88 case MVT::v32i1: return "MVT::v32i1"; 89 case MVT::v64i1: return "MVT::v64i1"; 90 case MVT::v128i1: return "MVT::v128i1"; 91 case MVT::v256i1: return "MVT::v256i1"; 92 case MVT::v512i1: return "MVT::v512i1"; 93 case MVT::v1024i1: return "MVT::v1024i1"; 94 case MVT::v1i8: return "MVT::v1i8"; 95 case MVT::v2i8: return "MVT::v2i8"; 96 case MVT::v4i8: return "MVT::v4i8"; 97 case MVT::v8i8: return "MVT::v8i8"; 98 case MVT::v16i8: return "MVT::v16i8"; 99 case MVT::v32i8: return "MVT::v32i8"; 100 case MVT::v64i8: return "MVT::v64i8"; 101 case MVT::v128i8: return "MVT::v128i8"; 102 case MVT::v256i8: return "MVT::v256i8"; 103 case MVT::v512i8: return "MVT::v512i8"; 104 case MVT::v1024i8: return "MVT::v1024i8"; 105 case MVT::v1i16: return "MVT::v1i16"; 106 case MVT::v2i16: return "MVT::v2i16"; 107 case MVT::v3i16: return "MVT::v3i16"; 108 case MVT::v4i16: return "MVT::v4i16"; 109 case MVT::v8i16: return "MVT::v8i16"; 110 case MVT::v16i16: return "MVT::v16i16"; 111 case MVT::v32i16: return "MVT::v32i16"; 112 case MVT::v64i16: return "MVT::v64i16"; 113 case MVT::v128i16: return "MVT::v128i16"; 114 case MVT::v256i16: return "MVT::v256i16"; 115 case MVT::v512i16: return "MVT::v512i16"; 116 case MVT::v1i32: return "MVT::v1i32"; 117 case MVT::v2i32: return "MVT::v2i32"; 118 case MVT::v3i32: return "MVT::v3i32"; 119 case MVT::v4i32: return "MVT::v4i32"; 120 case MVT::v5i32: return "MVT::v5i32"; 121 case MVT::v6i32: return "MVT::v6i32"; 122 case MVT::v7i32: return "MVT::v7i32"; 123 case MVT::v8i32: return "MVT::v8i32"; 124 case MVT::v16i32: return "MVT::v16i32"; 125 case MVT::v32i32: return "MVT::v32i32"; 126 case MVT::v64i32: return "MVT::v64i32"; 127 case MVT::v128i32: return "MVT::v128i32"; 128 case MVT::v256i32: return "MVT::v256i32"; 129 case MVT::v512i32: return "MVT::v512i32"; 130 case MVT::v1024i32: return "MVT::v1024i32"; 131 case MVT::v2048i32: return "MVT::v2048i32"; 132 case MVT::v1i64: return "MVT::v1i64"; 133 case MVT::v2i64: return "MVT::v2i64"; 134 case MVT::v3i64: return "MVT::v3i64"; 135 case MVT::v4i64: return "MVT::v4i64"; 136 case MVT::v8i64: return "MVT::v8i64"; 137 case MVT::v16i64: return "MVT::v16i64"; 138 case MVT::v32i64: return "MVT::v32i64"; 139 case MVT::v64i64: return "MVT::v64i64"; 140 case MVT::v128i64: return "MVT::v128i64"; 141 case MVT::v256i64: return "MVT::v256i64"; 142 case MVT::v1i128: return "MVT::v1i128"; 143 case MVT::v1f16: return "MVT::v1f16"; 144 case MVT::v2f16: return "MVT::v2f16"; 145 case MVT::v3f16: return "MVT::v3f16"; 146 case MVT::v4f16: return "MVT::v4f16"; 147 case MVT::v8f16: return "MVT::v8f16"; 148 case MVT::v16f16: return "MVT::v16f16"; 149 case MVT::v32f16: return "MVT::v32f16"; 150 case MVT::v64f16: return "MVT::v64f16"; 151 case MVT::v128f16: return "MVT::v128f16"; 152 case MVT::v256f16: return "MVT::v256f16"; 153 case MVT::v512f16: return "MVT::v512f16"; 154 case MVT::v2bf16: return "MVT::v2bf16"; 155 case MVT::v3bf16: return "MVT::v3bf16"; 156 case MVT::v4bf16: return "MVT::v4bf16"; 157 case MVT::v8bf16: return "MVT::v8bf16"; 158 case MVT::v16bf16: return "MVT::v16bf16"; 159 case MVT::v32bf16: return "MVT::v32bf16"; 160 case MVT::v64bf16: return "MVT::v64bf16"; 161 case MVT::v128bf16: return "MVT::v128bf16"; 162 case MVT::v1f32: return "MVT::v1f32"; 163 case MVT::v2f32: return "MVT::v2f32"; 164 case MVT::v3f32: return "MVT::v3f32"; 165 case MVT::v4f32: return "MVT::v4f32"; 166 case MVT::v5f32: return "MVT::v5f32"; 167 case MVT::v6f32: return "MVT::v6f32"; 168 case MVT::v7f32: return "MVT::v7f32"; 169 case MVT::v8f32: return "MVT::v8f32"; 170 case MVT::v16f32: return "MVT::v16f32"; 171 case MVT::v32f32: return "MVT::v32f32"; 172 case MVT::v64f32: return "MVT::v64f32"; 173 case MVT::v128f32: return "MVT::v128f32"; 174 case MVT::v256f32: return "MVT::v256f32"; 175 case MVT::v512f32: return "MVT::v512f32"; 176 case MVT::v1024f32: return "MVT::v1024f32"; 177 case MVT::v2048f32: return "MVT::v2048f32"; 178 case MVT::v1f64: return "MVT::v1f64"; 179 case MVT::v2f64: return "MVT::v2f64"; 180 case MVT::v3f64: return "MVT::v3f64"; 181 case MVT::v4f64: return "MVT::v4f64"; 182 case MVT::v8f64: return "MVT::v8f64"; 183 case MVT::v16f64: return "MVT::v16f64"; 184 case MVT::v32f64: return "MVT::v32f64"; 185 case MVT::v64f64: return "MVT::v64f64"; 186 case MVT::v128f64: return "MVT::v128f64"; 187 case MVT::v256f64: return "MVT::v256f64"; 188 case MVT::nxv1i1: return "MVT::nxv1i1"; 189 case MVT::nxv2i1: return "MVT::nxv2i1"; 190 case MVT::nxv4i1: return "MVT::nxv4i1"; 191 case MVT::nxv8i1: return "MVT::nxv8i1"; 192 case MVT::nxv16i1: return "MVT::nxv16i1"; 193 case MVT::nxv32i1: return "MVT::nxv32i1"; 194 case MVT::nxv64i1: return "MVT::nxv64i1"; 195 case MVT::nxv1i8: return "MVT::nxv1i8"; 196 case MVT::nxv2i8: return "MVT::nxv2i8"; 197 case MVT::nxv4i8: return "MVT::nxv4i8"; 198 case MVT::nxv8i8: return "MVT::nxv8i8"; 199 case MVT::nxv16i8: return "MVT::nxv16i8"; 200 case MVT::nxv32i8: return "MVT::nxv32i8"; 201 case MVT::nxv64i8: return "MVT::nxv64i8"; 202 case MVT::nxv1i16: return "MVT::nxv1i16"; 203 case MVT::nxv2i16: return "MVT::nxv2i16"; 204 case MVT::nxv4i16: return "MVT::nxv4i16"; 205 case MVT::nxv8i16: return "MVT::nxv8i16"; 206 case MVT::nxv16i16: return "MVT::nxv16i16"; 207 case MVT::nxv32i16: return "MVT::nxv32i16"; 208 case MVT::nxv1i32: return "MVT::nxv1i32"; 209 case MVT::nxv2i32: return "MVT::nxv2i32"; 210 case MVT::nxv4i32: return "MVT::nxv4i32"; 211 case MVT::nxv8i32: return "MVT::nxv8i32"; 212 case MVT::nxv16i32: return "MVT::nxv16i32"; 213 case MVT::nxv32i32: return "MVT::nxv32i32"; 214 case MVT::nxv1i64: return "MVT::nxv1i64"; 215 case MVT::nxv2i64: return "MVT::nxv2i64"; 216 case MVT::nxv4i64: return "MVT::nxv4i64"; 217 case MVT::nxv8i64: return "MVT::nxv8i64"; 218 case MVT::nxv16i64: return "MVT::nxv16i64"; 219 case MVT::nxv32i64: return "MVT::nxv32i64"; 220 case MVT::nxv1f16: return "MVT::nxv1f16"; 221 case MVT::nxv2f16: return "MVT::nxv2f16"; 222 case MVT::nxv4f16: return "MVT::nxv4f16"; 223 case MVT::nxv8f16: return "MVT::nxv8f16"; 224 case MVT::nxv16f16: return "MVT::nxv16f16"; 225 case MVT::nxv32f16: return "MVT::nxv32f16"; 226 case MVT::nxv1bf16: return "MVT::nxv1bf16"; 227 case MVT::nxv2bf16: return "MVT::nxv2bf16"; 228 case MVT::nxv4bf16: return "MVT::nxv4bf16"; 229 case MVT::nxv8bf16: return "MVT::nxv8bf16"; 230 case MVT::nxv1f32: return "MVT::nxv1f32"; 231 case MVT::nxv2f32: return "MVT::nxv2f32"; 232 case MVT::nxv4f32: return "MVT::nxv4f32"; 233 case MVT::nxv8f32: return "MVT::nxv8f32"; 234 case MVT::nxv16f32: return "MVT::nxv16f32"; 235 case MVT::nxv1f64: return "MVT::nxv1f64"; 236 case MVT::nxv2f64: return "MVT::nxv2f64"; 237 case MVT::nxv4f64: return "MVT::nxv4f64"; 238 case MVT::nxv8f64: return "MVT::nxv8f64"; 239 case MVT::token: return "MVT::token"; 240 case MVT::Metadata: return "MVT::Metadata"; 241 case MVT::iPTR: return "MVT::iPTR"; 242 case MVT::iPTRAny: return "MVT::iPTRAny"; 243 case MVT::Untyped: return "MVT::Untyped"; 244 case MVT::funcref: return "MVT::funcref"; 245 case MVT::externref: return "MVT::externref"; 246 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 247 } 248 } 249 250 /// getQualifiedName - Return the name of the specified record, with a 251 /// namespace qualifier if the record contains one. 252 /// 253 std::string llvm::getQualifiedName(const Record *R) { 254 std::string Namespace; 255 if (R->getValue("Namespace")) 256 Namespace = std::string(R->getValueAsString("Namespace")); 257 if (Namespace.empty()) 258 return std::string(R->getName()); 259 return Namespace + "::" + R->getName().str(); 260 } 261 262 263 /// getTarget - Return the current instance of the Target class. 264 /// 265 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 266 : Records(records), CGH(records) { 267 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 268 if (Targets.size() == 0) 269 PrintFatalError("No 'Target' subclasses defined!"); 270 if (Targets.size() != 1) 271 PrintFatalError("Multiple subclasses of Target defined!"); 272 TargetRec = Targets[0]; 273 } 274 275 CodeGenTarget::~CodeGenTarget() { 276 } 277 278 StringRef CodeGenTarget::getName() const { return TargetRec->getName(); } 279 280 /// getInstNamespace - Find and return the target machine's instruction 281 /// namespace. The namespace is cached because it is requested multiple times. 282 StringRef CodeGenTarget::getInstNamespace() const { 283 if (InstNamespace.empty()) { 284 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 285 // We are not interested in the "TargetOpcode" namespace. 286 if (Inst->Namespace != "TargetOpcode") { 287 InstNamespace = Inst->Namespace; 288 break; 289 } 290 } 291 } 292 293 return InstNamespace; 294 } 295 296 StringRef CodeGenTarget::getRegNamespace() const { 297 auto &RegClasses = RegBank->getRegClasses(); 298 return RegClasses.size() > 0 ? RegClasses.front().Namespace : ""; 299 } 300 301 Record *CodeGenTarget::getInstructionSet() const { 302 return TargetRec->getValueAsDef("InstructionSet"); 303 } 304 305 bool CodeGenTarget::getAllowRegisterRenaming() const { 306 return TargetRec->getValueAsInt("AllowRegisterRenaming"); 307 } 308 309 /// getAsmParser - Return the AssemblyParser definition for this target. 310 /// 311 Record *CodeGenTarget::getAsmParser() const { 312 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 313 if (AsmParserNum >= LI.size()) 314 PrintFatalError("Target does not have an AsmParser #" + 315 Twine(AsmParserNum) + "!"); 316 return LI[AsmParserNum]; 317 } 318 319 /// getAsmParserVariant - Return the AssemblyParserVariant definition for 320 /// this target. 321 /// 322 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 323 std::vector<Record*> LI = 324 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 325 if (i >= LI.size()) 326 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 327 "!"); 328 return LI[i]; 329 } 330 331 /// getAsmParserVariantCount - Return the AssemblyParserVariant definition 332 /// available for this target. 333 /// 334 unsigned CodeGenTarget::getAsmParserVariantCount() const { 335 std::vector<Record*> LI = 336 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 337 return LI.size(); 338 } 339 340 /// getAsmWriter - Return the AssemblyWriter definition for this target. 341 /// 342 Record *CodeGenTarget::getAsmWriter() const { 343 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 344 if (AsmWriterNum >= LI.size()) 345 PrintFatalError("Target does not have an AsmWriter #" + 346 Twine(AsmWriterNum) + "!"); 347 return LI[AsmWriterNum]; 348 } 349 350 CodeGenRegBank &CodeGenTarget::getRegBank() const { 351 if (!RegBank) 352 RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes()); 353 return *RegBank; 354 } 355 356 Optional<CodeGenRegisterClass *> 357 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy, 358 CodeGenRegBank &RegBank, 359 const CodeGenSubRegIndex *SubIdx, 360 bool MustBeAllocatable) const { 361 std::vector<CodeGenRegisterClass *> Candidates; 362 auto &RegClasses = RegBank.getRegClasses(); 363 364 // Try to find a register class which supports ValueTy, and also contains 365 // SubIdx. 366 for (CodeGenRegisterClass &RC : RegClasses) { 367 // Is there a subclass of this class which contains this subregister index? 368 CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx); 369 if (!SubClassWithSubReg) 370 continue; 371 372 // We have a class. Check if it supports this value type. 373 if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy)) 374 continue; 375 376 // If necessary, check that it is allocatable. 377 if (MustBeAllocatable && !SubClassWithSubReg->Allocatable) 378 continue; 379 380 // We have a register class which supports both the value type and 381 // subregister index. Remember it. 382 Candidates.push_back(SubClassWithSubReg); 383 } 384 385 // If we didn't find anything, we're done. 386 if (Candidates.empty()) 387 return None; 388 389 // Find and return the largest of our candidate classes. 390 llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A, 391 const CodeGenRegisterClass *B) { 392 if (A->getMembers().size() > B->getMembers().size()) 393 return true; 394 395 if (A->getMembers().size() < B->getMembers().size()) 396 return false; 397 398 // Order by name as a tie-breaker. 399 return StringRef(A->getName()) < B->getName(); 400 }); 401 402 return Candidates[0]; 403 } 404 405 void CodeGenTarget::ReadRegAltNameIndices() const { 406 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 407 llvm::sort(RegAltNameIndices, LessRecord()); 408 } 409 410 /// getRegisterByName - If there is a register with the specific AsmName, 411 /// return it. 412 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 413 return getRegBank().getRegistersByName().lookup(Name); 414 } 415 416 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R) 417 const { 418 const CodeGenRegister *Reg = getRegBank().getReg(R); 419 std::vector<ValueTypeByHwMode> Result; 420 for (const auto &RC : getRegBank().getRegClasses()) { 421 if (RC.contains(Reg)) { 422 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); 423 llvm::append_range(Result, InVTs); 424 } 425 } 426 427 // Remove duplicates. 428 llvm::sort(Result); 429 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 430 return Result; 431 } 432 433 434 void CodeGenTarget::ReadLegalValueTypes() const { 435 for (const auto &RC : getRegBank().getRegClasses()) 436 llvm::append_range(LegalValueTypes, RC.VTs); 437 438 // Remove duplicates. 439 llvm::sort(LegalValueTypes); 440 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 441 LegalValueTypes.end()), 442 LegalValueTypes.end()); 443 } 444 445 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 446 if (!SchedModels) 447 SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this); 448 return *SchedModels; 449 } 450 451 void CodeGenTarget::ReadInstructions() const { 452 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 453 if (Insts.size() <= 2) 454 PrintFatalError("No 'Instruction' subclasses defined!"); 455 456 // Parse the instructions defined in the .td file. 457 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 458 Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]); 459 } 460 461 static const CodeGenInstruction * 462 GetInstByName(const char *Name, 463 const DenseMap<const Record*, 464 std::unique_ptr<CodeGenInstruction>> &Insts, 465 RecordKeeper &Records) { 466 const Record *Rec = Records.getDef(Name); 467 468 const auto I = Insts.find(Rec); 469 if (!Rec || I == Insts.end()) 470 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 471 return I->second.get(); 472 } 473 474 static const char *const FixedInstrs[] = { 475 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 476 #include "llvm/Support/TargetOpcodes.def" 477 nullptr}; 478 479 unsigned CodeGenTarget::getNumFixedInstructions() { 480 return array_lengthof(FixedInstrs) - 1; 481 } 482 483 /// Return all of the instructions defined by the target, ordered by 484 /// their enum value. 485 void CodeGenTarget::ComputeInstrsByEnum() const { 486 const auto &Insts = getInstructions(); 487 for (const char *const *p = FixedInstrs; *p; ++p) { 488 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 489 assert(Instr && "Missing target independent instruction"); 490 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 491 InstrsByEnum.push_back(Instr); 492 } 493 unsigned EndOfPredefines = InstrsByEnum.size(); 494 assert(EndOfPredefines == getNumFixedInstructions() && 495 "Missing generic opcode"); 496 497 for (const auto &I : Insts) { 498 const CodeGenInstruction *CGI = I.second.get(); 499 if (CGI->Namespace != "TargetOpcode") { 500 InstrsByEnum.push_back(CGI); 501 if (CGI->TheDef->getValueAsBit("isPseudo")) 502 ++NumPseudoInstructions; 503 } 504 } 505 506 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 507 508 // All of the instructions are now in random order based on the map iteration. 509 llvm::sort( 510 InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 511 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 512 const auto &D1 = *Rec1->TheDef; 513 const auto &D2 = *Rec2->TheDef; 514 return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < 515 std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); 516 }); 517 } 518 519 520 /// isLittleEndianEncoding - Return whether this target encodes its instruction 521 /// in little-endian format, i.e. bits laid out in the order [0..n] 522 /// 523 bool CodeGenTarget::isLittleEndianEncoding() const { 524 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 525 } 526 527 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 528 /// encodings, reverse the bit order of all instructions. 529 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 530 if (!isLittleEndianEncoding()) 531 return; 532 533 std::vector<Record *> Insts = 534 Records.getAllDerivedDefinitions("InstructionEncoding"); 535 for (Record *R : Insts) { 536 if (R->getValueAsString("Namespace") == "TargetOpcode" || 537 R->getValueAsBit("isPseudo")) 538 continue; 539 540 BitsInit *BI = R->getValueAsBitsInit("Inst"); 541 542 unsigned numBits = BI->getNumBits(); 543 544 SmallVector<Init *, 16> NewBits(numBits); 545 546 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 547 unsigned bitSwapIdx = numBits - bit - 1; 548 Init *OrigBit = BI->getBit(bit); 549 Init *BitSwap = BI->getBit(bitSwapIdx); 550 NewBits[bit] = BitSwap; 551 NewBits[bitSwapIdx] = OrigBit; 552 } 553 if (numBits % 2) { 554 unsigned middle = (numBits + 1) / 2; 555 NewBits[middle] = BI->getBit(middle); 556 } 557 558 BitsInit *NewBI = BitsInit::get(NewBits); 559 560 // Update the bits in reversed order so that emitInstrOpBits will get the 561 // correct endianness. 562 R->getValue("Inst")->setValue(NewBI); 563 } 564 } 565 566 /// guessInstructionProperties - Return true if it's OK to guess instruction 567 /// properties instead of raising an error. 568 /// 569 /// This is configurable as a temporary migration aid. It will eventually be 570 /// permanently false. 571 bool CodeGenTarget::guessInstructionProperties() const { 572 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 573 } 574 575 //===----------------------------------------------------------------------===// 576 // ComplexPattern implementation 577 // 578 ComplexPattern::ComplexPattern(Record *R) { 579 Ty = R->getValueAsDef("Ty"); 580 NumOperands = R->getValueAsInt("NumOperands"); 581 SelectFunc = std::string(R->getValueAsString("SelectFunc")); 582 RootNodes = R->getValueAsListOfDefs("RootNodes"); 583 584 // FIXME: This is a hack to statically increase the priority of patterns which 585 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 586 // possible pattern match we'll need to dynamically calculate the complexity 587 // of all patterns a dag can potentially map to. 588 int64_t RawComplexity = R->getValueAsInt("Complexity"); 589 if (RawComplexity == -1) 590 Complexity = NumOperands * 3; 591 else 592 Complexity = RawComplexity; 593 594 // FIXME: Why is this different from parseSDPatternOperatorProperties? 595 // Parse the properties. 596 Properties = 0; 597 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 598 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 599 if (PropList[i]->getName() == "SDNPHasChain") { 600 Properties |= 1 << SDNPHasChain; 601 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 602 Properties |= 1 << SDNPOptInGlue; 603 } else if (PropList[i]->getName() == "SDNPMayStore") { 604 Properties |= 1 << SDNPMayStore; 605 } else if (PropList[i]->getName() == "SDNPMayLoad") { 606 Properties |= 1 << SDNPMayLoad; 607 } else if (PropList[i]->getName() == "SDNPSideEffect") { 608 Properties |= 1 << SDNPSideEffect; 609 } else if (PropList[i]->getName() == "SDNPMemOperand") { 610 Properties |= 1 << SDNPMemOperand; 611 } else if (PropList[i]->getName() == "SDNPVariadic") { 612 Properties |= 1 << SDNPVariadic; 613 } else if (PropList[i]->getName() == "SDNPWantRoot") { 614 Properties |= 1 << SDNPWantRoot; 615 } else if (PropList[i]->getName() == "SDNPWantParent") { 616 Properties |= 1 << SDNPWantParent; 617 } else { 618 PrintFatalError(R->getLoc(), "Unsupported SD Node property '" + 619 PropList[i]->getName() + 620 "' on ComplexPattern '" + R->getName() + 621 "'!"); 622 } 623 } 624 625 //===----------------------------------------------------------------------===// 626 // CodeGenIntrinsic Implementation 627 //===----------------------------------------------------------------------===// 628 629 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) { 630 std::vector<Record *> IntrProperties = 631 RC.getAllDerivedDefinitions("IntrinsicProperty"); 632 633 std::vector<Record *> DefaultProperties; 634 for (Record *Rec : IntrProperties) 635 if (Rec->getValueAsBit("IsDefault")) 636 DefaultProperties.push_back(Rec); 637 638 std::vector<Record *> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 639 Intrinsics.reserve(Defs.size()); 640 641 for (unsigned I = 0, e = Defs.size(); I != e; ++I) 642 Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties)); 643 644 llvm::sort(Intrinsics, 645 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 646 return std::tie(LHS.TargetPrefix, LHS.Name) < 647 std::tie(RHS.TargetPrefix, RHS.Name); 648 }); 649 Targets.push_back({"", 0, 0}); 650 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 651 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 652 Targets.back().Count = I - Targets.back().Offset; 653 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 654 } 655 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 656 } 657 658 CodeGenIntrinsic::CodeGenIntrinsic(Record *R, 659 std::vector<Record *> DefaultProperties) { 660 TheDef = R; 661 std::string DefName = std::string(R->getName()); 662 ArrayRef<SMLoc> DefLoc = R->getLoc(); 663 ModRef = ReadWriteMem; 664 Properties = 0; 665 isOverloaded = false; 666 isCommutative = false; 667 canThrow = false; 668 isNoReturn = false; 669 isNoSync = false; 670 isNoFree = false; 671 isWillReturn = false; 672 isCold = false; 673 isNoDuplicate = false; 674 isNoMerge = false; 675 isConvergent = false; 676 isSpeculatable = false; 677 hasSideEffects = false; 678 679 if (DefName.size() <= 4 || DefName.substr(0, 4) != "int_") 680 PrintFatalError(DefLoc, 681 "Intrinsic '" + DefName + "' does not start with 'int_'!"); 682 683 EnumName = DefName.substr(4); 684 685 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 686 GCCBuiltinName = std::string(R->getValueAsString("GCCBuiltinName")); 687 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 688 MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName")); 689 690 TargetPrefix = std::string(R->getValueAsString("TargetPrefix")); 691 Name = std::string(R->getValueAsString("LLVMName")); 692 693 if (Name == "") { 694 // If an explicit name isn't specified, derive one from the DefName. 695 Name = "llvm."; 696 697 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 698 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 699 } else { 700 // Verify it starts with "llvm.". 701 if (Name.size() <= 5 || Name.substr(0, 5) != "llvm.") 702 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 703 "'s name does not start with 'llvm.'!"); 704 } 705 706 // If TargetPrefix is specified, make sure that Name starts with 707 // "llvm.<targetprefix>.". 708 if (!TargetPrefix.empty()) { 709 if (Name.size() < 6+TargetPrefix.size() || 710 Name.substr(5, 1 + TargetPrefix.size()) != (TargetPrefix + ".")) 711 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 712 "' does not start with 'llvm." + 713 TargetPrefix + ".'!"); 714 } 715 716 ListInit *RetTypes = R->getValueAsListInit("RetTypes"); 717 ListInit *ParamTypes = R->getValueAsListInit("ParamTypes"); 718 719 // First collate a list of overloaded types. 720 std::vector<MVT::SimpleValueType> OverloadedVTs; 721 for (ListInit *TypeList : {RetTypes, ParamTypes}) { 722 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 723 Record *TyEl = TypeList->getElementAsRecord(i); 724 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 725 726 if (TyEl->isSubClassOf("LLVMMatchType")) 727 continue; 728 729 MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT")); 730 if (MVT(VT).isOverloaded()) { 731 OverloadedVTs.push_back(VT); 732 isOverloaded = true; 733 } 734 } 735 } 736 737 // Parse the list of return types. 738 ListInit *TypeList = RetTypes; 739 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 740 Record *TyEl = TypeList->getElementAsRecord(i); 741 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 742 MVT::SimpleValueType VT; 743 if (TyEl->isSubClassOf("LLVMMatchType")) { 744 unsigned MatchTy = TyEl->getValueAsInt("Number"); 745 assert(MatchTy < OverloadedVTs.size() && 746 "Invalid matching number!"); 747 VT = OverloadedVTs[MatchTy]; 748 // It only makes sense to use the extended and truncated vector element 749 // variants with iAny types; otherwise, if the intrinsic is not 750 // overloaded, all the types can be specified directly. 751 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 752 !TyEl->isSubClassOf("LLVMTruncatedType")) || 753 VT == MVT::iAny || VT == MVT::vAny) && 754 "Expected iAny or vAny type"); 755 } else { 756 VT = getValueType(TyEl->getValueAsDef("VT")); 757 } 758 759 // Reject invalid types. 760 if (VT == MVT::isVoid) 761 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 762 " has void in result type list!"); 763 764 IS.RetVTs.push_back(VT); 765 IS.RetTypeDefs.push_back(TyEl); 766 } 767 768 // Parse the list of parameter types. 769 TypeList = ParamTypes; 770 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 771 Record *TyEl = TypeList->getElementAsRecord(i); 772 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 773 MVT::SimpleValueType VT; 774 if (TyEl->isSubClassOf("LLVMMatchType")) { 775 unsigned MatchTy = TyEl->getValueAsInt("Number"); 776 if (MatchTy >= OverloadedVTs.size()) { 777 PrintError(R->getLoc(), 778 "Parameter #" + Twine(i) + " has out of bounds matching " 779 "number " + Twine(MatchTy)); 780 PrintFatalError(DefLoc, 781 Twine("ParamTypes is ") + TypeList->getAsString()); 782 } 783 VT = OverloadedVTs[MatchTy]; 784 // It only makes sense to use the extended and truncated vector element 785 // variants with iAny types; otherwise, if the intrinsic is not 786 // overloaded, all the types can be specified directly. 787 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 788 !TyEl->isSubClassOf("LLVMTruncatedType")) || 789 VT == MVT::iAny || VT == MVT::vAny) && 790 "Expected iAny or vAny type"); 791 } else 792 VT = getValueType(TyEl->getValueAsDef("VT")); 793 794 // Reject invalid types. 795 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 796 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 797 " has void in result type list!"); 798 799 IS.ParamVTs.push_back(VT); 800 IS.ParamTypeDefs.push_back(TyEl); 801 } 802 803 // Parse the intrinsic properties. 804 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 805 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 806 Record *Property = PropList->getElementAsRecord(i); 807 assert(Property->isSubClassOf("IntrinsicProperty") && 808 "Expected a property!"); 809 810 setProperty(Property); 811 } 812 813 // Set default properties to true. 814 setDefaultProperties(R, DefaultProperties); 815 816 // Also record the SDPatternOperator Properties. 817 Properties = parseSDPatternOperatorProperties(R); 818 819 // Sort the argument attributes for later benefit. 820 llvm::sort(ArgumentAttributes); 821 } 822 823 void CodeGenIntrinsic::setDefaultProperties( 824 Record *R, std::vector<Record *> DefaultProperties) { 825 // opt-out of using default attributes. 826 if (R->getValueAsBit("DisableDefaultAttributes")) 827 return; 828 829 for (Record *Rec : DefaultProperties) 830 setProperty(Rec); 831 } 832 833 void CodeGenIntrinsic::setProperty(Record *R) { 834 if (R->getName() == "IntrNoMem") 835 ModRef = NoMem; 836 else if (R->getName() == "IntrReadMem") { 837 if (!(ModRef & MR_Ref)) 838 PrintFatalError(TheDef->getLoc(), 839 Twine("IntrReadMem cannot be used after IntrNoMem or " 840 "IntrWriteMem. Default is ReadWrite")); 841 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 842 } else if (R->getName() == "IntrWriteMem") { 843 if (!(ModRef & MR_Mod)) 844 PrintFatalError(TheDef->getLoc(), 845 Twine("IntrWriteMem cannot be used after IntrNoMem or " 846 "IntrReadMem. Default is ReadWrite")); 847 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 848 } else if (R->getName() == "IntrArgMemOnly") 849 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 850 else if (R->getName() == "IntrInaccessibleMemOnly") 851 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 852 else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly") 853 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 854 MR_InaccessibleMem); 855 else if (R->getName() == "Commutative") 856 isCommutative = true; 857 else if (R->getName() == "Throws") 858 canThrow = true; 859 else if (R->getName() == "IntrNoDuplicate") 860 isNoDuplicate = true; 861 else if (R->getName() == "IntrNoMerge") 862 isNoMerge = true; 863 else if (R->getName() == "IntrConvergent") 864 isConvergent = true; 865 else if (R->getName() == "IntrNoReturn") 866 isNoReturn = true; 867 else if (R->getName() == "IntrNoSync") 868 isNoSync = true; 869 else if (R->getName() == "IntrNoFree") 870 isNoFree = true; 871 else if (R->getName() == "IntrWillReturn") 872 isWillReturn = !isNoReturn; 873 else if (R->getName() == "IntrCold") 874 isCold = true; 875 else if (R->getName() == "IntrSpeculatable") 876 isSpeculatable = true; 877 else if (R->getName() == "IntrHasSideEffects") 878 hasSideEffects = true; 879 else if (R->isSubClassOf("NoCapture")) { 880 unsigned ArgNo = R->getValueAsInt("ArgNo"); 881 ArgumentAttributes.emplace_back(ArgNo, NoCapture, 0); 882 } else if (R->isSubClassOf("NoAlias")) { 883 unsigned ArgNo = R->getValueAsInt("ArgNo"); 884 ArgumentAttributes.emplace_back(ArgNo, NoAlias, 0); 885 } else if (R->isSubClassOf("NoUndef")) { 886 unsigned ArgNo = R->getValueAsInt("ArgNo"); 887 ArgumentAttributes.emplace_back(ArgNo, NoUndef, 0); 888 } else if (R->isSubClassOf("Returned")) { 889 unsigned ArgNo = R->getValueAsInt("ArgNo"); 890 ArgumentAttributes.emplace_back(ArgNo, Returned, 0); 891 } else if (R->isSubClassOf("ReadOnly")) { 892 unsigned ArgNo = R->getValueAsInt("ArgNo"); 893 ArgumentAttributes.emplace_back(ArgNo, ReadOnly, 0); 894 } else if (R->isSubClassOf("WriteOnly")) { 895 unsigned ArgNo = R->getValueAsInt("ArgNo"); 896 ArgumentAttributes.emplace_back(ArgNo, WriteOnly, 0); 897 } else if (R->isSubClassOf("ReadNone")) { 898 unsigned ArgNo = R->getValueAsInt("ArgNo"); 899 ArgumentAttributes.emplace_back(ArgNo, ReadNone, 0); 900 } else if (R->isSubClassOf("ImmArg")) { 901 unsigned ArgNo = R->getValueAsInt("ArgNo"); 902 ArgumentAttributes.emplace_back(ArgNo, ImmArg, 0); 903 } else if (R->isSubClassOf("Align")) { 904 unsigned ArgNo = R->getValueAsInt("ArgNo"); 905 uint64_t Align = R->getValueAsInt("Align"); 906 ArgumentAttributes.emplace_back(ArgNo, Alignment, Align); 907 } else 908 llvm_unreachable("Unknown property!"); 909 } 910 911 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const { 912 if (ParamIdx >= IS.ParamVTs.size()) 913 return false; 914 MVT ParamType = MVT(IS.ParamVTs[ParamIdx]); 915 return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny; 916 } 917 918 bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const { 919 // Convert argument index to attribute index starting from `FirstArgIndex`. 920 ArgAttribute Val{ParamIdx + 1, ImmArg, 0}; 921 return std::binary_search(ArgumentAttributes.begin(), 922 ArgumentAttributes.end(), Val); 923 } 924