1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes throw exceptions on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "Record.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include <algorithm> 24 using namespace llvm; 25 26 static cl::opt<unsigned> 27 AsmParserNum("asmparsernum", cl::init(0), 28 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 29 30 static cl::opt<unsigned> 31 AsmWriterNum("asmwriternum", cl::init(0), 32 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 33 34 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 35 /// record corresponds to. 36 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 37 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 38 } 39 40 std::string llvm::getName(MVT::SimpleValueType T) { 41 switch (T) { 42 case MVT::Other: return "UNKNOWN"; 43 case MVT::iPTR: return "TLI.getPointerTy()"; 44 case MVT::iPTRAny: return "TLI.getPointerTy()"; 45 default: return getEnumName(T); 46 } 47 } 48 49 std::string llvm::getEnumName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "MVT::Other"; 52 case MVT::i1: return "MVT::i1"; 53 case MVT::i8: return "MVT::i8"; 54 case MVT::i16: return "MVT::i16"; 55 case MVT::i32: return "MVT::i32"; 56 case MVT::i64: return "MVT::i64"; 57 case MVT::i128: return "MVT::i128"; 58 case MVT::iAny: return "MVT::iAny"; 59 case MVT::fAny: return "MVT::fAny"; 60 case MVT::vAny: return "MVT::vAny"; 61 case MVT::f32: return "MVT::f32"; 62 case MVT::f64: return "MVT::f64"; 63 case MVT::f80: return "MVT::f80"; 64 case MVT::f128: return "MVT::f128"; 65 case MVT::ppcf128: return "MVT::ppcf128"; 66 case MVT::x86mmx: return "MVT::x86mmx"; 67 case MVT::Glue: return "MVT::Glue"; 68 case MVT::isVoid: return "MVT::isVoid"; 69 case MVT::v2i8: return "MVT::v2i8"; 70 case MVT::v4i8: return "MVT::v4i8"; 71 case MVT::v8i8: return "MVT::v8i8"; 72 case MVT::v16i8: return "MVT::v16i8"; 73 case MVT::v32i8: return "MVT::v32i8"; 74 case MVT::v2i16: return "MVT::v2i16"; 75 case MVT::v4i16: return "MVT::v4i16"; 76 case MVT::v8i16: return "MVT::v8i16"; 77 case MVT::v16i16: return "MVT::v16i16"; 78 case MVT::v2i32: return "MVT::v2i32"; 79 case MVT::v4i32: return "MVT::v4i32"; 80 case MVT::v8i32: return "MVT::v8i32"; 81 case MVT::v1i64: return "MVT::v1i64"; 82 case MVT::v2i64: return "MVT::v2i64"; 83 case MVT::v4i64: return "MVT::v4i64"; 84 case MVT::v8i64: return "MVT::v8i64"; 85 case MVT::v2f32: return "MVT::v2f32"; 86 case MVT::v4f32: return "MVT::v4f32"; 87 case MVT::v8f32: return "MVT::v8f32"; 88 case MVT::v2f64: return "MVT::v2f64"; 89 case MVT::v4f64: return "MVT::v4f64"; 90 case MVT::Metadata: return "MVT::Metadata"; 91 case MVT::iPTR: return "MVT::iPTR"; 92 case MVT::iPTRAny: return "MVT::iPTRAny"; 93 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 94 } 95 } 96 97 /// getQualifiedName - Return the name of the specified record, with a 98 /// namespace qualifier if the record contains one. 99 /// 100 std::string llvm::getQualifiedName(const Record *R) { 101 std::string Namespace; 102 if (R->getValue("Namespace")) 103 Namespace = R->getValueAsString("Namespace"); 104 if (Namespace.empty()) return R->getName(); 105 return Namespace + "::" + R->getName(); 106 } 107 108 109 /// getTarget - Return the current instance of the Target class. 110 /// 111 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 112 : Records(records), RegBank(0) { 113 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 114 if (Targets.size() == 0) 115 throw std::string("ERROR: No 'Target' subclasses defined!"); 116 if (Targets.size() != 1) 117 throw std::string("ERROR: Multiple subclasses of Target defined!"); 118 TargetRec = Targets[0]; 119 } 120 121 122 const std::string &CodeGenTarget::getName() const { 123 return TargetRec->getName(); 124 } 125 126 std::string CodeGenTarget::getInstNamespace() const { 127 for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { 128 // Make sure not to pick up "TargetOpcode" by accidentally getting 129 // the namespace off the PHI instruction or something. 130 if ((*i)->Namespace != "TargetOpcode") 131 return (*i)->Namespace; 132 } 133 134 return ""; 135 } 136 137 Record *CodeGenTarget::getInstructionSet() const { 138 return TargetRec->getValueAsDef("InstructionSet"); 139 } 140 141 142 /// getAsmParser - Return the AssemblyParser definition for this target. 143 /// 144 Record *CodeGenTarget::getAsmParser() const { 145 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 146 if (AsmParserNum >= LI.size()) 147 throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!"; 148 return LI[AsmParserNum]; 149 } 150 151 /// getAsmWriter - Return the AssemblyWriter definition for this target. 152 /// 153 Record *CodeGenTarget::getAsmWriter() const { 154 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 155 if (AsmWriterNum >= LI.size()) 156 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; 157 return LI[AsmWriterNum]; 158 } 159 160 CodeGenRegBank &CodeGenTarget::getRegBank() const { 161 if (!RegBank) 162 RegBank = new CodeGenRegBank(Records); 163 return *RegBank; 164 } 165 166 /// getRegisterByName - If there is a register with the specific AsmName, 167 /// return it. 168 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 169 const std::vector<CodeGenRegister> &Regs = getRegBank().getRegisters(); 170 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 171 const CodeGenRegister &Reg = Regs[i]; 172 if (Reg.TheDef->getValueAsString("AsmName") == Name) 173 return &Reg; 174 } 175 176 return 0; 177 } 178 179 std::vector<MVT::SimpleValueType> CodeGenTarget:: 180 getRegisterVTs(Record *R) const { 181 const CodeGenRegister *Reg = getRegBank().getReg(R); 182 std::vector<MVT::SimpleValueType> Result; 183 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 184 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 185 const CodeGenRegisterClass &RC = RCs[i]; 186 if (RC.contains(Reg)) { 187 const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes(); 188 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 189 } 190 } 191 192 // Remove duplicates. 193 array_pod_sort(Result.begin(), Result.end()); 194 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 195 return Result; 196 } 197 198 199 void CodeGenTarget::ReadLegalValueTypes() const { 200 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 201 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 202 for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri) 203 LegalValueTypes.push_back(RCs[i].VTs[ri]); 204 205 // Remove duplicates. 206 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 207 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 208 LegalValueTypes.end()), 209 LegalValueTypes.end()); 210 } 211 212 213 void CodeGenTarget::ReadInstructions() const { 214 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 215 if (Insts.size() <= 2) 216 throw std::string("No 'Instruction' subclasses defined!"); 217 218 // Parse the instructions defined in the .td file. 219 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 220 Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]); 221 } 222 223 static const CodeGenInstruction * 224 GetInstByName(const char *Name, 225 const DenseMap<const Record*, CodeGenInstruction*> &Insts, 226 RecordKeeper &Records) { 227 const Record *Rec = Records.getDef(Name); 228 229 DenseMap<const Record*, CodeGenInstruction*>::const_iterator 230 I = Insts.find(Rec); 231 if (Rec == 0 || I == Insts.end()) 232 throw std::string("Could not find '") + Name + "' instruction!"; 233 return I->second; 234 } 235 236 namespace { 237 /// SortInstByName - Sorting predicate to sort instructions by name. 238 /// 239 struct SortInstByName { 240 bool operator()(const CodeGenInstruction *Rec1, 241 const CodeGenInstruction *Rec2) const { 242 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 243 } 244 }; 245 } 246 247 /// getInstructionsByEnumValue - Return all of the instructions defined by the 248 /// target, ordered by their enum value. 249 void CodeGenTarget::ComputeInstrsByEnum() const { 250 // The ordering here must match the ordering in TargetOpcodes.h. 251 const char *const FixedInstrs[] = { 252 "PHI", 253 "INLINEASM", 254 "PROLOG_LABEL", 255 "EH_LABEL", 256 "GC_LABEL", 257 "KILL", 258 "EXTRACT_SUBREG", 259 "INSERT_SUBREG", 260 "IMPLICIT_DEF", 261 "SUBREG_TO_REG", 262 "COPY_TO_REGCLASS", 263 "DBG_VALUE", 264 "REG_SEQUENCE", 265 "COPY", 266 0 267 }; 268 const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions(); 269 for (const char *const *p = FixedInstrs; *p; ++p) { 270 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 271 assert(Instr && "Missing target independent instruction"); 272 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 273 InstrsByEnum.push_back(Instr); 274 } 275 unsigned EndOfPredefines = InstrsByEnum.size(); 276 277 for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator 278 I = Insts.begin(), E = Insts.end(); I != E; ++I) { 279 const CodeGenInstruction *CGI = I->second; 280 if (CGI->Namespace != "TargetOpcode") 281 InstrsByEnum.push_back(CGI); 282 } 283 284 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 285 286 // All of the instructions are now in random order based on the map iteration. 287 // Sort them by name. 288 std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(), 289 SortInstByName()); 290 } 291 292 293 /// isLittleEndianEncoding - Return whether this target encodes its instruction 294 /// in little-endian format, i.e. bits laid out in the order [0..n] 295 /// 296 bool CodeGenTarget::isLittleEndianEncoding() const { 297 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 298 } 299 300 //===----------------------------------------------------------------------===// 301 // ComplexPattern implementation 302 // 303 ComplexPattern::ComplexPattern(Record *R) { 304 Ty = ::getValueType(R->getValueAsDef("Ty")); 305 NumOperands = R->getValueAsInt("NumOperands"); 306 SelectFunc = R->getValueAsString("SelectFunc"); 307 RootNodes = R->getValueAsListOfDefs("RootNodes"); 308 309 // Parse the properties. 310 Properties = 0; 311 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 312 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 313 if (PropList[i]->getName() == "SDNPHasChain") { 314 Properties |= 1 << SDNPHasChain; 315 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 316 Properties |= 1 << SDNPOptInGlue; 317 } else if (PropList[i]->getName() == "SDNPMayStore") { 318 Properties |= 1 << SDNPMayStore; 319 } else if (PropList[i]->getName() == "SDNPMayLoad") { 320 Properties |= 1 << SDNPMayLoad; 321 } else if (PropList[i]->getName() == "SDNPSideEffect") { 322 Properties |= 1 << SDNPSideEffect; 323 } else if (PropList[i]->getName() == "SDNPMemOperand") { 324 Properties |= 1 << SDNPMemOperand; 325 } else if (PropList[i]->getName() == "SDNPVariadic") { 326 Properties |= 1 << SDNPVariadic; 327 } else if (PropList[i]->getName() == "SDNPWantRoot") { 328 Properties |= 1 << SDNPWantRoot; 329 } else if (PropList[i]->getName() == "SDNPWantParent") { 330 Properties |= 1 << SDNPWantParent; 331 } else { 332 errs() << "Unsupported SD Node property '" << PropList[i]->getName() 333 << "' on ComplexPattern '" << R->getName() << "'!\n"; 334 exit(1); 335 } 336 } 337 338 //===----------------------------------------------------------------------===// 339 // CodeGenIntrinsic Implementation 340 //===----------------------------------------------------------------------===// 341 342 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 343 bool TargetOnly) { 344 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 345 346 std::vector<CodeGenIntrinsic> Result; 347 348 for (unsigned i = 0, e = I.size(); i != e; ++i) { 349 bool isTarget = I[i]->getValueAsBit("isTarget"); 350 if (isTarget == TargetOnly) 351 Result.push_back(CodeGenIntrinsic(I[i])); 352 } 353 return Result; 354 } 355 356 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 357 TheDef = R; 358 std::string DefName = R->getName(); 359 ModRef = ReadWriteMem; 360 isOverloaded = false; 361 isCommutative = false; 362 canThrow = false; 363 364 if (DefName.size() <= 4 || 365 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 366 throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; 367 368 EnumName = std::string(DefName.begin()+4, DefName.end()); 369 370 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 371 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 372 373 TargetPrefix = R->getValueAsString("TargetPrefix"); 374 Name = R->getValueAsString("LLVMName"); 375 376 if (Name == "") { 377 // If an explicit name isn't specified, derive one from the DefName. 378 Name = "llvm."; 379 380 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 381 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 382 } else { 383 // Verify it starts with "llvm.". 384 if (Name.size() <= 5 || 385 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 386 throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; 387 } 388 389 // If TargetPrefix is specified, make sure that Name starts with 390 // "llvm.<targetprefix>.". 391 if (!TargetPrefix.empty()) { 392 if (Name.size() < 6+TargetPrefix.size() || 393 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 394 != (TargetPrefix + ".")) 395 throw "Intrinsic '" + DefName + "' does not start with 'llvm." + 396 TargetPrefix + ".'!"; 397 } 398 399 // Parse the list of return types. 400 std::vector<MVT::SimpleValueType> OverloadedVTs; 401 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 402 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 403 Record *TyEl = TypeList->getElementAsRecord(i); 404 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 405 MVT::SimpleValueType VT; 406 if (TyEl->isSubClassOf("LLVMMatchType")) { 407 unsigned MatchTy = TyEl->getValueAsInt("Number"); 408 assert(MatchTy < OverloadedVTs.size() && 409 "Invalid matching number!"); 410 VT = OverloadedVTs[MatchTy]; 411 // It only makes sense to use the extended and truncated vector element 412 // variants with iAny types; otherwise, if the intrinsic is not 413 // overloaded, all the types can be specified directly. 414 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 415 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 416 VT == MVT::iAny || VT == MVT::vAny) && 417 "Expected iAny or vAny type"); 418 } else { 419 VT = getValueType(TyEl->getValueAsDef("VT")); 420 } 421 if (EVT(VT).isOverloaded()) { 422 OverloadedVTs.push_back(VT); 423 isOverloaded = true; 424 } 425 426 // Reject invalid types. 427 if (VT == MVT::isVoid) 428 throw "Intrinsic '" + DefName + " has void in result type list!"; 429 430 IS.RetVTs.push_back(VT); 431 IS.RetTypeDefs.push_back(TyEl); 432 } 433 434 // Parse the list of parameter types. 435 TypeList = R->getValueAsListInit("ParamTypes"); 436 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 437 Record *TyEl = TypeList->getElementAsRecord(i); 438 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 439 MVT::SimpleValueType VT; 440 if (TyEl->isSubClassOf("LLVMMatchType")) { 441 unsigned MatchTy = TyEl->getValueAsInt("Number"); 442 assert(MatchTy < OverloadedVTs.size() && 443 "Invalid matching number!"); 444 VT = OverloadedVTs[MatchTy]; 445 // It only makes sense to use the extended and truncated vector element 446 // variants with iAny types; otherwise, if the intrinsic is not 447 // overloaded, all the types can be specified directly. 448 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 449 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 450 VT == MVT::iAny || VT == MVT::vAny) && 451 "Expected iAny or vAny type"); 452 } else 453 VT = getValueType(TyEl->getValueAsDef("VT")); 454 455 if (EVT(VT).isOverloaded()) { 456 OverloadedVTs.push_back(VT); 457 isOverloaded = true; 458 } 459 460 // Reject invalid types. 461 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 462 throw "Intrinsic '" + DefName + " has void in result type list!"; 463 464 IS.ParamVTs.push_back(VT); 465 IS.ParamTypeDefs.push_back(TyEl); 466 } 467 468 // Parse the intrinsic properties. 469 ListInit *PropList = R->getValueAsListInit("Properties"); 470 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 471 Record *Property = PropList->getElementAsRecord(i); 472 assert(Property->isSubClassOf("IntrinsicProperty") && 473 "Expected a property!"); 474 475 if (Property->getName() == "IntrNoMem") 476 ModRef = NoMem; 477 else if (Property->getName() == "IntrReadArgMem") 478 ModRef = ReadArgMem; 479 else if (Property->getName() == "IntrReadMem") 480 ModRef = ReadMem; 481 else if (Property->getName() == "IntrReadWriteArgMem") 482 ModRef = ReadWriteArgMem; 483 else if (Property->getName() == "Commutative") 484 isCommutative = true; 485 else if (Property->getName() == "Throws") 486 canThrow = true; 487 else if (Property->isSubClassOf("NoCapture")) { 488 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 489 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 490 } else 491 assert(0 && "Unknown property!"); 492 } 493 494 // Sort the argument attributes for later benefit. 495 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 496 } 497