1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes throw exceptions on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "Record.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include <algorithm> 24 using namespace llvm; 25 26 static cl::opt<unsigned> 27 AsmParserNum("asmparsernum", cl::init(0), 28 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 29 30 static cl::opt<unsigned> 31 AsmWriterNum("asmwriternum", cl::init(0), 32 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 33 34 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 35 /// record corresponds to. 36 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 37 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 38 } 39 40 std::string llvm::getName(MVT::SimpleValueType T) { 41 switch (T) { 42 case MVT::Other: return "UNKNOWN"; 43 case MVT::iPTR: return "TLI.getPointerTy()"; 44 case MVT::iPTRAny: return "TLI.getPointerTy()"; 45 default: return getEnumName(T); 46 } 47 } 48 49 std::string llvm::getEnumName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "MVT::Other"; 52 case MVT::i1: return "MVT::i1"; 53 case MVT::i8: return "MVT::i8"; 54 case MVT::i16: return "MVT::i16"; 55 case MVT::i32: return "MVT::i32"; 56 case MVT::i64: return "MVT::i64"; 57 case MVT::i128: return "MVT::i128"; 58 case MVT::iAny: return "MVT::iAny"; 59 case MVT::fAny: return "MVT::fAny"; 60 case MVT::vAny: return "MVT::vAny"; 61 case MVT::f32: return "MVT::f32"; 62 case MVT::f64: return "MVT::f64"; 63 case MVT::f80: return "MVT::f80"; 64 case MVT::f128: return "MVT::f128"; 65 case MVT::ppcf128: return "MVT::ppcf128"; 66 case MVT::Flag: return "MVT::Flag"; 67 case MVT::isVoid:return "MVT::isVoid"; 68 case MVT::v2i8: return "MVT::v2i8"; 69 case MVT::v4i8: return "MVT::v4i8"; 70 case MVT::v8i8: return "MVT::v8i8"; 71 case MVT::v16i8: return "MVT::v16i8"; 72 case MVT::v32i8: return "MVT::v32i8"; 73 case MVT::v2i16: return "MVT::v2i16"; 74 case MVT::v4i16: return "MVT::v4i16"; 75 case MVT::v8i16: return "MVT::v8i16"; 76 case MVT::v16i16: return "MVT::v16i16"; 77 case MVT::v2i32: return "MVT::v2i32"; 78 case MVT::v4i32: return "MVT::v4i32"; 79 case MVT::v8i32: return "MVT::v8i32"; 80 case MVT::v1i64: return "MVT::v1i64"; 81 case MVT::v2i64: return "MVT::v2i64"; 82 case MVT::v4i64: return "MVT::v4i64"; 83 case MVT::v8i64: return "MVT::v8i64"; 84 case MVT::v2f32: return "MVT::v2f32"; 85 case MVT::v4f32: return "MVT::v4f32"; 86 case MVT::v8f32: return "MVT::v8f32"; 87 case MVT::v2f64: return "MVT::v2f64"; 88 case MVT::v4f64: return "MVT::v4f64"; 89 case MVT::Metadata: return "MVT::Metadata"; 90 case MVT::iPTR: return "MVT::iPTR"; 91 case MVT::iPTRAny: return "MVT::iPTRAny"; 92 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 93 } 94 } 95 96 /// getQualifiedName - Return the name of the specified record, with a 97 /// namespace qualifier if the record contains one. 98 /// 99 std::string llvm::getQualifiedName(const Record *R) { 100 std::string Namespace = R->getValueAsString("Namespace"); 101 if (Namespace.empty()) return R->getName(); 102 return Namespace + "::" + R->getName(); 103 } 104 105 106 107 108 /// getTarget - Return the current instance of the Target class. 109 /// 110 CodeGenTarget::CodeGenTarget() { 111 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 112 if (Targets.size() == 0) 113 throw std::string("ERROR: No 'Target' subclasses defined!"); 114 if (Targets.size() != 1) 115 throw std::string("ERROR: Multiple subclasses of Target defined!"); 116 TargetRec = Targets[0]; 117 } 118 119 120 const std::string &CodeGenTarget::getName() const { 121 return TargetRec->getName(); 122 } 123 124 std::string CodeGenTarget::getInstNamespace() const { 125 for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { 126 // Make sure not to pick up "TargetOpcode" by accidentally getting 127 // the namespace off the PHI instruction or something. 128 if ((*i)->Namespace != "TargetOpcode") 129 return (*i)->Namespace; 130 } 131 132 return ""; 133 } 134 135 Record *CodeGenTarget::getInstructionSet() const { 136 return TargetRec->getValueAsDef("InstructionSet"); 137 } 138 139 140 /// getAsmParser - Return the AssemblyParser definition for this target. 141 /// 142 Record *CodeGenTarget::getAsmParser() const { 143 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 144 if (AsmParserNum >= LI.size()) 145 throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!"; 146 return LI[AsmParserNum]; 147 } 148 149 /// getAsmWriter - Return the AssemblyWriter definition for this target. 150 /// 151 Record *CodeGenTarget::getAsmWriter() const { 152 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 153 if (AsmWriterNum >= LI.size()) 154 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; 155 return LI[AsmWriterNum]; 156 } 157 158 void CodeGenTarget::ReadRegisters() const { 159 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 160 if (Regs.empty()) 161 throw std::string("No 'Register' subclasses defined!"); 162 163 Registers.reserve(Regs.size()); 164 Registers.assign(Regs.begin(), Regs.end()); 165 } 166 167 CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) { 168 DeclaredSpillSize = R->getValueAsInt("SpillSize"); 169 DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment"); 170 } 171 172 const std::string &CodeGenRegister::getName() const { 173 return TheDef->getName(); 174 } 175 176 void CodeGenTarget::ReadSubRegIndices() const { 177 SubRegIndices = Records.getAllDerivedDefinitions("SubRegIndex"); 178 } 179 180 void CodeGenTarget::ReadRegisterClasses() const { 181 std::vector<Record*> RegClasses = 182 Records.getAllDerivedDefinitions("RegisterClass"); 183 if (RegClasses.empty()) 184 throw std::string("No 'RegisterClass' subclasses defined!"); 185 186 RegisterClasses.reserve(RegClasses.size()); 187 RegisterClasses.assign(RegClasses.begin(), RegClasses.end()); 188 } 189 190 std::vector<MVT::SimpleValueType> CodeGenTarget:: 191 getRegisterVTs(Record *R) const { 192 std::vector<MVT::SimpleValueType> Result; 193 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 194 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 195 const CodeGenRegisterClass &RC = RegisterClasses[i]; 196 for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) { 197 if (R == RC.Elements[ei]) { 198 const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes(); 199 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 200 } 201 } 202 } 203 204 // Remove duplicates. 205 array_pod_sort(Result.begin(), Result.end()); 206 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 207 return Result; 208 } 209 210 211 CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) { 212 // Rename anonymous register classes. 213 if (R->getName().size() > 9 && R->getName()[9] == '.') { 214 static unsigned AnonCounter = 0; 215 R->setName("AnonRegClass_"+utostr(AnonCounter++)); 216 } 217 218 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 219 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 220 Record *Type = TypeList[i]; 221 if (!Type->isSubClassOf("ValueType")) 222 throw "RegTypes list member '" + Type->getName() + 223 "' does not derive from the ValueType class!"; 224 VTs.push_back(getValueType(Type)); 225 } 226 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 227 228 std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList"); 229 for (unsigned i = 0, e = RegList.size(); i != e; ++i) { 230 Record *Reg = RegList[i]; 231 if (!Reg->isSubClassOf("Register")) 232 throw "Register Class member '" + Reg->getName() + 233 "' does not derive from the Register class!"; 234 Elements.push_back(Reg); 235 } 236 237 // SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags. 238 ListInit *SRC = R->getValueAsListInit("SubRegClasses"); 239 for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) { 240 DagInit *DAG = dynamic_cast<DagInit*>(*i); 241 if (!DAG) throw "SubRegClasses must contain DAGs"; 242 DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator()); 243 Record *RCRec; 244 if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass")) 245 throw "Operator '" + DAG->getOperator()->getAsString() + 246 "' in SubRegClasses is not a RegisterClass"; 247 // Iterate over args, all SubRegIndex instances. 248 for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end(); 249 ai != ae; ++ai) { 250 DefInit *Idx = dynamic_cast<DefInit*>(*ai); 251 Record *IdxRec; 252 if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex")) 253 throw "Argument '" + (*ai)->getAsString() + 254 "' in SubRegClasses is not a SubRegIndex"; 255 if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second) 256 throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice"; 257 } 258 } 259 260 // Allow targets to override the size in bits of the RegisterClass. 261 unsigned Size = R->getValueAsInt("Size"); 262 263 Namespace = R->getValueAsString("Namespace"); 264 SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits(); 265 SpillAlignment = R->getValueAsInt("Alignment"); 266 CopyCost = R->getValueAsInt("CopyCost"); 267 MethodBodies = R->getValueAsCode("MethodBodies"); 268 MethodProtos = R->getValueAsCode("MethodProtos"); 269 } 270 271 const std::string &CodeGenRegisterClass::getName() const { 272 return TheDef->getName(); 273 } 274 275 void CodeGenTarget::ReadLegalValueTypes() const { 276 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 277 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 278 for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri) 279 LegalValueTypes.push_back(RCs[i].VTs[ri]); 280 281 // Remove duplicates. 282 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 283 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 284 LegalValueTypes.end()), 285 LegalValueTypes.end()); 286 } 287 288 289 void CodeGenTarget::ReadInstructions() const { 290 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 291 if (Insts.size() <= 2) 292 throw std::string("No 'Instruction' subclasses defined!"); 293 294 // Parse the instructions defined in the .td file. 295 std::string InstFormatName = 296 getAsmWriter()->getValueAsString("InstFormatName"); 297 298 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 299 std::string AsmStr = Insts[i]->getValueAsString(InstFormatName); 300 Instructions[Insts[i]] = new CodeGenInstruction(Insts[i], AsmStr); 301 } 302 } 303 304 static const CodeGenInstruction * 305 GetInstByName(const char *Name, 306 const DenseMap<const Record*, CodeGenInstruction*> &Insts) { 307 const Record *Rec = Records.getDef(Name); 308 309 DenseMap<const Record*, CodeGenInstruction*>::const_iterator 310 I = Insts.find(Rec); 311 if (Rec == 0 || I == Insts.end()) 312 throw std::string("Could not find '") + Name + "' instruction!"; 313 return I->second; 314 } 315 316 namespace { 317 /// SortInstByName - Sorting predicate to sort instructions by name. 318 /// 319 struct SortInstByName { 320 bool operator()(const CodeGenInstruction *Rec1, 321 const CodeGenInstruction *Rec2) const { 322 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 323 } 324 }; 325 } 326 327 /// getInstructionsByEnumValue - Return all of the instructions defined by the 328 /// target, ordered by their enum value. 329 void CodeGenTarget::ComputeInstrsByEnum() const { 330 const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions(); 331 const CodeGenInstruction *PHI = GetInstByName("PHI", Insts); 332 const CodeGenInstruction *INLINEASM = GetInstByName("INLINEASM", Insts); 333 const CodeGenInstruction *DBG_LABEL = GetInstByName("DBG_LABEL", Insts); 334 const CodeGenInstruction *EH_LABEL = GetInstByName("EH_LABEL", Insts); 335 const CodeGenInstruction *GC_LABEL = GetInstByName("GC_LABEL", Insts); 336 const CodeGenInstruction *KILL = GetInstByName("KILL", Insts); 337 const CodeGenInstruction *EXTRACT_SUBREG = 338 GetInstByName("EXTRACT_SUBREG", Insts); 339 const CodeGenInstruction *INSERT_SUBREG = 340 GetInstByName("INSERT_SUBREG", Insts); 341 const CodeGenInstruction *IMPLICIT_DEF = GetInstByName("IMPLICIT_DEF", Insts); 342 const CodeGenInstruction *SUBREG_TO_REG = 343 GetInstByName("SUBREG_TO_REG", Insts); 344 const CodeGenInstruction *COPY_TO_REGCLASS = 345 GetInstByName("COPY_TO_REGCLASS", Insts); 346 const CodeGenInstruction *DBG_VALUE = GetInstByName("DBG_VALUE", Insts); 347 const CodeGenInstruction *REG_SEQUENCE = GetInstByName("REG_SEQUENCE", Insts); 348 349 // Print out the rest of the instructions now. 350 InstrsByEnum.push_back(PHI); 351 InstrsByEnum.push_back(INLINEASM); 352 InstrsByEnum.push_back(DBG_LABEL); 353 InstrsByEnum.push_back(EH_LABEL); 354 InstrsByEnum.push_back(GC_LABEL); 355 InstrsByEnum.push_back(KILL); 356 InstrsByEnum.push_back(EXTRACT_SUBREG); 357 InstrsByEnum.push_back(INSERT_SUBREG); 358 InstrsByEnum.push_back(IMPLICIT_DEF); 359 InstrsByEnum.push_back(SUBREG_TO_REG); 360 InstrsByEnum.push_back(COPY_TO_REGCLASS); 361 InstrsByEnum.push_back(DBG_VALUE); 362 InstrsByEnum.push_back(REG_SEQUENCE); 363 364 unsigned EndOfPredefines = InstrsByEnum.size(); 365 366 for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator 367 I = Insts.begin(), E = Insts.end(); I != E; ++I) { 368 const CodeGenInstruction *CGI = I->second; 369 if (CGI != PHI && 370 CGI != INLINEASM && 371 CGI != DBG_LABEL && 372 CGI != EH_LABEL && 373 CGI != GC_LABEL && 374 CGI != KILL && 375 CGI != EXTRACT_SUBREG && 376 CGI != INSERT_SUBREG && 377 CGI != IMPLICIT_DEF && 378 CGI != SUBREG_TO_REG && 379 CGI != COPY_TO_REGCLASS && 380 CGI != DBG_VALUE && 381 CGI != REG_SEQUENCE) 382 InstrsByEnum.push_back(CGI); 383 } 384 385 // All of the instructions are now in random order based on the map iteration. 386 // Sort them by name. 387 std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(), 388 SortInstByName()); 389 } 390 391 392 /// isLittleEndianEncoding - Return whether this target encodes its instruction 393 /// in little-endian format, i.e. bits laid out in the order [0..n] 394 /// 395 bool CodeGenTarget::isLittleEndianEncoding() const { 396 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 397 } 398 399 //===----------------------------------------------------------------------===// 400 // ComplexPattern implementation 401 // 402 ComplexPattern::ComplexPattern(Record *R) { 403 Ty = ::getValueType(R->getValueAsDef("Ty")); 404 NumOperands = R->getValueAsInt("NumOperands"); 405 SelectFunc = R->getValueAsString("SelectFunc"); 406 RootNodes = R->getValueAsListOfDefs("RootNodes"); 407 408 // Parse the properties. 409 Properties = 0; 410 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 411 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 412 if (PropList[i]->getName() == "SDNPHasChain") { 413 Properties |= 1 << SDNPHasChain; 414 } else if (PropList[i]->getName() == "SDNPOptInFlag") { 415 Properties |= 1 << SDNPOptInFlag; 416 } else if (PropList[i]->getName() == "SDNPMayStore") { 417 Properties |= 1 << SDNPMayStore; 418 } else if (PropList[i]->getName() == "SDNPMayLoad") { 419 Properties |= 1 << SDNPMayLoad; 420 } else if (PropList[i]->getName() == "SDNPSideEffect") { 421 Properties |= 1 << SDNPSideEffect; 422 } else if (PropList[i]->getName() == "SDNPMemOperand") { 423 Properties |= 1 << SDNPMemOperand; 424 } else if (PropList[i]->getName() == "SDNPVariadic") { 425 Properties |= 1 << SDNPVariadic; 426 } else { 427 errs() << "Unsupported SD Node property '" << PropList[i]->getName() 428 << "' on ComplexPattern '" << R->getName() << "'!\n"; 429 exit(1); 430 } 431 } 432 433 //===----------------------------------------------------------------------===// 434 // CodeGenIntrinsic Implementation 435 //===----------------------------------------------------------------------===// 436 437 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 438 bool TargetOnly) { 439 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 440 441 std::vector<CodeGenIntrinsic> Result; 442 443 for (unsigned i = 0, e = I.size(); i != e; ++i) { 444 bool isTarget = I[i]->getValueAsBit("isTarget"); 445 if (isTarget == TargetOnly) 446 Result.push_back(CodeGenIntrinsic(I[i])); 447 } 448 return Result; 449 } 450 451 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 452 TheDef = R; 453 std::string DefName = R->getName(); 454 ModRef = WriteMem; 455 isOverloaded = false; 456 isCommutative = false; 457 458 if (DefName.size() <= 4 || 459 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 460 throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; 461 462 EnumName = std::string(DefName.begin()+4, DefName.end()); 463 464 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 465 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 466 467 TargetPrefix = R->getValueAsString("TargetPrefix"); 468 Name = R->getValueAsString("LLVMName"); 469 470 if (Name == "") { 471 // If an explicit name isn't specified, derive one from the DefName. 472 Name = "llvm."; 473 474 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 475 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 476 } else { 477 // Verify it starts with "llvm.". 478 if (Name.size() <= 5 || 479 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 480 throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; 481 } 482 483 // If TargetPrefix is specified, make sure that Name starts with 484 // "llvm.<targetprefix>.". 485 if (!TargetPrefix.empty()) { 486 if (Name.size() < 6+TargetPrefix.size() || 487 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 488 != (TargetPrefix + ".")) 489 throw "Intrinsic '" + DefName + "' does not start with 'llvm." + 490 TargetPrefix + ".'!"; 491 } 492 493 // Parse the list of return types. 494 std::vector<MVT::SimpleValueType> OverloadedVTs; 495 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 496 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 497 Record *TyEl = TypeList->getElementAsRecord(i); 498 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 499 MVT::SimpleValueType VT; 500 if (TyEl->isSubClassOf("LLVMMatchType")) { 501 unsigned MatchTy = TyEl->getValueAsInt("Number"); 502 assert(MatchTy < OverloadedVTs.size() && 503 "Invalid matching number!"); 504 VT = OverloadedVTs[MatchTy]; 505 // It only makes sense to use the extended and truncated vector element 506 // variants with iAny types; otherwise, if the intrinsic is not 507 // overloaded, all the types can be specified directly. 508 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 509 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 510 VT == MVT::iAny || VT == MVT::vAny) && 511 "Expected iAny or vAny type"); 512 } else { 513 VT = getValueType(TyEl->getValueAsDef("VT")); 514 } 515 if (EVT(VT).isOverloaded()) { 516 OverloadedVTs.push_back(VT); 517 isOverloaded = true; 518 } 519 520 // Reject invalid types. 521 if (VT == MVT::isVoid) 522 throw "Intrinsic '" + DefName + " has void in result type list!"; 523 524 IS.RetVTs.push_back(VT); 525 IS.RetTypeDefs.push_back(TyEl); 526 } 527 528 // Parse the list of parameter types. 529 TypeList = R->getValueAsListInit("ParamTypes"); 530 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 531 Record *TyEl = TypeList->getElementAsRecord(i); 532 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 533 MVT::SimpleValueType VT; 534 if (TyEl->isSubClassOf("LLVMMatchType")) { 535 unsigned MatchTy = TyEl->getValueAsInt("Number"); 536 assert(MatchTy < OverloadedVTs.size() && 537 "Invalid matching number!"); 538 VT = OverloadedVTs[MatchTy]; 539 // It only makes sense to use the extended and truncated vector element 540 // variants with iAny types; otherwise, if the intrinsic is not 541 // overloaded, all the types can be specified directly. 542 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 543 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 544 VT == MVT::iAny || VT == MVT::vAny) && 545 "Expected iAny or vAny type"); 546 } else 547 VT = getValueType(TyEl->getValueAsDef("VT")); 548 549 if (EVT(VT).isOverloaded()) { 550 OverloadedVTs.push_back(VT); 551 isOverloaded = true; 552 } 553 554 // Reject invalid types. 555 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 556 throw "Intrinsic '" + DefName + " has void in result type list!"; 557 558 IS.ParamVTs.push_back(VT); 559 IS.ParamTypeDefs.push_back(TyEl); 560 } 561 562 // Parse the intrinsic properties. 563 ListInit *PropList = R->getValueAsListInit("Properties"); 564 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 565 Record *Property = PropList->getElementAsRecord(i); 566 assert(Property->isSubClassOf("IntrinsicProperty") && 567 "Expected a property!"); 568 569 if (Property->getName() == "IntrNoMem") 570 ModRef = NoMem; 571 else if (Property->getName() == "IntrReadArgMem") 572 ModRef = ReadArgMem; 573 else if (Property->getName() == "IntrReadMem") 574 ModRef = ReadMem; 575 else if (Property->getName() == "IntrWriteArgMem") 576 ModRef = WriteArgMem; 577 else if (Property->getName() == "IntrWriteMem") 578 ModRef = WriteMem; 579 else if (Property->getName() == "Commutative") 580 isCommutative = true; 581 else if (Property->isSubClassOf("NoCapture")) { 582 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 583 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 584 } else 585 assert(0 && "Unknown property!"); 586 } 587 } 588