1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends.  This makes it easier to access the data and
12 // provides a single place that needs to check it for validity.  All of these
13 // classes abort on error conditions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodeGenTarget.h"
18 #include "CodeGenDAGPatterns.h"
19 #include "CodeGenIntrinsics.h"
20 #include "CodeGenSchedule.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include <algorithm>
27 using namespace llvm;
28 
29 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
30 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
31 
32 static cl::opt<unsigned>
33     AsmParserNum("asmparsernum", cl::init(0),
34                  cl::desc("Make -gen-asm-parser emit assembly parser #N"),
35                  cl::cat(AsmParserCat));
36 
37 static cl::opt<unsigned>
38     AsmWriterNum("asmwriternum", cl::init(0),
39                  cl::desc("Make -gen-asm-writer emit assembly writer #N"),
40                  cl::cat(AsmWriterCat));
41 
42 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
43 /// record corresponds to.
44 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
45   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
46 }
47 
48 StringRef llvm::getName(MVT::SimpleValueType T) {
49   switch (T) {
50   case MVT::Other:   return "UNKNOWN";
51   case MVT::iPTR:    return "TLI.getPointerTy()";
52   case MVT::iPTRAny: return "TLI.getPointerTy()";
53   default: return getEnumName(T);
54   }
55 }
56 
57 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
58   switch (T) {
59   case MVT::Other:    return "MVT::Other";
60   case MVT::i1:       return "MVT::i1";
61   case MVT::i8:       return "MVT::i8";
62   case MVT::i16:      return "MVT::i16";
63   case MVT::i32:      return "MVT::i32";
64   case MVT::i64:      return "MVT::i64";
65   case MVT::i128:     return "MVT::i128";
66   case MVT::Any:      return "MVT::Any";
67   case MVT::iAny:     return "MVT::iAny";
68   case MVT::fAny:     return "MVT::fAny";
69   case MVT::vAny:     return "MVT::vAny";
70   case MVT::f16:      return "MVT::f16";
71   case MVT::f32:      return "MVT::f32";
72   case MVT::f64:      return "MVT::f64";
73   case MVT::f80:      return "MVT::f80";
74   case MVT::f128:     return "MVT::f128";
75   case MVT::ppcf128:  return "MVT::ppcf128";
76   case MVT::x86mmx:   return "MVT::x86mmx";
77   case MVT::Glue:     return "MVT::Glue";
78   case MVT::isVoid:   return "MVT::isVoid";
79   case MVT::v1i1:     return "MVT::v1i1";
80   case MVT::v2i1:     return "MVT::v2i1";
81   case MVT::v4i1:     return "MVT::v4i1";
82   case MVT::v8i1:     return "MVT::v8i1";
83   case MVT::v16i1:    return "MVT::v16i1";
84   case MVT::v32i1:    return "MVT::v32i1";
85   case MVT::v64i1:    return "MVT::v64i1";
86   case MVT::v128i1:   return "MVT::v128i1";
87   case MVT::v512i1:   return "MVT::v512i1";
88   case MVT::v1024i1:  return "MVT::v1024i1";
89   case MVT::v1i8:     return "MVT::v1i8";
90   case MVT::v2i8:     return "MVT::v2i8";
91   case MVT::v4i8:     return "MVT::v4i8";
92   case MVT::v8i8:     return "MVT::v8i8";
93   case MVT::v16i8:    return "MVT::v16i8";
94   case MVT::v32i8:    return "MVT::v32i8";
95   case MVT::v64i8:    return "MVT::v64i8";
96   case MVT::v128i8:   return "MVT::v128i8";
97   case MVT::v256i8:   return "MVT::v256i8";
98   case MVT::v1i16:    return "MVT::v1i16";
99   case MVT::v2i16:    return "MVT::v2i16";
100   case MVT::v4i16:    return "MVT::v4i16";
101   case MVT::v8i16:    return "MVT::v8i16";
102   case MVT::v16i16:   return "MVT::v16i16";
103   case MVT::v32i16:   return "MVT::v32i16";
104   case MVT::v64i16:   return "MVT::v64i16";
105   case MVT::v128i16:  return "MVT::v128i16";
106   case MVT::v1i32:    return "MVT::v1i32";
107   case MVT::v2i32:    return "MVT::v2i32";
108   case MVT::v4i32:    return "MVT::v4i32";
109   case MVT::v8i32:    return "MVT::v8i32";
110   case MVT::v16i32:   return "MVT::v16i32";
111   case MVT::v32i32:   return "MVT::v32i32";
112   case MVT::v64i32:   return "MVT::v64i32";
113   case MVT::v1i64:    return "MVT::v1i64";
114   case MVT::v2i64:    return "MVT::v2i64";
115   case MVT::v4i64:    return "MVT::v4i64";
116   case MVT::v8i64:    return "MVT::v8i64";
117   case MVT::v16i64:   return "MVT::v16i64";
118   case MVT::v32i64:   return "MVT::v32i64";
119   case MVT::v1i128:   return "MVT::v1i128";
120   case MVT::v2f16:    return "MVT::v2f16";
121   case MVT::v4f16:    return "MVT::v4f16";
122   case MVT::v8f16:    return "MVT::v8f16";
123   case MVT::v1f32:    return "MVT::v1f32";
124   case MVT::v2f32:    return "MVT::v2f32";
125   case MVT::v4f32:    return "MVT::v4f32";
126   case MVT::v8f32:    return "MVT::v8f32";
127   case MVT::v16f32:   return "MVT::v16f32";
128   case MVT::v1f64:    return "MVT::v1f64";
129   case MVT::v2f64:    return "MVT::v2f64";
130   case MVT::v4f64:    return "MVT::v4f64";
131   case MVT::v8f64:    return "MVT::v8f64";
132   case MVT::nxv1i1:   return "MVT::nxv1i1";
133   case MVT::nxv2i1:   return "MVT::nxv2i1";
134   case MVT::nxv4i1:   return "MVT::nxv4i1";
135   case MVT::nxv8i1:   return "MVT::nxv8i1";
136   case MVT::nxv16i1:  return "MVT::nxv16i1";
137   case MVT::nxv32i1:  return "MVT::nxv32i1";
138   case MVT::nxv1i8:   return "MVT::nxv1i8";
139   case MVT::nxv2i8:   return "MVT::nxv2i8";
140   case MVT::nxv4i8:   return "MVT::nxv4i8";
141   case MVT::nxv8i8:   return "MVT::nxv8i8";
142   case MVT::nxv16i8:  return "MVT::nxv16i8";
143   case MVT::nxv32i8:  return "MVT::nxv32i8";
144   case MVT::nxv1i16:  return "MVT::nxv1i16";
145   case MVT::nxv2i16:  return "MVT::nxv2i16";
146   case MVT::nxv4i16:  return "MVT::nxv4i16";
147   case MVT::nxv8i16:  return "MVT::nxv8i16";
148   case MVT::nxv16i16: return "MVT::nxv16i16";
149   case MVT::nxv32i16: return "MVT::nxv32i16";
150   case MVT::nxv1i32:  return "MVT::nxv1i32";
151   case MVT::nxv2i32:  return "MVT::nxv2i32";
152   case MVT::nxv4i32:  return "MVT::nxv4i32";
153   case MVT::nxv8i32:  return "MVT::nxv8i32";
154   case MVT::nxv16i32: return "MVT::nxv16i32";
155   case MVT::nxv1i64:  return "MVT::nxv1i64";
156   case MVT::nxv2i64:  return "MVT::nxv2i64";
157   case MVT::nxv4i64:  return "MVT::nxv4i64";
158   case MVT::nxv8i64:  return "MVT::nxv8i64";
159   case MVT::nxv16i64: return "MVT::nxv16i64";
160   case MVT::nxv2f16:  return "MVT::nxv2f16";
161   case MVT::nxv4f16:  return "MVT::nxv4f16";
162   case MVT::nxv8f16:  return "MVT::nxv8f16";
163   case MVT::nxv1f32:  return "MVT::nxv1f32";
164   case MVT::nxv2f32:  return "MVT::nxv2f32";
165   case MVT::nxv4f32:  return "MVT::nxv4f32";
166   case MVT::nxv8f32:  return "MVT::nxv8f32";
167   case MVT::nxv16f32: return "MVT::nxv16f32";
168   case MVT::nxv1f64:  return "MVT::nxv1f64";
169   case MVT::nxv2f64:  return "MVT::nxv2f64";
170   case MVT::nxv4f64:  return "MVT::nxv4f64";
171   case MVT::nxv8f64:  return "MVT::nxv8f64";
172   case MVT::token:    return "MVT::token";
173   case MVT::Metadata: return "MVT::Metadata";
174   case MVT::iPTR:     return "MVT::iPTR";
175   case MVT::iPTRAny:  return "MVT::iPTRAny";
176   case MVT::Untyped:  return "MVT::Untyped";
177   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
178   }
179 }
180 
181 /// getQualifiedName - Return the name of the specified record, with a
182 /// namespace qualifier if the record contains one.
183 ///
184 std::string llvm::getQualifiedName(const Record *R) {
185   std::string Namespace;
186   if (R->getValue("Namespace"))
187      Namespace = R->getValueAsString("Namespace");
188   if (Namespace.empty()) return R->getName();
189   return Namespace + "::" + R->getName().str();
190 }
191 
192 
193 /// getTarget - Return the current instance of the Target class.
194 ///
195 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
196   : Records(records), CGH(records) {
197   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
198   if (Targets.size() == 0)
199     PrintFatalError("ERROR: No 'Target' subclasses defined!");
200   if (Targets.size() != 1)
201     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
202   TargetRec = Targets[0];
203 }
204 
205 CodeGenTarget::~CodeGenTarget() {
206 }
207 
208 const StringRef CodeGenTarget::getName() const {
209   return TargetRec->getName();
210 }
211 
212 StringRef CodeGenTarget::getInstNamespace() const {
213   for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
214     // Make sure not to pick up "TargetOpcode" by accidentally getting
215     // the namespace off the PHI instruction or something.
216     if (Inst->Namespace != "TargetOpcode")
217       return Inst->Namespace;
218   }
219 
220   return "";
221 }
222 
223 Record *CodeGenTarget::getInstructionSet() const {
224   return TargetRec->getValueAsDef("InstructionSet");
225 }
226 
227 bool CodeGenTarget::getAllowRegisterRenaming() const {
228   return TargetRec->getValueAsInt("AllowRegisterRenaming");
229 }
230 
231 /// getAsmParser - Return the AssemblyParser definition for this target.
232 ///
233 Record *CodeGenTarget::getAsmParser() const {
234   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
235   if (AsmParserNum >= LI.size())
236     PrintFatalError("Target does not have an AsmParser #" +
237                     Twine(AsmParserNum) + "!");
238   return LI[AsmParserNum];
239 }
240 
241 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
242 /// this target.
243 ///
244 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
245   std::vector<Record*> LI =
246     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
247   if (i >= LI.size())
248     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
249                     "!");
250   return LI[i];
251 }
252 
253 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
254 /// available for this target.
255 ///
256 unsigned CodeGenTarget::getAsmParserVariantCount() const {
257   std::vector<Record*> LI =
258     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
259   return LI.size();
260 }
261 
262 /// getAsmWriter - Return the AssemblyWriter definition for this target.
263 ///
264 Record *CodeGenTarget::getAsmWriter() const {
265   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
266   if (AsmWriterNum >= LI.size())
267     PrintFatalError("Target does not have an AsmWriter #" +
268                     Twine(AsmWriterNum) + "!");
269   return LI[AsmWriterNum];
270 }
271 
272 CodeGenRegBank &CodeGenTarget::getRegBank() const {
273   if (!RegBank)
274     RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes());
275   return *RegBank;
276 }
277 
278 void CodeGenTarget::ReadRegAltNameIndices() const {
279   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
280   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
281 }
282 
283 /// getRegisterByName - If there is a register with the specific AsmName,
284 /// return it.
285 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
286   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
287   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
288   if (I == Regs.end())
289     return nullptr;
290   return I->second;
291 }
292 
293 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
294       const {
295   const CodeGenRegister *Reg = getRegBank().getReg(R);
296   std::vector<ValueTypeByHwMode> Result;
297   for (const auto &RC : getRegBank().getRegClasses()) {
298     if (RC.contains(Reg)) {
299       ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
300       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
301     }
302   }
303 
304   // Remove duplicates.
305   std::sort(Result.begin(), Result.end());
306   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
307   return Result;
308 }
309 
310 
311 void CodeGenTarget::ReadLegalValueTypes() const {
312   for (const auto &RC : getRegBank().getRegClasses())
313     LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
314 
315   // Remove duplicates.
316   std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
317   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
318                                     LegalValueTypes.end()),
319                         LegalValueTypes.end());
320 }
321 
322 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
323   if (!SchedModels)
324     SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
325   return *SchedModels;
326 }
327 
328 void CodeGenTarget::ReadInstructions() const {
329   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
330   if (Insts.size() <= 2)
331     PrintFatalError("No 'Instruction' subclasses defined!");
332 
333   // Parse the instructions defined in the .td file.
334   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
335     Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
336 }
337 
338 static const CodeGenInstruction *
339 GetInstByName(const char *Name,
340               const DenseMap<const Record*,
341                              std::unique_ptr<CodeGenInstruction>> &Insts,
342               RecordKeeper &Records) {
343   const Record *Rec = Records.getDef(Name);
344 
345   const auto I = Insts.find(Rec);
346   if (!Rec || I == Insts.end())
347     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
348   return I->second.get();
349 }
350 
351 static const char *const FixedInstrs[] = {
352 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
353 #include "llvm/CodeGen/TargetOpcodes.def"
354     nullptr};
355 
356 unsigned CodeGenTarget::getNumFixedInstructions() {
357   return array_lengthof(FixedInstrs) - 1;
358 }
359 
360 /// \brief Return all of the instructions defined by the target, ordered by
361 /// their enum value.
362 void CodeGenTarget::ComputeInstrsByEnum() const {
363   const auto &Insts = getInstructions();
364   for (const char *const *p = FixedInstrs; *p; ++p) {
365     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
366     assert(Instr && "Missing target independent instruction");
367     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
368     InstrsByEnum.push_back(Instr);
369   }
370   unsigned EndOfPredefines = InstrsByEnum.size();
371   assert(EndOfPredefines == getNumFixedInstructions() &&
372          "Missing generic opcode");
373 
374   for (const auto &I : Insts) {
375     const CodeGenInstruction *CGI = I.second.get();
376     if (CGI->Namespace != "TargetOpcode")
377       InstrsByEnum.push_back(CGI);
378   }
379 
380   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
381 
382   // All of the instructions are now in random order based on the map iteration.
383   // Sort them by name.
384   std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
385             [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
386     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
387   });
388 }
389 
390 
391 /// isLittleEndianEncoding - Return whether this target encodes its instruction
392 /// in little-endian format, i.e. bits laid out in the order [0..n]
393 ///
394 bool CodeGenTarget::isLittleEndianEncoding() const {
395   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
396 }
397 
398 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
399 /// encodings, reverse the bit order of all instructions.
400 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
401   if (!isLittleEndianEncoding())
402     return;
403 
404   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
405   for (Record *R : Insts) {
406     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
407         R->getValueAsBit("isPseudo"))
408       continue;
409 
410     BitsInit *BI = R->getValueAsBitsInit("Inst");
411 
412     unsigned numBits = BI->getNumBits();
413 
414     SmallVector<Init *, 16> NewBits(numBits);
415 
416     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
417       unsigned bitSwapIdx = numBits - bit - 1;
418       Init *OrigBit = BI->getBit(bit);
419       Init *BitSwap = BI->getBit(bitSwapIdx);
420       NewBits[bit]        = BitSwap;
421       NewBits[bitSwapIdx] = OrigBit;
422     }
423     if (numBits % 2) {
424       unsigned middle = (numBits + 1) / 2;
425       NewBits[middle] = BI->getBit(middle);
426     }
427 
428     BitsInit *NewBI = BitsInit::get(NewBits);
429 
430     // Update the bits in reversed order so that emitInstrOpBits will get the
431     // correct endianness.
432     R->getValue("Inst")->setValue(NewBI);
433   }
434 }
435 
436 /// guessInstructionProperties - Return true if it's OK to guess instruction
437 /// properties instead of raising an error.
438 ///
439 /// This is configurable as a temporary migration aid. It will eventually be
440 /// permanently false.
441 bool CodeGenTarget::guessInstructionProperties() const {
442   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
443 }
444 
445 //===----------------------------------------------------------------------===//
446 // ComplexPattern implementation
447 //
448 ComplexPattern::ComplexPattern(Record *R) {
449   Ty          = ::getValueType(R->getValueAsDef("Ty"));
450   NumOperands = R->getValueAsInt("NumOperands");
451   SelectFunc  = R->getValueAsString("SelectFunc");
452   RootNodes   = R->getValueAsListOfDefs("RootNodes");
453 
454   // FIXME: This is a hack to statically increase the priority of patterns which
455   // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
456   // possible pattern match we'll need to dynamically calculate the complexity
457   // of all patterns a dag can potentially map to.
458   int64_t RawComplexity = R->getValueAsInt("Complexity");
459   if (RawComplexity == -1)
460     Complexity = NumOperands * 3;
461   else
462     Complexity = RawComplexity;
463 
464   // FIXME: Why is this different from parseSDPatternOperatorProperties?
465   // Parse the properties.
466   Properties = 0;
467   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
468   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
469     if (PropList[i]->getName() == "SDNPHasChain") {
470       Properties |= 1 << SDNPHasChain;
471     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
472       Properties |= 1 << SDNPOptInGlue;
473     } else if (PropList[i]->getName() == "SDNPMayStore") {
474       Properties |= 1 << SDNPMayStore;
475     } else if (PropList[i]->getName() == "SDNPMayLoad") {
476       Properties |= 1 << SDNPMayLoad;
477     } else if (PropList[i]->getName() == "SDNPSideEffect") {
478       Properties |= 1 << SDNPSideEffect;
479     } else if (PropList[i]->getName() == "SDNPMemOperand") {
480       Properties |= 1 << SDNPMemOperand;
481     } else if (PropList[i]->getName() == "SDNPVariadic") {
482       Properties |= 1 << SDNPVariadic;
483     } else if (PropList[i]->getName() == "SDNPWantRoot") {
484       Properties |= 1 << SDNPWantRoot;
485     } else if (PropList[i]->getName() == "SDNPWantParent") {
486       Properties |= 1 << SDNPWantParent;
487     } else {
488       PrintFatalError("Unsupported SD Node property '" +
489                       PropList[i]->getName() + "' on ComplexPattern '" +
490                       R->getName() + "'!");
491     }
492 }
493 
494 //===----------------------------------------------------------------------===//
495 // CodeGenIntrinsic Implementation
496 //===----------------------------------------------------------------------===//
497 
498 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC,
499                                              bool TargetOnly) {
500   std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic");
501 
502   Intrinsics.reserve(Defs.size());
503 
504   for (unsigned I = 0, e = Defs.size(); I != e; ++I) {
505     bool isTarget = Defs[I]->getValueAsBit("isTarget");
506     if (isTarget == TargetOnly)
507       Intrinsics.push_back(CodeGenIntrinsic(Defs[I]));
508   }
509   std::sort(Intrinsics.begin(), Intrinsics.end(),
510             [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
511               return std::tie(LHS.TargetPrefix, LHS.Name) <
512                      std::tie(RHS.TargetPrefix, RHS.Name);
513             });
514   Targets.push_back({"", 0, 0});
515   for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
516     if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
517       Targets.back().Count = I - Targets.back().Offset;
518       Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
519     }
520   Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
521 }
522 
523 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
524   TheDef = R;
525   std::string DefName = R->getName();
526   ModRef = ReadWriteMem;
527   Properties = 0;
528   isOverloaded = false;
529   isCommutative = false;
530   canThrow = false;
531   isNoReturn = false;
532   isNoDuplicate = false;
533   isConvergent = false;
534   isSpeculatable = false;
535   hasSideEffects = false;
536 
537   if (DefName.size() <= 4 ||
538       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
539     PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
540 
541   EnumName = std::string(DefName.begin()+4, DefName.end());
542 
543   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
544     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
545   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
546     MSBuiltinName = R->getValueAsString("MSBuiltinName");
547 
548   TargetPrefix = R->getValueAsString("TargetPrefix");
549   Name = R->getValueAsString("LLVMName");
550 
551   if (Name == "") {
552     // If an explicit name isn't specified, derive one from the DefName.
553     Name = "llvm.";
554 
555     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
556       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
557   } else {
558     // Verify it starts with "llvm.".
559     if (Name.size() <= 5 ||
560         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
561       PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
562   }
563 
564   // If TargetPrefix is specified, make sure that Name starts with
565   // "llvm.<targetprefix>.".
566   if (!TargetPrefix.empty()) {
567     if (Name.size() < 6+TargetPrefix.size() ||
568         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
569         != (TargetPrefix + "."))
570       PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
571         TargetPrefix + ".'!");
572   }
573 
574   // Parse the list of return types.
575   std::vector<MVT::SimpleValueType> OverloadedVTs;
576   ListInit *TypeList = R->getValueAsListInit("RetTypes");
577   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
578     Record *TyEl = TypeList->getElementAsRecord(i);
579     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
580     MVT::SimpleValueType VT;
581     if (TyEl->isSubClassOf("LLVMMatchType")) {
582       unsigned MatchTy = TyEl->getValueAsInt("Number");
583       assert(MatchTy < OverloadedVTs.size() &&
584              "Invalid matching number!");
585       VT = OverloadedVTs[MatchTy];
586       // It only makes sense to use the extended and truncated vector element
587       // variants with iAny types; otherwise, if the intrinsic is not
588       // overloaded, all the types can be specified directly.
589       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
590                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
591               VT == MVT::iAny || VT == MVT::vAny) &&
592              "Expected iAny or vAny type");
593     } else {
594       VT = getValueType(TyEl->getValueAsDef("VT"));
595     }
596     if (MVT(VT).isOverloaded()) {
597       OverloadedVTs.push_back(VT);
598       isOverloaded = true;
599     }
600 
601     // Reject invalid types.
602     if (VT == MVT::isVoid)
603       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
604 
605     IS.RetVTs.push_back(VT);
606     IS.RetTypeDefs.push_back(TyEl);
607   }
608 
609   // Parse the list of parameter types.
610   TypeList = R->getValueAsListInit("ParamTypes");
611   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
612     Record *TyEl = TypeList->getElementAsRecord(i);
613     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
614     MVT::SimpleValueType VT;
615     if (TyEl->isSubClassOf("LLVMMatchType")) {
616       unsigned MatchTy = TyEl->getValueAsInt("Number");
617       assert(MatchTy < OverloadedVTs.size() &&
618              "Invalid matching number!");
619       VT = OverloadedVTs[MatchTy];
620       // It only makes sense to use the extended and truncated vector element
621       // variants with iAny types; otherwise, if the intrinsic is not
622       // overloaded, all the types can be specified directly.
623       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
624                !TyEl->isSubClassOf("LLVMTruncatedType") &&
625                !TyEl->isSubClassOf("LLVMVectorSameWidth")) ||
626               VT == MVT::iAny || VT == MVT::vAny) &&
627              "Expected iAny or vAny type");
628     } else
629       VT = getValueType(TyEl->getValueAsDef("VT"));
630 
631     if (MVT(VT).isOverloaded()) {
632       OverloadedVTs.push_back(VT);
633       isOverloaded = true;
634     }
635 
636     // Reject invalid types.
637     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
638       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
639 
640     IS.ParamVTs.push_back(VT);
641     IS.ParamTypeDefs.push_back(TyEl);
642   }
643 
644   // Parse the intrinsic properties.
645   ListInit *PropList = R->getValueAsListInit("IntrProperties");
646   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
647     Record *Property = PropList->getElementAsRecord(i);
648     assert(Property->isSubClassOf("IntrinsicProperty") &&
649            "Expected a property!");
650 
651     if (Property->getName() == "IntrNoMem")
652       ModRef = NoMem;
653     else if (Property->getName() == "IntrReadMem")
654       ModRef = ModRefBehavior(ModRef & ~MR_Mod);
655     else if (Property->getName() == "IntrWriteMem")
656       ModRef = ModRefBehavior(ModRef & ~MR_Ref);
657     else if (Property->getName() == "IntrArgMemOnly")
658       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
659     else if (Property->getName() == "IntrInaccessibleMemOnly")
660       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
661     else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly")
662       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
663                               MR_InaccessibleMem);
664     else if (Property->getName() == "Commutative")
665       isCommutative = true;
666     else if (Property->getName() == "Throws")
667       canThrow = true;
668     else if (Property->getName() == "IntrNoDuplicate")
669       isNoDuplicate = true;
670     else if (Property->getName() == "IntrConvergent")
671       isConvergent = true;
672     else if (Property->getName() == "IntrNoReturn")
673       isNoReturn = true;
674     else if (Property->getName() == "IntrSpeculatable")
675       isSpeculatable = true;
676     else if (Property->getName() == "IntrHasSideEffects")
677       hasSideEffects = true;
678     else if (Property->isSubClassOf("NoCapture")) {
679       unsigned ArgNo = Property->getValueAsInt("ArgNo");
680       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
681     } else if (Property->isSubClassOf("Returned")) {
682       unsigned ArgNo = Property->getValueAsInt("ArgNo");
683       ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned));
684     } else if (Property->isSubClassOf("ReadOnly")) {
685       unsigned ArgNo = Property->getValueAsInt("ArgNo");
686       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
687     } else if (Property->isSubClassOf("WriteOnly")) {
688       unsigned ArgNo = Property->getValueAsInt("ArgNo");
689       ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly));
690     } else if (Property->isSubClassOf("ReadNone")) {
691       unsigned ArgNo = Property->getValueAsInt("ArgNo");
692       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
693     } else
694       llvm_unreachable("Unknown property!");
695   }
696 
697   // Also record the SDPatternOperator Properties.
698   Properties = parseSDPatternOperatorProperties(R);
699 
700   // Sort the argument attributes for later benefit.
701   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
702 }
703 
704