1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends.  This makes it easier to access the data and
11 // provides a single place that needs to check it for validity.  All of these
12 // classes abort on error conditions.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CodeGenTarget.h"
17 #include "CodeGenDAGPatterns.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Timer.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 #include <algorithm>
28 using namespace llvm;
29 
30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
32 
33 static cl::opt<unsigned>
34     AsmParserNum("asmparsernum", cl::init(0),
35                  cl::desc("Make -gen-asm-parser emit assembly parser #N"),
36                  cl::cat(AsmParserCat));
37 
38 static cl::opt<unsigned>
39     AsmWriterNum("asmwriternum", cl::init(0),
40                  cl::desc("Make -gen-asm-writer emit assembly writer #N"),
41                  cl::cat(AsmWriterCat));
42 
43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
44 /// record corresponds to.
45 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
46   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
47 }
48 
49 StringRef llvm::getName(MVT::SimpleValueType T) {
50   switch (T) {
51   case MVT::Other:   return "UNKNOWN";
52   case MVT::iPTR:    return "TLI.getPointerTy()";
53   case MVT::iPTRAny: return "TLI.getPointerTy()";
54   default: return getEnumName(T);
55   }
56 }
57 
58 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
59   switch (T) {
60   case MVT::Other:    return "MVT::Other";
61   case MVT::i1:       return "MVT::i1";
62   case MVT::i8:       return "MVT::i8";
63   case MVT::i16:      return "MVT::i16";
64   case MVT::i32:      return "MVT::i32";
65   case MVT::i64:      return "MVT::i64";
66   case MVT::i128:     return "MVT::i128";
67   case MVT::Any:      return "MVT::Any";
68   case MVT::iAny:     return "MVT::iAny";
69   case MVT::fAny:     return "MVT::fAny";
70   case MVT::vAny:     return "MVT::vAny";
71   case MVT::f16:      return "MVT::f16";
72   case MVT::f32:      return "MVT::f32";
73   case MVT::f64:      return "MVT::f64";
74   case MVT::f80:      return "MVT::f80";
75   case MVT::f128:     return "MVT::f128";
76   case MVT::ppcf128:  return "MVT::ppcf128";
77   case MVT::x86mmx:   return "MVT::x86mmx";
78   case MVT::Glue:     return "MVT::Glue";
79   case MVT::isVoid:   return "MVT::isVoid";
80   case MVT::v1i1:     return "MVT::v1i1";
81   case MVT::v2i1:     return "MVT::v2i1";
82   case MVT::v4i1:     return "MVT::v4i1";
83   case MVT::v8i1:     return "MVT::v8i1";
84   case MVT::v16i1:    return "MVT::v16i1";
85   case MVT::v32i1:    return "MVT::v32i1";
86   case MVT::v64i1:    return "MVT::v64i1";
87   case MVT::v128i1:   return "MVT::v128i1";
88   case MVT::v512i1:   return "MVT::v512i1";
89   case MVT::v1024i1:  return "MVT::v1024i1";
90   case MVT::v1i8:     return "MVT::v1i8";
91   case MVT::v2i8:     return "MVT::v2i8";
92   case MVT::v4i8:     return "MVT::v4i8";
93   case MVT::v8i8:     return "MVT::v8i8";
94   case MVT::v16i8:    return "MVT::v16i8";
95   case MVT::v32i8:    return "MVT::v32i8";
96   case MVT::v64i8:    return "MVT::v64i8";
97   case MVT::v128i8:   return "MVT::v128i8";
98   case MVT::v256i8:   return "MVT::v256i8";
99   case MVT::v1i16:    return "MVT::v1i16";
100   case MVT::v2i16:    return "MVT::v2i16";
101   case MVT::v4i16:    return "MVT::v4i16";
102   case MVT::v8i16:    return "MVT::v8i16";
103   case MVT::v16i16:   return "MVT::v16i16";
104   case MVT::v32i16:   return "MVT::v32i16";
105   case MVT::v64i16:   return "MVT::v64i16";
106   case MVT::v128i16:  return "MVT::v128i16";
107   case MVT::v1i32:    return "MVT::v1i32";
108   case MVT::v2i32:    return "MVT::v2i32";
109   case MVT::v3i32:    return "MVT::v3i32";
110   case MVT::v4i32:    return "MVT::v4i32";
111   case MVT::v5i32:    return "MVT::v5i32";
112   case MVT::v8i32:    return "MVT::v8i32";
113   case MVT::v16i32:   return "MVT::v16i32";
114   case MVT::v32i32:   return "MVT::v32i32";
115   case MVT::v64i32:   return "MVT::v64i32";
116   case MVT::v128i32:  return "MVT::v128i32";
117   case MVT::v256i32:  return "MVT::v256i32";
118   case MVT::v512i32:  return "MVT::v512i32";
119   case MVT::v1024i32: return "MVT::v1024i32";
120   case MVT::v2048i32: return "MVT::v2048i32";
121   case MVT::v1i64:    return "MVT::v1i64";
122   case MVT::v2i64:    return "MVT::v2i64";
123   case MVT::v4i64:    return "MVT::v4i64";
124   case MVT::v8i64:    return "MVT::v8i64";
125   case MVT::v16i64:   return "MVT::v16i64";
126   case MVT::v32i64:   return "MVT::v32i64";
127   case MVT::v1i128:   return "MVT::v1i128";
128   case MVT::v2f16:    return "MVT::v2f16";
129   case MVT::v4f16:    return "MVT::v4f16";
130   case MVT::v8f16:    return "MVT::v8f16";
131   case MVT::v1f32:    return "MVT::v1f32";
132   case MVT::v2f32:    return "MVT::v2f32";
133   case MVT::v3f32:    return "MVT::v3f32";
134   case MVT::v4f32:    return "MVT::v4f32";
135   case MVT::v5f32:    return "MVT::v5f32";
136   case MVT::v8f32:    return "MVT::v8f32";
137   case MVT::v16f32:   return "MVT::v16f32";
138   case MVT::v32f32:   return "MVT::v32f32";
139   case MVT::v64f32:   return "MVT::v64f32";
140   case MVT::v128f32:  return "MVT::v128f32";
141   case MVT::v256f32:  return "MVT::v256f32";
142   case MVT::v512f32:  return "MVT::v512f32";
143   case MVT::v1024f32: return "MVT::v1024f32";
144   case MVT::v2048f32: return "MVT::v2048f32";
145   case MVT::v1f64:    return "MVT::v1f64";
146   case MVT::v2f64:    return "MVT::v2f64";
147   case MVT::v4f64:    return "MVT::v4f64";
148   case MVT::v8f64:    return "MVT::v8f64";
149   case MVT::nxv1i1:   return "MVT::nxv1i1";
150   case MVT::nxv2i1:   return "MVT::nxv2i1";
151   case MVT::nxv4i1:   return "MVT::nxv4i1";
152   case MVT::nxv8i1:   return "MVT::nxv8i1";
153   case MVT::nxv16i1:  return "MVT::nxv16i1";
154   case MVT::nxv32i1:  return "MVT::nxv32i1";
155   case MVT::nxv1i8:   return "MVT::nxv1i8";
156   case MVT::nxv2i8:   return "MVT::nxv2i8";
157   case MVT::nxv4i8:   return "MVT::nxv4i8";
158   case MVT::nxv8i8:   return "MVT::nxv8i8";
159   case MVT::nxv16i8:  return "MVT::nxv16i8";
160   case MVT::nxv32i8:  return "MVT::nxv32i8";
161   case MVT::nxv1i16:  return "MVT::nxv1i16";
162   case MVT::nxv2i16:  return "MVT::nxv2i16";
163   case MVT::nxv4i16:  return "MVT::nxv4i16";
164   case MVT::nxv8i16:  return "MVT::nxv8i16";
165   case MVT::nxv16i16: return "MVT::nxv16i16";
166   case MVT::nxv32i16: return "MVT::nxv32i16";
167   case MVT::nxv1i32:  return "MVT::nxv1i32";
168   case MVT::nxv2i32:  return "MVT::nxv2i32";
169   case MVT::nxv4i32:  return "MVT::nxv4i32";
170   case MVT::nxv8i32:  return "MVT::nxv8i32";
171   case MVT::nxv16i32: return "MVT::nxv16i32";
172   case MVT::nxv1i64:  return "MVT::nxv1i64";
173   case MVT::nxv2i64:  return "MVT::nxv2i64";
174   case MVT::nxv4i64:  return "MVT::nxv4i64";
175   case MVT::nxv8i64:  return "MVT::nxv8i64";
176   case MVT::nxv16i64: return "MVT::nxv16i64";
177   case MVT::nxv2f16:  return "MVT::nxv2f16";
178   case MVT::nxv4f16:  return "MVT::nxv4f16";
179   case MVT::nxv8f16:  return "MVT::nxv8f16";
180   case MVT::nxv1f32:  return "MVT::nxv1f32";
181   case MVT::nxv2f32:  return "MVT::nxv2f32";
182   case MVT::nxv4f32:  return "MVT::nxv4f32";
183   case MVT::nxv8f32:  return "MVT::nxv8f32";
184   case MVT::nxv16f32: return "MVT::nxv16f32";
185   case MVT::nxv1f64:  return "MVT::nxv1f64";
186   case MVT::nxv2f64:  return "MVT::nxv2f64";
187   case MVT::nxv4f64:  return "MVT::nxv4f64";
188   case MVT::nxv8f64:  return "MVT::nxv8f64";
189   case MVT::token:    return "MVT::token";
190   case MVT::Metadata: return "MVT::Metadata";
191   case MVT::iPTR:     return "MVT::iPTR";
192   case MVT::iPTRAny:  return "MVT::iPTRAny";
193   case MVT::Untyped:  return "MVT::Untyped";
194   case MVT::exnref:   return "MVT::exnref";
195   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
196   }
197 }
198 
199 /// getQualifiedName - Return the name of the specified record, with a
200 /// namespace qualifier if the record contains one.
201 ///
202 std::string llvm::getQualifiedName(const Record *R) {
203   std::string Namespace;
204   if (R->getValue("Namespace"))
205      Namespace = R->getValueAsString("Namespace");
206   if (Namespace.empty()) return R->getName();
207   return Namespace + "::" + R->getName().str();
208 }
209 
210 
211 /// getTarget - Return the current instance of the Target class.
212 ///
213 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
214   : Records(records), CGH(records) {
215   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
216   if (Targets.size() == 0)
217     PrintFatalError("ERROR: No 'Target' subclasses defined!");
218   if (Targets.size() != 1)
219     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
220   TargetRec = Targets[0];
221 }
222 
223 CodeGenTarget::~CodeGenTarget() {
224 }
225 
226 const StringRef CodeGenTarget::getName() const {
227   return TargetRec->getName();
228 }
229 
230 StringRef CodeGenTarget::getInstNamespace() const {
231   for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
232     // Make sure not to pick up "TargetOpcode" by accidentally getting
233     // the namespace off the PHI instruction or something.
234     if (Inst->Namespace != "TargetOpcode")
235       return Inst->Namespace;
236   }
237 
238   return "";
239 }
240 
241 Record *CodeGenTarget::getInstructionSet() const {
242   return TargetRec->getValueAsDef("InstructionSet");
243 }
244 
245 bool CodeGenTarget::getAllowRegisterRenaming() const {
246   return TargetRec->getValueAsInt("AllowRegisterRenaming");
247 }
248 
249 /// getAsmParser - Return the AssemblyParser definition for this target.
250 ///
251 Record *CodeGenTarget::getAsmParser() const {
252   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
253   if (AsmParserNum >= LI.size())
254     PrintFatalError("Target does not have an AsmParser #" +
255                     Twine(AsmParserNum) + "!");
256   return LI[AsmParserNum];
257 }
258 
259 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
260 /// this target.
261 ///
262 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
263   std::vector<Record*> LI =
264     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
265   if (i >= LI.size())
266     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
267                     "!");
268   return LI[i];
269 }
270 
271 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
272 /// available for this target.
273 ///
274 unsigned CodeGenTarget::getAsmParserVariantCount() const {
275   std::vector<Record*> LI =
276     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
277   return LI.size();
278 }
279 
280 /// getAsmWriter - Return the AssemblyWriter definition for this target.
281 ///
282 Record *CodeGenTarget::getAsmWriter() const {
283   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
284   if (AsmWriterNum >= LI.size())
285     PrintFatalError("Target does not have an AsmWriter #" +
286                     Twine(AsmWriterNum) + "!");
287   return LI[AsmWriterNum];
288 }
289 
290 CodeGenRegBank &CodeGenTarget::getRegBank() const {
291   if (!RegBank)
292     RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes());
293   return *RegBank;
294 }
295 
296 void CodeGenTarget::ReadRegAltNameIndices() const {
297   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
298   llvm::sort(RegAltNameIndices, LessRecord());
299 }
300 
301 /// getRegisterByName - If there is a register with the specific AsmName,
302 /// return it.
303 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
304   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
305   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
306   if (I == Regs.end())
307     return nullptr;
308   return I->second;
309 }
310 
311 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
312       const {
313   const CodeGenRegister *Reg = getRegBank().getReg(R);
314   std::vector<ValueTypeByHwMode> Result;
315   for (const auto &RC : getRegBank().getRegClasses()) {
316     if (RC.contains(Reg)) {
317       ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
318       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
319     }
320   }
321 
322   // Remove duplicates.
323   llvm::sort(Result);
324   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
325   return Result;
326 }
327 
328 
329 void CodeGenTarget::ReadLegalValueTypes() const {
330   for (const auto &RC : getRegBank().getRegClasses())
331     LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
332 
333   // Remove duplicates.
334   llvm::sort(LegalValueTypes);
335   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
336                                     LegalValueTypes.end()),
337                         LegalValueTypes.end());
338 }
339 
340 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
341   if (!SchedModels)
342     SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
343   return *SchedModels;
344 }
345 
346 void CodeGenTarget::ReadInstructions() const {
347   NamedRegionTimer T("Read Instructions", "Time spent reading instructions",
348                      "CodeGenTarget", "CodeGenTarget", TimeRegions);
349   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
350   if (Insts.size() <= 2)
351     PrintFatalError("No 'Instruction' subclasses defined!");
352 
353   // Parse the instructions defined in the .td file.
354   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
355     Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
356 }
357 
358 static const CodeGenInstruction *
359 GetInstByName(const char *Name,
360               const DenseMap<const Record*,
361                              std::unique_ptr<CodeGenInstruction>> &Insts,
362               RecordKeeper &Records) {
363   const Record *Rec = Records.getDef(Name);
364 
365   const auto I = Insts.find(Rec);
366   if (!Rec || I == Insts.end())
367     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
368   return I->second.get();
369 }
370 
371 static const char *const FixedInstrs[] = {
372 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
373 #include "llvm/Support/TargetOpcodes.def"
374     nullptr};
375 
376 unsigned CodeGenTarget::getNumFixedInstructions() {
377   return array_lengthof(FixedInstrs) - 1;
378 }
379 
380 /// Return all of the instructions defined by the target, ordered by
381 /// their enum value.
382 void CodeGenTarget::ComputeInstrsByEnum() const {
383   const auto &Insts = getInstructions();
384   for (const char *const *p = FixedInstrs; *p; ++p) {
385     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
386     assert(Instr && "Missing target independent instruction");
387     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
388     InstrsByEnum.push_back(Instr);
389   }
390   unsigned EndOfPredefines = InstrsByEnum.size();
391   assert(EndOfPredefines == getNumFixedInstructions() &&
392          "Missing generic opcode");
393 
394   for (const auto &I : Insts) {
395     const CodeGenInstruction *CGI = I.second.get();
396     if (CGI->Namespace != "TargetOpcode") {
397       InstrsByEnum.push_back(CGI);
398       if (CGI->TheDef->getValueAsBit("isPseudo"))
399         ++NumPseudoInstructions;
400     }
401   }
402 
403   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
404 
405   // All of the instructions are now in random order based on the map iteration.
406   llvm::sort(
407       InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
408       [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
409         const auto &D1 = *Rec1->TheDef;
410         const auto &D2 = *Rec2->TheDef;
411         return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
412                std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
413       });
414 }
415 
416 
417 /// isLittleEndianEncoding - Return whether this target encodes its instruction
418 /// in little-endian format, i.e. bits laid out in the order [0..n]
419 ///
420 bool CodeGenTarget::isLittleEndianEncoding() const {
421   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
422 }
423 
424 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
425 /// encodings, reverse the bit order of all instructions.
426 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
427   if (!isLittleEndianEncoding())
428     return;
429 
430   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
431   for (Record *R : Insts) {
432     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
433         R->getValueAsBit("isPseudo"))
434       continue;
435 
436     BitsInit *BI = R->getValueAsBitsInit("Inst");
437 
438     unsigned numBits = BI->getNumBits();
439 
440     SmallVector<Init *, 16> NewBits(numBits);
441 
442     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
443       unsigned bitSwapIdx = numBits - bit - 1;
444       Init *OrigBit = BI->getBit(bit);
445       Init *BitSwap = BI->getBit(bitSwapIdx);
446       NewBits[bit]        = BitSwap;
447       NewBits[bitSwapIdx] = OrigBit;
448     }
449     if (numBits % 2) {
450       unsigned middle = (numBits + 1) / 2;
451       NewBits[middle] = BI->getBit(middle);
452     }
453 
454     BitsInit *NewBI = BitsInit::get(NewBits);
455 
456     // Update the bits in reversed order so that emitInstrOpBits will get the
457     // correct endianness.
458     R->getValue("Inst")->setValue(NewBI);
459   }
460 }
461 
462 /// guessInstructionProperties - Return true if it's OK to guess instruction
463 /// properties instead of raising an error.
464 ///
465 /// This is configurable as a temporary migration aid. It will eventually be
466 /// permanently false.
467 bool CodeGenTarget::guessInstructionProperties() const {
468   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
469 }
470 
471 //===----------------------------------------------------------------------===//
472 // ComplexPattern implementation
473 //
474 ComplexPattern::ComplexPattern(Record *R) {
475   Ty          = ::getValueType(R->getValueAsDef("Ty"));
476   NumOperands = R->getValueAsInt("NumOperands");
477   SelectFunc  = R->getValueAsString("SelectFunc");
478   RootNodes   = R->getValueAsListOfDefs("RootNodes");
479 
480   // FIXME: This is a hack to statically increase the priority of patterns which
481   // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
482   // possible pattern match we'll need to dynamically calculate the complexity
483   // of all patterns a dag can potentially map to.
484   int64_t RawComplexity = R->getValueAsInt("Complexity");
485   if (RawComplexity == -1)
486     Complexity = NumOperands * 3;
487   else
488     Complexity = RawComplexity;
489 
490   // FIXME: Why is this different from parseSDPatternOperatorProperties?
491   // Parse the properties.
492   Properties = 0;
493   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
494   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
495     if (PropList[i]->getName() == "SDNPHasChain") {
496       Properties |= 1 << SDNPHasChain;
497     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
498       Properties |= 1 << SDNPOptInGlue;
499     } else if (PropList[i]->getName() == "SDNPMayStore") {
500       Properties |= 1 << SDNPMayStore;
501     } else if (PropList[i]->getName() == "SDNPMayLoad") {
502       Properties |= 1 << SDNPMayLoad;
503     } else if (PropList[i]->getName() == "SDNPSideEffect") {
504       Properties |= 1 << SDNPSideEffect;
505     } else if (PropList[i]->getName() == "SDNPMemOperand") {
506       Properties |= 1 << SDNPMemOperand;
507     } else if (PropList[i]->getName() == "SDNPVariadic") {
508       Properties |= 1 << SDNPVariadic;
509     } else if (PropList[i]->getName() == "SDNPWantRoot") {
510       Properties |= 1 << SDNPWantRoot;
511     } else if (PropList[i]->getName() == "SDNPWantParent") {
512       Properties |= 1 << SDNPWantParent;
513     } else {
514       PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
515                                        PropList[i]->getName() +
516                                        "' on ComplexPattern '" + R->getName() +
517                                        "'!");
518     }
519 }
520 
521 //===----------------------------------------------------------------------===//
522 // CodeGenIntrinsic Implementation
523 //===----------------------------------------------------------------------===//
524 
525 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC,
526                                              bool TargetOnly) {
527   std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic");
528 
529   Intrinsics.reserve(Defs.size());
530 
531   for (unsigned I = 0, e = Defs.size(); I != e; ++I) {
532     bool isTarget = Defs[I]->getValueAsBit("isTarget");
533     if (isTarget == TargetOnly)
534       Intrinsics.push_back(CodeGenIntrinsic(Defs[I]));
535   }
536   llvm::sort(Intrinsics,
537              [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
538                return std::tie(LHS.TargetPrefix, LHS.Name) <
539                       std::tie(RHS.TargetPrefix, RHS.Name);
540              });
541   Targets.push_back({"", 0, 0});
542   for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
543     if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
544       Targets.back().Count = I - Targets.back().Offset;
545       Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
546     }
547   Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
548 }
549 
550 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
551   TheDef = R;
552   std::string DefName = R->getName();
553   ArrayRef<SMLoc> DefLoc = R->getLoc();
554   ModRef = ReadWriteMem;
555   Properties = 0;
556   isOverloaded = false;
557   isCommutative = false;
558   canThrow = false;
559   isNoReturn = false;
560   isWillReturn = false;
561   isCold = false;
562   isNoDuplicate = false;
563   isConvergent = false;
564   isSpeculatable = false;
565   hasSideEffects = false;
566 
567   if (DefName.size() <= 4 ||
568       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
569     PrintFatalError(DefLoc,
570                     "Intrinsic '" + DefName + "' does not start with 'int_'!");
571 
572   EnumName = std::string(DefName.begin()+4, DefName.end());
573 
574   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
575     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
576   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
577     MSBuiltinName = R->getValueAsString("MSBuiltinName");
578 
579   TargetPrefix = R->getValueAsString("TargetPrefix");
580   Name = R->getValueAsString("LLVMName");
581 
582   if (Name == "") {
583     // If an explicit name isn't specified, derive one from the DefName.
584     Name = "llvm.";
585 
586     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
587       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
588   } else {
589     // Verify it starts with "llvm.".
590     if (Name.size() <= 5 ||
591         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
592       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
593                                   "'s name does not start with 'llvm.'!");
594   }
595 
596   // If TargetPrefix is specified, make sure that Name starts with
597   // "llvm.<targetprefix>.".
598   if (!TargetPrefix.empty()) {
599     if (Name.size() < 6+TargetPrefix.size() ||
600         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
601         != (TargetPrefix + "."))
602       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
603                                   "' does not start with 'llvm." +
604                                   TargetPrefix + ".'!");
605   }
606 
607   ListInit *RetTypes = R->getValueAsListInit("RetTypes");
608   ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
609 
610   // First collate a list of overloaded types.
611   std::vector<MVT::SimpleValueType> OverloadedVTs;
612   for (ListInit *TypeList : {RetTypes, ParamTypes}) {
613     for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
614       Record *TyEl = TypeList->getElementAsRecord(i);
615       assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
616 
617       if (TyEl->isSubClassOf("LLVMMatchType"))
618         continue;
619 
620       MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
621       if (MVT(VT).isOverloaded()) {
622         OverloadedVTs.push_back(VT);
623         isOverloaded = true;
624       }
625     }
626   }
627 
628   // Parse the list of return types.
629   ListInit *TypeList = RetTypes;
630   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
631     Record *TyEl = TypeList->getElementAsRecord(i);
632     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
633     MVT::SimpleValueType VT;
634     if (TyEl->isSubClassOf("LLVMMatchType")) {
635       unsigned MatchTy = TyEl->getValueAsInt("Number");
636       assert(MatchTy < OverloadedVTs.size() &&
637              "Invalid matching number!");
638       VT = OverloadedVTs[MatchTy];
639       // It only makes sense to use the extended and truncated vector element
640       // variants with iAny types; otherwise, if the intrinsic is not
641       // overloaded, all the types can be specified directly.
642       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
643                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
644               VT == MVT::iAny || VT == MVT::vAny) &&
645              "Expected iAny or vAny type");
646     } else {
647       VT = getValueType(TyEl->getValueAsDef("VT"));
648     }
649 
650     // Reject invalid types.
651     if (VT == MVT::isVoid)
652       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
653                                   " has void in result type list!");
654 
655     IS.RetVTs.push_back(VT);
656     IS.RetTypeDefs.push_back(TyEl);
657   }
658 
659   // Parse the list of parameter types.
660   TypeList = ParamTypes;
661   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
662     Record *TyEl = TypeList->getElementAsRecord(i);
663     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
664     MVT::SimpleValueType VT;
665     if (TyEl->isSubClassOf("LLVMMatchType")) {
666       unsigned MatchTy = TyEl->getValueAsInt("Number");
667       if (MatchTy >= OverloadedVTs.size()) {
668         PrintError(R->getLoc(),
669                    "Parameter #" + Twine(i) + " has out of bounds matching "
670                    "number " + Twine(MatchTy));
671         PrintFatalError(DefLoc,
672                         Twine("ParamTypes is ") + TypeList->getAsString());
673       }
674       VT = OverloadedVTs[MatchTy];
675       // It only makes sense to use the extended and truncated vector element
676       // variants with iAny types; otherwise, if the intrinsic is not
677       // overloaded, all the types can be specified directly.
678       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
679                !TyEl->isSubClassOf("LLVMTruncatedType") &&
680                !TyEl->isSubClassOf("LLVMScalarOrSameVectorWidth")) ||
681               VT == MVT::iAny || VT == MVT::vAny) &&
682              "Expected iAny or vAny type");
683     } else
684       VT = getValueType(TyEl->getValueAsDef("VT"));
685 
686     // Reject invalid types.
687     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
688       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
689                                   " has void in result type list!");
690 
691     IS.ParamVTs.push_back(VT);
692     IS.ParamTypeDefs.push_back(TyEl);
693   }
694 
695   // Parse the intrinsic properties.
696   ListInit *PropList = R->getValueAsListInit("IntrProperties");
697   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
698     Record *Property = PropList->getElementAsRecord(i);
699     assert(Property->isSubClassOf("IntrinsicProperty") &&
700            "Expected a property!");
701 
702     if (Property->getName() == "IntrNoMem")
703       ModRef = NoMem;
704     else if (Property->getName() == "IntrReadMem")
705       ModRef = ModRefBehavior(ModRef & ~MR_Mod);
706     else if (Property->getName() == "IntrWriteMem")
707       ModRef = ModRefBehavior(ModRef & ~MR_Ref);
708     else if (Property->getName() == "IntrArgMemOnly")
709       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
710     else if (Property->getName() == "IntrInaccessibleMemOnly")
711       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
712     else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly")
713       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
714                               MR_InaccessibleMem);
715     else if (Property->getName() == "Commutative")
716       isCommutative = true;
717     else if (Property->getName() == "Throws")
718       canThrow = true;
719     else if (Property->getName() == "IntrNoDuplicate")
720       isNoDuplicate = true;
721     else if (Property->getName() == "IntrConvergent")
722       isConvergent = true;
723     else if (Property->getName() == "IntrNoReturn")
724       isNoReturn = true;
725     else if (Property->getName() == "IntrWillReturn")
726       isWillReturn = true;
727     else if (Property->getName() == "IntrCold")
728       isCold = true;
729     else if (Property->getName() == "IntrSpeculatable")
730       isSpeculatable = true;
731     else if (Property->getName() == "IntrHasSideEffects")
732       hasSideEffects = true;
733     else if (Property->isSubClassOf("NoCapture")) {
734       unsigned ArgNo = Property->getValueAsInt("ArgNo");
735       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
736     } else if (Property->isSubClassOf("Returned")) {
737       unsigned ArgNo = Property->getValueAsInt("ArgNo");
738       ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned));
739     } else if (Property->isSubClassOf("ReadOnly")) {
740       unsigned ArgNo = Property->getValueAsInt("ArgNo");
741       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
742     } else if (Property->isSubClassOf("WriteOnly")) {
743       unsigned ArgNo = Property->getValueAsInt("ArgNo");
744       ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly));
745     } else if (Property->isSubClassOf("ReadNone")) {
746       unsigned ArgNo = Property->getValueAsInt("ArgNo");
747       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
748     } else if (Property->isSubClassOf("ImmArg")) {
749       unsigned ArgNo = Property->getValueAsInt("ArgNo");
750       ArgumentAttributes.push_back(std::make_pair(ArgNo, ImmArg));
751     } else
752       llvm_unreachable("Unknown property!");
753   }
754 
755   // Also record the SDPatternOperator Properties.
756   Properties = parseSDPatternOperatorProperties(R);
757 
758   // Sort the argument attributes for later benefit.
759   llvm::sort(ArgumentAttributes);
760 }
761