1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes abort on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/TableGen/Error.h" 24 #include "llvm/TableGen/Record.h" 25 #include <algorithm> 26 using namespace llvm; 27 28 static cl::opt<unsigned> 29 AsmParserNum("asmparsernum", cl::init(0), 30 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 31 32 static cl::opt<unsigned> 33 AsmWriterNum("asmwriternum", cl::init(0), 34 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 35 36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 37 /// record corresponds to. 38 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 39 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 40 } 41 42 std::string llvm::getName(MVT::SimpleValueType T) { 43 switch (T) { 44 case MVT::Other: return "UNKNOWN"; 45 case MVT::iPTR: return "TLI.getPointerTy()"; 46 case MVT::iPTRAny: return "TLI.getPointerTy()"; 47 default: return getEnumName(T); 48 } 49 } 50 51 std::string llvm::getEnumName(MVT::SimpleValueType T) { 52 switch (T) { 53 case MVT::Other: return "MVT::Other"; 54 case MVT::i1: return "MVT::i1"; 55 case MVT::i8: return "MVT::i8"; 56 case MVT::i16: return "MVT::i16"; 57 case MVT::i32: return "MVT::i32"; 58 case MVT::i64: return "MVT::i64"; 59 case MVT::i128: return "MVT::i128"; 60 case MVT::iAny: return "MVT::iAny"; 61 case MVT::fAny: return "MVT::fAny"; 62 case MVT::vAny: return "MVT::vAny"; 63 case MVT::f16: return "MVT::f16"; 64 case MVT::f32: return "MVT::f32"; 65 case MVT::f64: return "MVT::f64"; 66 case MVT::f80: return "MVT::f80"; 67 case MVT::f128: return "MVT::f128"; 68 case MVT::ppcf128: return "MVT::ppcf128"; 69 case MVT::x86mmx: return "MVT::x86mmx"; 70 case MVT::Glue: return "MVT::Glue"; 71 case MVT::isVoid: return "MVT::isVoid"; 72 case MVT::v2i1: return "MVT::v2i1"; 73 case MVT::v4i1: return "MVT::v4i1"; 74 case MVT::v8i1: return "MVT::v8i1"; 75 case MVT::v16i1: return "MVT::v16i1"; 76 case MVT::v32i1: return "MVT::v32i1"; 77 case MVT::v64i1: return "MVT::v64i1"; 78 case MVT::v1i8: return "MVT::v1i8"; 79 case MVT::v2i8: return "MVT::v2i8"; 80 case MVT::v4i8: return "MVT::v4i8"; 81 case MVT::v8i8: return "MVT::v8i8"; 82 case MVT::v16i8: return "MVT::v16i8"; 83 case MVT::v32i8: return "MVT::v32i8"; 84 case MVT::v64i8: return "MVT::v64i8"; 85 case MVT::v1i16: return "MVT::v1i16"; 86 case MVT::v2i16: return "MVT::v2i16"; 87 case MVT::v4i16: return "MVT::v4i16"; 88 case MVT::v8i16: return "MVT::v8i16"; 89 case MVT::v16i16: return "MVT::v16i16"; 90 case MVT::v32i16: return "MVT::v32i16"; 91 case MVT::v1i32: return "MVT::v1i32"; 92 case MVT::v2i32: return "MVT::v2i32"; 93 case MVT::v4i32: return "MVT::v4i32"; 94 case MVT::v8i32: return "MVT::v8i32"; 95 case MVT::v16i32: return "MVT::v16i32"; 96 case MVT::v1i64: return "MVT::v1i64"; 97 case MVT::v2i64: return "MVT::v2i64"; 98 case MVT::v4i64: return "MVT::v4i64"; 99 case MVT::v8i64: return "MVT::v8i64"; 100 case MVT::v16i64: return "MVT::v16i64"; 101 case MVT::v2f16: return "MVT::v2f16"; 102 case MVT::v4f16: return "MVT::v4f16"; 103 case MVT::v8f16: return "MVT::v8f16"; 104 case MVT::v1f32: return "MVT::v1f32"; 105 case MVT::v2f32: return "MVT::v2f32"; 106 case MVT::v4f32: return "MVT::v4f32"; 107 case MVT::v8f32: return "MVT::v8f32"; 108 case MVT::v16f32: return "MVT::v16f32"; 109 case MVT::v1f64: return "MVT::v1f64"; 110 case MVT::v2f64: return "MVT::v2f64"; 111 case MVT::v4f64: return "MVT::v4f64"; 112 case MVT::v8f64: return "MVT::v8f64"; 113 case MVT::Metadata: return "MVT::Metadata"; 114 case MVT::iPTR: return "MVT::iPTR"; 115 case MVT::iPTRAny: return "MVT::iPTRAny"; 116 case MVT::Untyped: return "MVT::Untyped"; 117 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 118 } 119 } 120 121 /// getQualifiedName - Return the name of the specified record, with a 122 /// namespace qualifier if the record contains one. 123 /// 124 std::string llvm::getQualifiedName(const Record *R) { 125 std::string Namespace; 126 if (R->getValue("Namespace")) 127 Namespace = R->getValueAsString("Namespace"); 128 if (Namespace.empty()) return R->getName(); 129 return Namespace + "::" + R->getName(); 130 } 131 132 133 /// getTarget - Return the current instance of the Target class. 134 /// 135 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 136 : Records(records), RegBank(nullptr), SchedModels(nullptr) { 137 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 138 if (Targets.size() == 0) 139 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 140 if (Targets.size() != 1) 141 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 142 TargetRec = Targets[0]; 143 } 144 145 CodeGenTarget::~CodeGenTarget() { 146 DeleteContainerSeconds(Instructions); 147 delete RegBank; 148 delete SchedModels; 149 } 150 151 const std::string &CodeGenTarget::getName() const { 152 return TargetRec->getName(); 153 } 154 155 std::string CodeGenTarget::getInstNamespace() const { 156 for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { 157 // Make sure not to pick up "TargetOpcode" by accidentally getting 158 // the namespace off the PHI instruction or something. 159 if ((*i)->Namespace != "TargetOpcode") 160 return (*i)->Namespace; 161 } 162 163 return ""; 164 } 165 166 Record *CodeGenTarget::getInstructionSet() const { 167 return TargetRec->getValueAsDef("InstructionSet"); 168 } 169 170 171 /// getAsmParser - Return the AssemblyParser definition for this target. 172 /// 173 Record *CodeGenTarget::getAsmParser() const { 174 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 175 if (AsmParserNum >= LI.size()) 176 PrintFatalError("Target does not have an AsmParser #" + 177 Twine(AsmParserNum) + "!"); 178 return LI[AsmParserNum]; 179 } 180 181 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 182 /// this target. 183 /// 184 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 185 std::vector<Record*> LI = 186 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 187 if (i >= LI.size()) 188 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 189 "!"); 190 return LI[i]; 191 } 192 193 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 194 /// available for this target. 195 /// 196 unsigned CodeGenTarget::getAsmParserVariantCount() const { 197 std::vector<Record*> LI = 198 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 199 return LI.size(); 200 } 201 202 /// getAsmWriter - Return the AssemblyWriter definition for this target. 203 /// 204 Record *CodeGenTarget::getAsmWriter() const { 205 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 206 if (AsmWriterNum >= LI.size()) 207 PrintFatalError("Target does not have an AsmWriter #" + 208 Twine(AsmWriterNum) + "!"); 209 return LI[AsmWriterNum]; 210 } 211 212 CodeGenRegBank &CodeGenTarget::getRegBank() const { 213 if (!RegBank) 214 RegBank = new CodeGenRegBank(Records); 215 return *RegBank; 216 } 217 218 void CodeGenTarget::ReadRegAltNameIndices() const { 219 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 220 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 221 } 222 223 /// getRegisterByName - If there is a register with the specific AsmName, 224 /// return it. 225 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 226 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 227 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 228 if (I == Regs.end()) 229 return nullptr; 230 return I->second; 231 } 232 233 std::vector<MVT::SimpleValueType> CodeGenTarget:: 234 getRegisterVTs(Record *R) const { 235 const CodeGenRegister *Reg = getRegBank().getReg(R); 236 std::vector<MVT::SimpleValueType> Result; 237 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 238 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 239 const CodeGenRegisterClass &RC = *RCs[i]; 240 if (RC.contains(Reg)) { 241 ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes(); 242 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 243 } 244 } 245 246 // Remove duplicates. 247 array_pod_sort(Result.begin(), Result.end()); 248 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 249 return Result; 250 } 251 252 253 void CodeGenTarget::ReadLegalValueTypes() const { 254 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 255 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 256 for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri) 257 LegalValueTypes.push_back(RCs[i]->VTs[ri]); 258 259 // Remove duplicates. 260 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 261 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 262 LegalValueTypes.end()), 263 LegalValueTypes.end()); 264 } 265 266 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 267 if (!SchedModels) 268 SchedModels = new CodeGenSchedModels(Records, *this); 269 return *SchedModels; 270 } 271 272 void CodeGenTarget::ReadInstructions() const { 273 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 274 if (Insts.size() <= 2) 275 PrintFatalError("No 'Instruction' subclasses defined!"); 276 277 // Parse the instructions defined in the .td file. 278 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 279 Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]); 280 } 281 282 static const CodeGenInstruction * 283 GetInstByName(const char *Name, 284 const DenseMap<const Record*, CodeGenInstruction*> &Insts, 285 RecordKeeper &Records) { 286 const Record *Rec = Records.getDef(Name); 287 288 DenseMap<const Record*, CodeGenInstruction*>::const_iterator 289 I = Insts.find(Rec); 290 if (!Rec || I == Insts.end()) 291 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 292 return I->second; 293 } 294 295 /// \brief Return all of the instructions defined by the target, ordered by 296 /// their enum value. 297 void CodeGenTarget::ComputeInstrsByEnum() const { 298 // The ordering here must match the ordering in TargetOpcodes.h. 299 static const char *const FixedInstrs[] = { 300 "PHI", "INLINEASM", "CFI_INSTRUCTION", "EH_LABEL", 301 "GC_LABEL", "KILL", "EXTRACT_SUBREG", "INSERT_SUBREG", 302 "IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE", 303 "REG_SEQUENCE", "COPY", "BUNDLE", "LIFETIME_START", 304 "LIFETIME_END", "STACKMAP", "PATCHPOINT", "LOAD_STACK_GUARD", 305 nullptr}; 306 const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions(); 307 for (const char *const *p = FixedInstrs; *p; ++p) { 308 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 309 assert(Instr && "Missing target independent instruction"); 310 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 311 InstrsByEnum.push_back(Instr); 312 } 313 unsigned EndOfPredefines = InstrsByEnum.size(); 314 315 for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator 316 I = Insts.begin(), E = Insts.end(); I != E; ++I) { 317 const CodeGenInstruction *CGI = I->second; 318 if (CGI->Namespace != "TargetOpcode") 319 InstrsByEnum.push_back(CGI); 320 } 321 322 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 323 324 // All of the instructions are now in random order based on the map iteration. 325 // Sort them by name. 326 std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 327 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 328 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 329 }); 330 } 331 332 333 /// isLittleEndianEncoding - Return whether this target encodes its instruction 334 /// in little-endian format, i.e. bits laid out in the order [0..n] 335 /// 336 bool CodeGenTarget::isLittleEndianEncoding() const { 337 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 338 } 339 340 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 341 /// encodings, reverse the bit order of all instructions. 342 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 343 if (!isLittleEndianEncoding()) 344 return; 345 346 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 347 for (std::vector<Record*>::iterator I = Insts.begin(), E = Insts.end(); 348 I != E; ++I) { 349 Record *R = *I; 350 if (R->getValueAsString("Namespace") == "TargetOpcode" || 351 R->getValueAsBit("isPseudo")) 352 continue; 353 354 BitsInit *BI = R->getValueAsBitsInit("Inst"); 355 356 unsigned numBits = BI->getNumBits(); 357 358 SmallVector<Init *, 16> NewBits(numBits); 359 360 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 361 unsigned bitSwapIdx = numBits - bit - 1; 362 Init *OrigBit = BI->getBit(bit); 363 Init *BitSwap = BI->getBit(bitSwapIdx); 364 NewBits[bit] = BitSwap; 365 NewBits[bitSwapIdx] = OrigBit; 366 } 367 if (numBits % 2) { 368 unsigned middle = (numBits + 1) / 2; 369 NewBits[middle] = BI->getBit(middle); 370 } 371 372 BitsInit *NewBI = BitsInit::get(NewBits); 373 374 // Update the bits in reversed order so that emitInstrOpBits will get the 375 // correct endianness. 376 R->getValue("Inst")->setValue(NewBI); 377 } 378 } 379 380 /// guessInstructionProperties - Return true if it's OK to guess instruction 381 /// properties instead of raising an error. 382 /// 383 /// This is configurable as a temporary migration aid. It will eventually be 384 /// permanently false. 385 bool CodeGenTarget::guessInstructionProperties() const { 386 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 387 } 388 389 //===----------------------------------------------------------------------===// 390 // ComplexPattern implementation 391 // 392 ComplexPattern::ComplexPattern(Record *R) { 393 Ty = ::getValueType(R->getValueAsDef("Ty")); 394 NumOperands = R->getValueAsInt("NumOperands"); 395 SelectFunc = R->getValueAsString("SelectFunc"); 396 RootNodes = R->getValueAsListOfDefs("RootNodes"); 397 398 // Parse the properties. 399 Properties = 0; 400 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 401 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 402 if (PropList[i]->getName() == "SDNPHasChain") { 403 Properties |= 1 << SDNPHasChain; 404 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 405 Properties |= 1 << SDNPOptInGlue; 406 } else if (PropList[i]->getName() == "SDNPMayStore") { 407 Properties |= 1 << SDNPMayStore; 408 } else if (PropList[i]->getName() == "SDNPMayLoad") { 409 Properties |= 1 << SDNPMayLoad; 410 } else if (PropList[i]->getName() == "SDNPSideEffect") { 411 Properties |= 1 << SDNPSideEffect; 412 } else if (PropList[i]->getName() == "SDNPMemOperand") { 413 Properties |= 1 << SDNPMemOperand; 414 } else if (PropList[i]->getName() == "SDNPVariadic") { 415 Properties |= 1 << SDNPVariadic; 416 } else if (PropList[i]->getName() == "SDNPWantRoot") { 417 Properties |= 1 << SDNPWantRoot; 418 } else if (PropList[i]->getName() == "SDNPWantParent") { 419 Properties |= 1 << SDNPWantParent; 420 } else { 421 errs() << "Unsupported SD Node property '" << PropList[i]->getName() 422 << "' on ComplexPattern '" << R->getName() << "'!\n"; 423 exit(1); 424 } 425 } 426 427 //===----------------------------------------------------------------------===// 428 // CodeGenIntrinsic Implementation 429 //===----------------------------------------------------------------------===// 430 431 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 432 bool TargetOnly) { 433 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 434 435 std::vector<CodeGenIntrinsic> Result; 436 437 for (unsigned i = 0, e = I.size(); i != e; ++i) { 438 bool isTarget = I[i]->getValueAsBit("isTarget"); 439 if (isTarget == TargetOnly) 440 Result.push_back(CodeGenIntrinsic(I[i])); 441 } 442 return Result; 443 } 444 445 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 446 TheDef = R; 447 std::string DefName = R->getName(); 448 ModRef = ReadWriteMem; 449 isOverloaded = false; 450 isCommutative = false; 451 canThrow = false; 452 isNoReturn = false; 453 isNoDuplicate = false; 454 455 if (DefName.size() <= 4 || 456 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 457 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!"); 458 459 EnumName = std::string(DefName.begin()+4, DefName.end()); 460 461 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 462 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 463 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 464 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 465 466 TargetPrefix = R->getValueAsString("TargetPrefix"); 467 Name = R->getValueAsString("LLVMName"); 468 469 if (Name == "") { 470 // If an explicit name isn't specified, derive one from the DefName. 471 Name = "llvm."; 472 473 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 474 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 475 } else { 476 // Verify it starts with "llvm.". 477 if (Name.size() <= 5 || 478 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 479 PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); 480 } 481 482 // If TargetPrefix is specified, make sure that Name starts with 483 // "llvm.<targetprefix>.". 484 if (!TargetPrefix.empty()) { 485 if (Name.size() < 6+TargetPrefix.size() || 486 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 487 != (TargetPrefix + ".")) 488 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." + 489 TargetPrefix + ".'!"); 490 } 491 492 // Parse the list of return types. 493 std::vector<MVT::SimpleValueType> OverloadedVTs; 494 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 495 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 496 Record *TyEl = TypeList->getElementAsRecord(i); 497 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 498 MVT::SimpleValueType VT; 499 if (TyEl->isSubClassOf("LLVMMatchType")) { 500 unsigned MatchTy = TyEl->getValueAsInt("Number"); 501 assert(MatchTy < OverloadedVTs.size() && 502 "Invalid matching number!"); 503 VT = OverloadedVTs[MatchTy]; 504 // It only makes sense to use the extended and truncated vector element 505 // variants with iAny types; otherwise, if the intrinsic is not 506 // overloaded, all the types can be specified directly. 507 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 508 !TyEl->isSubClassOf("LLVMTruncatedType")) || 509 VT == MVT::iAny || VT == MVT::vAny) && 510 "Expected iAny or vAny type"); 511 } else { 512 VT = getValueType(TyEl->getValueAsDef("VT")); 513 } 514 if (MVT(VT).isOverloaded()) { 515 OverloadedVTs.push_back(VT); 516 isOverloaded = true; 517 } 518 519 // Reject invalid types. 520 if (VT == MVT::isVoid) 521 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 522 523 IS.RetVTs.push_back(VT); 524 IS.RetTypeDefs.push_back(TyEl); 525 } 526 527 // Parse the list of parameter types. 528 TypeList = R->getValueAsListInit("ParamTypes"); 529 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 530 Record *TyEl = TypeList->getElementAsRecord(i); 531 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 532 MVT::SimpleValueType VT; 533 if (TyEl->isSubClassOf("LLVMMatchType")) { 534 unsigned MatchTy = TyEl->getValueAsInt("Number"); 535 assert(MatchTy < OverloadedVTs.size() && 536 "Invalid matching number!"); 537 VT = OverloadedVTs[MatchTy]; 538 // It only makes sense to use the extended and truncated vector element 539 // variants with iAny types; otherwise, if the intrinsic is not 540 // overloaded, all the types can be specified directly. 541 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 542 !TyEl->isSubClassOf("LLVMTruncatedType")) || 543 VT == MVT::iAny || VT == MVT::vAny) && 544 "Expected iAny or vAny type"); 545 } else 546 VT = getValueType(TyEl->getValueAsDef("VT")); 547 548 if (MVT(VT).isOverloaded()) { 549 OverloadedVTs.push_back(VT); 550 isOverloaded = true; 551 } 552 553 // Reject invalid types. 554 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 555 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 556 557 IS.ParamVTs.push_back(VT); 558 IS.ParamTypeDefs.push_back(TyEl); 559 } 560 561 // Parse the intrinsic properties. 562 ListInit *PropList = R->getValueAsListInit("Properties"); 563 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 564 Record *Property = PropList->getElementAsRecord(i); 565 assert(Property->isSubClassOf("IntrinsicProperty") && 566 "Expected a property!"); 567 568 if (Property->getName() == "IntrNoMem") 569 ModRef = NoMem; 570 else if (Property->getName() == "IntrReadArgMem") 571 ModRef = ReadArgMem; 572 else if (Property->getName() == "IntrReadMem") 573 ModRef = ReadMem; 574 else if (Property->getName() == "IntrReadWriteArgMem") 575 ModRef = ReadWriteArgMem; 576 else if (Property->getName() == "Commutative") 577 isCommutative = true; 578 else if (Property->getName() == "Throws") 579 canThrow = true; 580 else if (Property->getName() == "IntrNoDuplicate") 581 isNoDuplicate = true; 582 else if (Property->getName() == "IntrNoReturn") 583 isNoReturn = true; 584 else if (Property->isSubClassOf("NoCapture")) { 585 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 586 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 587 } else if (Property->isSubClassOf("ReadOnly")) { 588 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 589 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 590 } else if (Property->isSubClassOf("ReadNone")) { 591 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 592 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 593 } else 594 llvm_unreachable("Unknown property!"); 595 } 596 597 // Sort the argument attributes for later benefit. 598 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 599 } 600