1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class wraps target description classes used by the various code 10 // generation TableGen backends. This makes it easier to access the data and 11 // provides a single place that needs to check it for validity. All of these 12 // classes abort on error conditions. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CodeGenTarget.h" 17 #include "CodeGenDAGPatterns.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Timer.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <algorithm> 28 using namespace llvm; 29 30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 32 33 static cl::opt<unsigned> 34 AsmParserNum("asmparsernum", cl::init(0), 35 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 36 cl::cat(AsmParserCat)); 37 38 static cl::opt<unsigned> 39 AsmWriterNum("asmwriternum", cl::init(0), 40 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 41 cl::cat(AsmWriterCat)); 42 43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 44 /// record corresponds to. 45 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 46 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 47 } 48 49 StringRef llvm::getName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "UNKNOWN"; 52 case MVT::iPTR: return "TLI.getPointerTy()"; 53 case MVT::iPTRAny: return "TLI.getPointerTy()"; 54 default: return getEnumName(T); 55 } 56 } 57 58 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 59 switch (T) { 60 case MVT::Other: return "MVT::Other"; 61 case MVT::i1: return "MVT::i1"; 62 case MVT::i8: return "MVT::i8"; 63 case MVT::i16: return "MVT::i16"; 64 case MVT::i32: return "MVT::i32"; 65 case MVT::i64: return "MVT::i64"; 66 case MVT::i128: return "MVT::i128"; 67 case MVT::Any: return "MVT::Any"; 68 case MVT::iAny: return "MVT::iAny"; 69 case MVT::fAny: return "MVT::fAny"; 70 case MVT::vAny: return "MVT::vAny"; 71 case MVT::f16: return "MVT::f16"; 72 case MVT::f32: return "MVT::f32"; 73 case MVT::f64: return "MVT::f64"; 74 case MVT::f80: return "MVT::f80"; 75 case MVT::f128: return "MVT::f128"; 76 case MVT::ppcf128: return "MVT::ppcf128"; 77 case MVT::x86mmx: return "MVT::x86mmx"; 78 case MVT::Glue: return "MVT::Glue"; 79 case MVT::isVoid: return "MVT::isVoid"; 80 case MVT::v1i1: return "MVT::v1i1"; 81 case MVT::v2i1: return "MVT::v2i1"; 82 case MVT::v4i1: return "MVT::v4i1"; 83 case MVT::v8i1: return "MVT::v8i1"; 84 case MVT::v16i1: return "MVT::v16i1"; 85 case MVT::v32i1: return "MVT::v32i1"; 86 case MVT::v64i1: return "MVT::v64i1"; 87 case MVT::v128i1: return "MVT::v128i1"; 88 case MVT::v512i1: return "MVT::v512i1"; 89 case MVT::v1024i1: return "MVT::v1024i1"; 90 case MVT::v1i8: return "MVT::v1i8"; 91 case MVT::v2i8: return "MVT::v2i8"; 92 case MVT::v4i8: return "MVT::v4i8"; 93 case MVT::v8i8: return "MVT::v8i8"; 94 case MVT::v16i8: return "MVT::v16i8"; 95 case MVT::v32i8: return "MVT::v32i8"; 96 case MVT::v64i8: return "MVT::v64i8"; 97 case MVT::v128i8: return "MVT::v128i8"; 98 case MVT::v256i8: return "MVT::v256i8"; 99 case MVT::v1i16: return "MVT::v1i16"; 100 case MVT::v2i16: return "MVT::v2i16"; 101 case MVT::v4i16: return "MVT::v4i16"; 102 case MVT::v8i16: return "MVT::v8i16"; 103 case MVT::v16i16: return "MVT::v16i16"; 104 case MVT::v32i16: return "MVT::v32i16"; 105 case MVT::v64i16: return "MVT::v64i16"; 106 case MVT::v128i16: return "MVT::v128i16"; 107 case MVT::v1i32: return "MVT::v1i32"; 108 case MVT::v2i32: return "MVT::v2i32"; 109 case MVT::v3i32: return "MVT::v3i32"; 110 case MVT::v4i32: return "MVT::v4i32"; 111 case MVT::v5i32: return "MVT::v5i32"; 112 case MVT::v8i32: return "MVT::v8i32"; 113 case MVT::v16i32: return "MVT::v16i32"; 114 case MVT::v32i32: return "MVT::v32i32"; 115 case MVT::v64i32: return "MVT::v64i32"; 116 case MVT::v128i32: return "MVT::v128i32"; 117 case MVT::v256i32: return "MVT::v256i32"; 118 case MVT::v512i32: return "MVT::v512i32"; 119 case MVT::v1024i32: return "MVT::v1024i32"; 120 case MVT::v2048i32: return "MVT::v2048i32"; 121 case MVT::v1i64: return "MVT::v1i64"; 122 case MVT::v2i64: return "MVT::v2i64"; 123 case MVT::v4i64: return "MVT::v4i64"; 124 case MVT::v8i64: return "MVT::v8i64"; 125 case MVT::v16i64: return "MVT::v16i64"; 126 case MVT::v32i64: return "MVT::v32i64"; 127 case MVT::v1i128: return "MVT::v1i128"; 128 case MVT::v2f16: return "MVT::v2f16"; 129 case MVT::v4f16: return "MVT::v4f16"; 130 case MVT::v8f16: return "MVT::v8f16"; 131 case MVT::v1f32: return "MVT::v1f32"; 132 case MVT::v2f32: return "MVT::v2f32"; 133 case MVT::v3f32: return "MVT::v3f32"; 134 case MVT::v4f32: return "MVT::v4f32"; 135 case MVT::v5f32: return "MVT::v5f32"; 136 case MVT::v8f32: return "MVT::v8f32"; 137 case MVT::v16f32: return "MVT::v16f32"; 138 case MVT::v32f32: return "MVT::v32f32"; 139 case MVT::v64f32: return "MVT::v64f32"; 140 case MVT::v128f32: return "MVT::v128f32"; 141 case MVT::v256f32: return "MVT::v256f32"; 142 case MVT::v512f32: return "MVT::v512f32"; 143 case MVT::v1024f32: return "MVT::v1024f32"; 144 case MVT::v2048f32: return "MVT::v2048f32"; 145 case MVT::v1f64: return "MVT::v1f64"; 146 case MVT::v2f64: return "MVT::v2f64"; 147 case MVT::v4f64: return "MVT::v4f64"; 148 case MVT::v8f64: return "MVT::v8f64"; 149 case MVT::nxv1i1: return "MVT::nxv1i1"; 150 case MVT::nxv2i1: return "MVT::nxv2i1"; 151 case MVT::nxv4i1: return "MVT::nxv4i1"; 152 case MVT::nxv8i1: return "MVT::nxv8i1"; 153 case MVT::nxv16i1: return "MVT::nxv16i1"; 154 case MVT::nxv32i1: return "MVT::nxv32i1"; 155 case MVT::nxv1i8: return "MVT::nxv1i8"; 156 case MVT::nxv2i8: return "MVT::nxv2i8"; 157 case MVT::nxv4i8: return "MVT::nxv4i8"; 158 case MVT::nxv8i8: return "MVT::nxv8i8"; 159 case MVT::nxv16i8: return "MVT::nxv16i8"; 160 case MVT::nxv32i8: return "MVT::nxv32i8"; 161 case MVT::nxv1i16: return "MVT::nxv1i16"; 162 case MVT::nxv2i16: return "MVT::nxv2i16"; 163 case MVT::nxv4i16: return "MVT::nxv4i16"; 164 case MVT::nxv8i16: return "MVT::nxv8i16"; 165 case MVT::nxv16i16: return "MVT::nxv16i16"; 166 case MVT::nxv32i16: return "MVT::nxv32i16"; 167 case MVT::nxv1i32: return "MVT::nxv1i32"; 168 case MVT::nxv2i32: return "MVT::nxv2i32"; 169 case MVT::nxv4i32: return "MVT::nxv4i32"; 170 case MVT::nxv8i32: return "MVT::nxv8i32"; 171 case MVT::nxv16i32: return "MVT::nxv16i32"; 172 case MVT::nxv1i64: return "MVT::nxv1i64"; 173 case MVT::nxv2i64: return "MVT::nxv2i64"; 174 case MVT::nxv4i64: return "MVT::nxv4i64"; 175 case MVT::nxv8i64: return "MVT::nxv8i64"; 176 case MVT::nxv16i64: return "MVT::nxv16i64"; 177 case MVT::nxv2f16: return "MVT::nxv2f16"; 178 case MVT::nxv4f16: return "MVT::nxv4f16"; 179 case MVT::nxv8f16: return "MVT::nxv8f16"; 180 case MVT::nxv1f32: return "MVT::nxv1f32"; 181 case MVT::nxv2f32: return "MVT::nxv2f32"; 182 case MVT::nxv4f32: return "MVT::nxv4f32"; 183 case MVT::nxv8f32: return "MVT::nxv8f32"; 184 case MVT::nxv16f32: return "MVT::nxv16f32"; 185 case MVT::nxv1f64: return "MVT::nxv1f64"; 186 case MVT::nxv2f64: return "MVT::nxv2f64"; 187 case MVT::nxv4f64: return "MVT::nxv4f64"; 188 case MVT::nxv8f64: return "MVT::nxv8f64"; 189 case MVT::token: return "MVT::token"; 190 case MVT::Metadata: return "MVT::Metadata"; 191 case MVT::iPTR: return "MVT::iPTR"; 192 case MVT::iPTRAny: return "MVT::iPTRAny"; 193 case MVT::Untyped: return "MVT::Untyped"; 194 case MVT::exnref: return "MVT::exnref"; 195 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 196 } 197 } 198 199 /// getQualifiedName - Return the name of the specified record, with a 200 /// namespace qualifier if the record contains one. 201 /// 202 std::string llvm::getQualifiedName(const Record *R) { 203 std::string Namespace; 204 if (R->getValue("Namespace")) 205 Namespace = R->getValueAsString("Namespace"); 206 if (Namespace.empty()) return R->getName(); 207 return Namespace + "::" + R->getName().str(); 208 } 209 210 211 /// getTarget - Return the current instance of the Target class. 212 /// 213 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 214 : Records(records), CGH(records) { 215 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 216 if (Targets.size() == 0) 217 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 218 if (Targets.size() != 1) 219 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 220 TargetRec = Targets[0]; 221 } 222 223 CodeGenTarget::~CodeGenTarget() { 224 } 225 226 const StringRef CodeGenTarget::getName() const { 227 return TargetRec->getName(); 228 } 229 230 StringRef CodeGenTarget::getInstNamespace() const { 231 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 232 // Make sure not to pick up "TargetOpcode" by accidentally getting 233 // the namespace off the PHI instruction or something. 234 if (Inst->Namespace != "TargetOpcode") 235 return Inst->Namespace; 236 } 237 238 return ""; 239 } 240 241 Record *CodeGenTarget::getInstructionSet() const { 242 return TargetRec->getValueAsDef("InstructionSet"); 243 } 244 245 bool CodeGenTarget::getAllowRegisterRenaming() const { 246 return TargetRec->getValueAsInt("AllowRegisterRenaming"); 247 } 248 249 /// getAsmParser - Return the AssemblyParser definition for this target. 250 /// 251 Record *CodeGenTarget::getAsmParser() const { 252 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 253 if (AsmParserNum >= LI.size()) 254 PrintFatalError("Target does not have an AsmParser #" + 255 Twine(AsmParserNum) + "!"); 256 return LI[AsmParserNum]; 257 } 258 259 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 260 /// this target. 261 /// 262 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 263 std::vector<Record*> LI = 264 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 265 if (i >= LI.size()) 266 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 267 "!"); 268 return LI[i]; 269 } 270 271 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 272 /// available for this target. 273 /// 274 unsigned CodeGenTarget::getAsmParserVariantCount() const { 275 std::vector<Record*> LI = 276 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 277 return LI.size(); 278 } 279 280 /// getAsmWriter - Return the AssemblyWriter definition for this target. 281 /// 282 Record *CodeGenTarget::getAsmWriter() const { 283 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 284 if (AsmWriterNum >= LI.size()) 285 PrintFatalError("Target does not have an AsmWriter #" + 286 Twine(AsmWriterNum) + "!"); 287 return LI[AsmWriterNum]; 288 } 289 290 CodeGenRegBank &CodeGenTarget::getRegBank() const { 291 if (!RegBank) 292 RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes()); 293 return *RegBank; 294 } 295 296 void CodeGenTarget::ReadRegAltNameIndices() const { 297 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 298 llvm::sort(RegAltNameIndices, LessRecord()); 299 } 300 301 /// getRegisterByName - If there is a register with the specific AsmName, 302 /// return it. 303 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 304 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 305 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 306 if (I == Regs.end()) 307 return nullptr; 308 return I->second; 309 } 310 311 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R) 312 const { 313 const CodeGenRegister *Reg = getRegBank().getReg(R); 314 std::vector<ValueTypeByHwMode> Result; 315 for (const auto &RC : getRegBank().getRegClasses()) { 316 if (RC.contains(Reg)) { 317 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); 318 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 319 } 320 } 321 322 // Remove duplicates. 323 llvm::sort(Result); 324 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 325 return Result; 326 } 327 328 329 void CodeGenTarget::ReadLegalValueTypes() const { 330 for (const auto &RC : getRegBank().getRegClasses()) 331 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 332 333 // Remove duplicates. 334 llvm::sort(LegalValueTypes); 335 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 336 LegalValueTypes.end()), 337 LegalValueTypes.end()); 338 } 339 340 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 341 if (!SchedModels) 342 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this); 343 return *SchedModels; 344 } 345 346 void CodeGenTarget::ReadInstructions() const { 347 NamedRegionTimer T("Read Instructions", "Time spent reading instructions", 348 "CodeGenTarget", "CodeGenTarget", TimeRegions); 349 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 350 if (Insts.size() <= 2) 351 PrintFatalError("No 'Instruction' subclasses defined!"); 352 353 // Parse the instructions defined in the .td file. 354 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 355 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]); 356 } 357 358 static const CodeGenInstruction * 359 GetInstByName(const char *Name, 360 const DenseMap<const Record*, 361 std::unique_ptr<CodeGenInstruction>> &Insts, 362 RecordKeeper &Records) { 363 const Record *Rec = Records.getDef(Name); 364 365 const auto I = Insts.find(Rec); 366 if (!Rec || I == Insts.end()) 367 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 368 return I->second.get(); 369 } 370 371 static const char *const FixedInstrs[] = { 372 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 373 #include "llvm/Support/TargetOpcodes.def" 374 nullptr}; 375 376 unsigned CodeGenTarget::getNumFixedInstructions() { 377 return array_lengthof(FixedInstrs) - 1; 378 } 379 380 /// Return all of the instructions defined by the target, ordered by 381 /// their enum value. 382 void CodeGenTarget::ComputeInstrsByEnum() const { 383 const auto &Insts = getInstructions(); 384 for (const char *const *p = FixedInstrs; *p; ++p) { 385 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 386 assert(Instr && "Missing target independent instruction"); 387 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 388 InstrsByEnum.push_back(Instr); 389 } 390 unsigned EndOfPredefines = InstrsByEnum.size(); 391 assert(EndOfPredefines == getNumFixedInstructions() && 392 "Missing generic opcode"); 393 394 for (const auto &I : Insts) { 395 const CodeGenInstruction *CGI = I.second.get(); 396 if (CGI->Namespace != "TargetOpcode") { 397 InstrsByEnum.push_back(CGI); 398 if (CGI->TheDef->getValueAsBit("isPseudo")) 399 ++NumPseudoInstructions; 400 } 401 } 402 403 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 404 405 // All of the instructions are now in random order based on the map iteration. 406 llvm::sort( 407 InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 408 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 409 const auto &D1 = *Rec1->TheDef; 410 const auto &D2 = *Rec2->TheDef; 411 return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < 412 std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); 413 }); 414 } 415 416 417 /// isLittleEndianEncoding - Return whether this target encodes its instruction 418 /// in little-endian format, i.e. bits laid out in the order [0..n] 419 /// 420 bool CodeGenTarget::isLittleEndianEncoding() const { 421 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 422 } 423 424 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 425 /// encodings, reverse the bit order of all instructions. 426 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 427 if (!isLittleEndianEncoding()) 428 return; 429 430 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 431 for (Record *R : Insts) { 432 if (R->getValueAsString("Namespace") == "TargetOpcode" || 433 R->getValueAsBit("isPseudo")) 434 continue; 435 436 BitsInit *BI = R->getValueAsBitsInit("Inst"); 437 438 unsigned numBits = BI->getNumBits(); 439 440 SmallVector<Init *, 16> NewBits(numBits); 441 442 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 443 unsigned bitSwapIdx = numBits - bit - 1; 444 Init *OrigBit = BI->getBit(bit); 445 Init *BitSwap = BI->getBit(bitSwapIdx); 446 NewBits[bit] = BitSwap; 447 NewBits[bitSwapIdx] = OrigBit; 448 } 449 if (numBits % 2) { 450 unsigned middle = (numBits + 1) / 2; 451 NewBits[middle] = BI->getBit(middle); 452 } 453 454 BitsInit *NewBI = BitsInit::get(NewBits); 455 456 // Update the bits in reversed order so that emitInstrOpBits will get the 457 // correct endianness. 458 R->getValue("Inst")->setValue(NewBI); 459 } 460 } 461 462 /// guessInstructionProperties - Return true if it's OK to guess instruction 463 /// properties instead of raising an error. 464 /// 465 /// This is configurable as a temporary migration aid. It will eventually be 466 /// permanently false. 467 bool CodeGenTarget::guessInstructionProperties() const { 468 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 469 } 470 471 //===----------------------------------------------------------------------===// 472 // ComplexPattern implementation 473 // 474 ComplexPattern::ComplexPattern(Record *R) { 475 Ty = ::getValueType(R->getValueAsDef("Ty")); 476 NumOperands = R->getValueAsInt("NumOperands"); 477 SelectFunc = R->getValueAsString("SelectFunc"); 478 RootNodes = R->getValueAsListOfDefs("RootNodes"); 479 480 // FIXME: This is a hack to statically increase the priority of patterns which 481 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 482 // possible pattern match we'll need to dynamically calculate the complexity 483 // of all patterns a dag can potentially map to. 484 int64_t RawComplexity = R->getValueAsInt("Complexity"); 485 if (RawComplexity == -1) 486 Complexity = NumOperands * 3; 487 else 488 Complexity = RawComplexity; 489 490 // FIXME: Why is this different from parseSDPatternOperatorProperties? 491 // Parse the properties. 492 Properties = 0; 493 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 494 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 495 if (PropList[i]->getName() == "SDNPHasChain") { 496 Properties |= 1 << SDNPHasChain; 497 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 498 Properties |= 1 << SDNPOptInGlue; 499 } else if (PropList[i]->getName() == "SDNPMayStore") { 500 Properties |= 1 << SDNPMayStore; 501 } else if (PropList[i]->getName() == "SDNPMayLoad") { 502 Properties |= 1 << SDNPMayLoad; 503 } else if (PropList[i]->getName() == "SDNPSideEffect") { 504 Properties |= 1 << SDNPSideEffect; 505 } else if (PropList[i]->getName() == "SDNPMemOperand") { 506 Properties |= 1 << SDNPMemOperand; 507 } else if (PropList[i]->getName() == "SDNPVariadic") { 508 Properties |= 1 << SDNPVariadic; 509 } else if (PropList[i]->getName() == "SDNPWantRoot") { 510 Properties |= 1 << SDNPWantRoot; 511 } else if (PropList[i]->getName() == "SDNPWantParent") { 512 Properties |= 1 << SDNPWantParent; 513 } else { 514 PrintFatalError(R->getLoc(), "Unsupported SD Node property '" + 515 PropList[i]->getName() + 516 "' on ComplexPattern '" + R->getName() + 517 "'!"); 518 } 519 } 520 521 //===----------------------------------------------------------------------===// 522 // CodeGenIntrinsic Implementation 523 //===----------------------------------------------------------------------===// 524 525 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC, 526 bool TargetOnly) { 527 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 528 529 Intrinsics.reserve(Defs.size()); 530 531 for (unsigned I = 0, e = Defs.size(); I != e; ++I) { 532 bool isTarget = Defs[I]->getValueAsBit("isTarget"); 533 if (isTarget == TargetOnly) 534 Intrinsics.push_back(CodeGenIntrinsic(Defs[I])); 535 } 536 llvm::sort(Intrinsics, 537 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 538 return std::tie(LHS.TargetPrefix, LHS.Name) < 539 std::tie(RHS.TargetPrefix, RHS.Name); 540 }); 541 Targets.push_back({"", 0, 0}); 542 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 543 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 544 Targets.back().Count = I - Targets.back().Offset; 545 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 546 } 547 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 548 } 549 550 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 551 TheDef = R; 552 std::string DefName = R->getName(); 553 ArrayRef<SMLoc> DefLoc = R->getLoc(); 554 ModRef = ReadWriteMem; 555 Properties = 0; 556 isOverloaded = false; 557 isCommutative = false; 558 canThrow = false; 559 isNoReturn = false; 560 isWillReturn = false; 561 isCold = false; 562 isNoDuplicate = false; 563 isConvergent = false; 564 isSpeculatable = false; 565 hasSideEffects = false; 566 567 if (DefName.size() <= 4 || 568 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 569 PrintFatalError(DefLoc, 570 "Intrinsic '" + DefName + "' does not start with 'int_'!"); 571 572 EnumName = std::string(DefName.begin()+4, DefName.end()); 573 574 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 575 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 576 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 577 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 578 579 TargetPrefix = R->getValueAsString("TargetPrefix"); 580 Name = R->getValueAsString("LLVMName"); 581 582 if (Name == "") { 583 // If an explicit name isn't specified, derive one from the DefName. 584 Name = "llvm."; 585 586 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 587 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 588 } else { 589 // Verify it starts with "llvm.". 590 if (Name.size() <= 5 || 591 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 592 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 593 "'s name does not start with 'llvm.'!"); 594 } 595 596 // If TargetPrefix is specified, make sure that Name starts with 597 // "llvm.<targetprefix>.". 598 if (!TargetPrefix.empty()) { 599 if (Name.size() < 6+TargetPrefix.size() || 600 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 601 != (TargetPrefix + ".")) 602 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 603 "' does not start with 'llvm." + 604 TargetPrefix + ".'!"); 605 } 606 607 ListInit *RetTypes = R->getValueAsListInit("RetTypes"); 608 ListInit *ParamTypes = R->getValueAsListInit("ParamTypes"); 609 610 // First collate a list of overloaded types. 611 std::vector<MVT::SimpleValueType> OverloadedVTs; 612 for (ListInit *TypeList : {RetTypes, ParamTypes}) { 613 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 614 Record *TyEl = TypeList->getElementAsRecord(i); 615 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 616 617 if (TyEl->isSubClassOf("LLVMMatchType")) 618 continue; 619 620 MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT")); 621 if (MVT(VT).isOverloaded()) { 622 OverloadedVTs.push_back(VT); 623 isOverloaded = true; 624 } 625 } 626 } 627 628 // Parse the list of return types. 629 ListInit *TypeList = RetTypes; 630 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 631 Record *TyEl = TypeList->getElementAsRecord(i); 632 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 633 MVT::SimpleValueType VT; 634 if (TyEl->isSubClassOf("LLVMMatchType")) { 635 unsigned MatchTy = TyEl->getValueAsInt("Number"); 636 assert(MatchTy < OverloadedVTs.size() && 637 "Invalid matching number!"); 638 VT = OverloadedVTs[MatchTy]; 639 // It only makes sense to use the extended and truncated vector element 640 // variants with iAny types; otherwise, if the intrinsic is not 641 // overloaded, all the types can be specified directly. 642 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 643 !TyEl->isSubClassOf("LLVMTruncatedType")) || 644 VT == MVT::iAny || VT == MVT::vAny) && 645 "Expected iAny or vAny type"); 646 } else { 647 VT = getValueType(TyEl->getValueAsDef("VT")); 648 } 649 650 // Reject invalid types. 651 if (VT == MVT::isVoid) 652 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 653 " has void in result type list!"); 654 655 IS.RetVTs.push_back(VT); 656 IS.RetTypeDefs.push_back(TyEl); 657 } 658 659 // Parse the list of parameter types. 660 TypeList = ParamTypes; 661 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 662 Record *TyEl = TypeList->getElementAsRecord(i); 663 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 664 MVT::SimpleValueType VT; 665 if (TyEl->isSubClassOf("LLVMMatchType")) { 666 unsigned MatchTy = TyEl->getValueAsInt("Number"); 667 if (MatchTy >= OverloadedVTs.size()) { 668 PrintError(R->getLoc(), 669 "Parameter #" + Twine(i) + " has out of bounds matching " 670 "number " + Twine(MatchTy)); 671 PrintFatalError(DefLoc, 672 Twine("ParamTypes is ") + TypeList->getAsString()); 673 } 674 VT = OverloadedVTs[MatchTy]; 675 // It only makes sense to use the extended and truncated vector element 676 // variants with iAny types; otherwise, if the intrinsic is not 677 // overloaded, all the types can be specified directly. 678 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 679 !TyEl->isSubClassOf("LLVMTruncatedType") && 680 !TyEl->isSubClassOf("LLVMScalarOrSameVectorWidth")) || 681 VT == MVT::iAny || VT == MVT::vAny) && 682 "Expected iAny or vAny type"); 683 } else 684 VT = getValueType(TyEl->getValueAsDef("VT")); 685 686 // Reject invalid types. 687 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 688 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 689 " has void in result type list!"); 690 691 IS.ParamVTs.push_back(VT); 692 IS.ParamTypeDefs.push_back(TyEl); 693 } 694 695 // Parse the intrinsic properties. 696 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 697 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 698 Record *Property = PropList->getElementAsRecord(i); 699 assert(Property->isSubClassOf("IntrinsicProperty") && 700 "Expected a property!"); 701 702 if (Property->getName() == "IntrNoMem") 703 ModRef = NoMem; 704 else if (Property->getName() == "IntrReadMem") 705 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 706 else if (Property->getName() == "IntrWriteMem") 707 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 708 else if (Property->getName() == "IntrArgMemOnly") 709 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 710 else if (Property->getName() == "IntrInaccessibleMemOnly") 711 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 712 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly") 713 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 714 MR_InaccessibleMem); 715 else if (Property->getName() == "Commutative") 716 isCommutative = true; 717 else if (Property->getName() == "Throws") 718 canThrow = true; 719 else if (Property->getName() == "IntrNoDuplicate") 720 isNoDuplicate = true; 721 else if (Property->getName() == "IntrConvergent") 722 isConvergent = true; 723 else if (Property->getName() == "IntrNoReturn") 724 isNoReturn = true; 725 else if (Property->getName() == "IntrWillReturn") 726 isWillReturn = true; 727 else if (Property->getName() == "IntrCold") 728 isCold = true; 729 else if (Property->getName() == "IntrSpeculatable") 730 isSpeculatable = true; 731 else if (Property->getName() == "IntrHasSideEffects") 732 hasSideEffects = true; 733 else if (Property->isSubClassOf("NoCapture")) { 734 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 735 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 736 } else if (Property->isSubClassOf("Returned")) { 737 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 738 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned)); 739 } else if (Property->isSubClassOf("ReadOnly")) { 740 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 741 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 742 } else if (Property->isSubClassOf("WriteOnly")) { 743 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 744 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly)); 745 } else if (Property->isSubClassOf("ReadNone")) { 746 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 747 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 748 } else if (Property->isSubClassOf("ImmArg")) { 749 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 750 ArgumentAttributes.push_back(std::make_pair(ArgNo, ImmArg)); 751 } else 752 llvm_unreachable("Unknown property!"); 753 } 754 755 // Also record the SDPatternOperator Properties. 756 Properties = parseSDPatternOperatorProperties(R); 757 758 // Sort the argument attributes for later benefit. 759 llvm::sort(ArgumentAttributes); 760 } 761