1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes throw exceptions on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/TableGen/Record.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/Support/CommandLine.h" 24 #include <algorithm> 25 using namespace llvm; 26 27 static cl::opt<unsigned> 28 AsmParserNum("asmparsernum", cl::init(0), 29 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 30 31 static cl::opt<unsigned> 32 AsmWriterNum("asmwriternum", cl::init(0), 33 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 34 35 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 36 /// record corresponds to. 37 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 38 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 39 } 40 41 std::string llvm::getName(MVT::SimpleValueType T) { 42 switch (T) { 43 case MVT::Other: return "UNKNOWN"; 44 case MVT::iPTR: return "TLI.getPointerTy()"; 45 case MVT::iPTRAny: return "TLI.getPointerTy()"; 46 default: return getEnumName(T); 47 } 48 } 49 50 std::string llvm::getEnumName(MVT::SimpleValueType T) { 51 switch (T) { 52 case MVT::Other: return "MVT::Other"; 53 case MVT::i1: return "MVT::i1"; 54 case MVT::i8: return "MVT::i8"; 55 case MVT::i16: return "MVT::i16"; 56 case MVT::i32: return "MVT::i32"; 57 case MVT::i64: return "MVT::i64"; 58 case MVT::i128: return "MVT::i128"; 59 case MVT::iAny: return "MVT::iAny"; 60 case MVT::fAny: return "MVT::fAny"; 61 case MVT::vAny: return "MVT::vAny"; 62 case MVT::f16: return "MVT::f16"; 63 case MVT::f32: return "MVT::f32"; 64 case MVT::f64: return "MVT::f64"; 65 case MVT::f80: return "MVT::f80"; 66 case MVT::f128: return "MVT::f128"; 67 case MVT::ppcf128: return "MVT::ppcf128"; 68 case MVT::x86mmx: return "MVT::x86mmx"; 69 case MVT::Glue: return "MVT::Glue"; 70 case MVT::isVoid: return "MVT::isVoid"; 71 case MVT::v2i8: return "MVT::v2i8"; 72 case MVT::v4i8: return "MVT::v4i8"; 73 case MVT::v8i8: return "MVT::v8i8"; 74 case MVT::v16i8: return "MVT::v16i8"; 75 case MVT::v32i8: return "MVT::v32i8"; 76 case MVT::v2i16: return "MVT::v2i16"; 77 case MVT::v4i16: return "MVT::v4i16"; 78 case MVT::v8i16: return "MVT::v8i16"; 79 case MVT::v16i16: return "MVT::v16i16"; 80 case MVT::v2i32: return "MVT::v2i32"; 81 case MVT::v4i32: return "MVT::v4i32"; 82 case MVT::v8i32: return "MVT::v8i32"; 83 case MVT::v1i64: return "MVT::v1i64"; 84 case MVT::v2i64: return "MVT::v2i64"; 85 case MVT::v4i64: return "MVT::v4i64"; 86 case MVT::v8i64: return "MVT::v8i64"; 87 case MVT::v2f16: return "MVT::v2f16"; 88 case MVT::v2f32: return "MVT::v2f32"; 89 case MVT::v4f32: return "MVT::v4f32"; 90 case MVT::v8f32: return "MVT::v8f32"; 91 case MVT::v2f64: return "MVT::v2f64"; 92 case MVT::v4f64: return "MVT::v4f64"; 93 case MVT::Metadata: return "MVT::Metadata"; 94 case MVT::iPTR: return "MVT::iPTR"; 95 case MVT::iPTRAny: return "MVT::iPTRAny"; 96 case MVT::Untyped: return "MVT::Untyped"; 97 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 98 } 99 } 100 101 /// getQualifiedName - Return the name of the specified record, with a 102 /// namespace qualifier if the record contains one. 103 /// 104 std::string llvm::getQualifiedName(const Record *R) { 105 std::string Namespace; 106 if (R->getValue("Namespace")) 107 Namespace = R->getValueAsString("Namespace"); 108 if (Namespace.empty()) return R->getName(); 109 return Namespace + "::" + R->getName(); 110 } 111 112 113 /// getTarget - Return the current instance of the Target class. 114 /// 115 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 116 : Records(records), RegBank(0), SchedModels(0) { 117 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 118 if (Targets.size() == 0) 119 throw std::string("ERROR: No 'Target' subclasses defined!"); 120 if (Targets.size() != 1) 121 throw std::string("ERROR: Multiple subclasses of Target defined!"); 122 TargetRec = Targets[0]; 123 } 124 125 CodeGenTarget::~CodeGenTarget() { 126 delete RegBank; 127 delete SchedModels; 128 } 129 130 const std::string &CodeGenTarget::getName() const { 131 return TargetRec->getName(); 132 } 133 134 std::string CodeGenTarget::getInstNamespace() const { 135 for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { 136 // Make sure not to pick up "TargetOpcode" by accidentally getting 137 // the namespace off the PHI instruction or something. 138 if ((*i)->Namespace != "TargetOpcode") 139 return (*i)->Namespace; 140 } 141 142 return ""; 143 } 144 145 Record *CodeGenTarget::getInstructionSet() const { 146 return TargetRec->getValueAsDef("InstructionSet"); 147 } 148 149 150 /// getAsmParser - Return the AssemblyParser definition for this target. 151 /// 152 Record *CodeGenTarget::getAsmParser() const { 153 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 154 if (AsmParserNum >= LI.size()) 155 throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!"; 156 return LI[AsmParserNum]; 157 } 158 159 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 160 /// this target. 161 /// 162 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 163 std::vector<Record*> LI = 164 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 165 if (i >= LI.size()) 166 throw "Target does not have an AsmParserVariant #" + utostr(i) + "!"; 167 return LI[i]; 168 } 169 170 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 171 /// available for this target. 172 /// 173 unsigned CodeGenTarget::getAsmParserVariantCount() const { 174 std::vector<Record*> LI = 175 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 176 return LI.size(); 177 } 178 179 /// getAsmWriter - Return the AssemblyWriter definition for this target. 180 /// 181 Record *CodeGenTarget::getAsmWriter() const { 182 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 183 if (AsmWriterNum >= LI.size()) 184 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; 185 return LI[AsmWriterNum]; 186 } 187 188 CodeGenRegBank &CodeGenTarget::getRegBank() const { 189 if (!RegBank) 190 RegBank = new CodeGenRegBank(Records); 191 return *RegBank; 192 } 193 194 void CodeGenTarget::ReadRegAltNameIndices() const { 195 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 196 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 197 } 198 199 /// getRegisterByName - If there is a register with the specific AsmName, 200 /// return it. 201 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 202 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 203 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 204 if (I == Regs.end()) 205 return 0; 206 return I->second; 207 } 208 209 std::vector<MVT::SimpleValueType> CodeGenTarget:: 210 getRegisterVTs(Record *R) const { 211 const CodeGenRegister *Reg = getRegBank().getReg(R); 212 std::vector<MVT::SimpleValueType> Result; 213 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 214 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 215 const CodeGenRegisterClass &RC = *RCs[i]; 216 if (RC.contains(Reg)) { 217 const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes(); 218 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 219 } 220 } 221 222 // Remove duplicates. 223 array_pod_sort(Result.begin(), Result.end()); 224 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 225 return Result; 226 } 227 228 229 void CodeGenTarget::ReadLegalValueTypes() const { 230 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 231 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 232 for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri) 233 LegalValueTypes.push_back(RCs[i]->VTs[ri]); 234 235 // Remove duplicates. 236 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 237 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 238 LegalValueTypes.end()), 239 LegalValueTypes.end()); 240 } 241 242 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 243 if (!SchedModels) 244 SchedModels = new CodeGenSchedModels(Records, *this); 245 return *SchedModels; 246 } 247 248 void CodeGenTarget::ReadInstructions() const { 249 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 250 if (Insts.size() <= 2) 251 throw std::string("No 'Instruction' subclasses defined!"); 252 253 // Parse the instructions defined in the .td file. 254 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 255 Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]); 256 } 257 258 static const CodeGenInstruction * 259 GetInstByName(const char *Name, 260 const DenseMap<const Record*, CodeGenInstruction*> &Insts, 261 RecordKeeper &Records) { 262 const Record *Rec = Records.getDef(Name); 263 264 DenseMap<const Record*, CodeGenInstruction*>::const_iterator 265 I = Insts.find(Rec); 266 if (Rec == 0 || I == Insts.end()) 267 throw std::string("Could not find '") + Name + "' instruction!"; 268 return I->second; 269 } 270 271 namespace { 272 /// SortInstByName - Sorting predicate to sort instructions by name. 273 /// 274 struct SortInstByName { 275 bool operator()(const CodeGenInstruction *Rec1, 276 const CodeGenInstruction *Rec2) const { 277 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 278 } 279 }; 280 } 281 282 /// getInstructionsByEnumValue - Return all of the instructions defined by the 283 /// target, ordered by their enum value. 284 void CodeGenTarget::ComputeInstrsByEnum() const { 285 // The ordering here must match the ordering in TargetOpcodes.h. 286 const char *const FixedInstrs[] = { 287 "PHI", 288 "INLINEASM", 289 "PROLOG_LABEL", 290 "EH_LABEL", 291 "GC_LABEL", 292 "KILL", 293 "EXTRACT_SUBREG", 294 "INSERT_SUBREG", 295 "IMPLICIT_DEF", 296 "SUBREG_TO_REG", 297 "COPY_TO_REGCLASS", 298 "DBG_VALUE", 299 "REG_SEQUENCE", 300 "COPY", 301 "BUNDLE", 302 "LIFETIME_START", 303 "LIFETIME_END", 304 0 305 }; 306 const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions(); 307 for (const char *const *p = FixedInstrs; *p; ++p) { 308 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 309 assert(Instr && "Missing target independent instruction"); 310 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 311 InstrsByEnum.push_back(Instr); 312 } 313 unsigned EndOfPredefines = InstrsByEnum.size(); 314 315 for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator 316 I = Insts.begin(), E = Insts.end(); I != E; ++I) { 317 const CodeGenInstruction *CGI = I->second; 318 if (CGI->Namespace != "TargetOpcode") 319 InstrsByEnum.push_back(CGI); 320 } 321 322 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 323 324 // All of the instructions are now in random order based on the map iteration. 325 // Sort them by name. 326 std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(), 327 SortInstByName()); 328 } 329 330 331 /// isLittleEndianEncoding - Return whether this target encodes its instruction 332 /// in little-endian format, i.e. bits laid out in the order [0..n] 333 /// 334 bool CodeGenTarget::isLittleEndianEncoding() const { 335 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 336 } 337 338 /// guessInstructionProperties - Return true if it's OK to guess instruction 339 /// properties instead of raising an error. 340 /// 341 /// This is configurable as a temporary migration aid. It will eventually be 342 /// permanently false. 343 bool CodeGenTarget::guessInstructionProperties() const { 344 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 345 } 346 347 //===----------------------------------------------------------------------===// 348 // ComplexPattern implementation 349 // 350 ComplexPattern::ComplexPattern(Record *R) { 351 Ty = ::getValueType(R->getValueAsDef("Ty")); 352 NumOperands = R->getValueAsInt("NumOperands"); 353 SelectFunc = R->getValueAsString("SelectFunc"); 354 RootNodes = R->getValueAsListOfDefs("RootNodes"); 355 356 // Parse the properties. 357 Properties = 0; 358 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 359 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 360 if (PropList[i]->getName() == "SDNPHasChain") { 361 Properties |= 1 << SDNPHasChain; 362 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 363 Properties |= 1 << SDNPOptInGlue; 364 } else if (PropList[i]->getName() == "SDNPMayStore") { 365 Properties |= 1 << SDNPMayStore; 366 } else if (PropList[i]->getName() == "SDNPMayLoad") { 367 Properties |= 1 << SDNPMayLoad; 368 } else if (PropList[i]->getName() == "SDNPSideEffect") { 369 Properties |= 1 << SDNPSideEffect; 370 } else if (PropList[i]->getName() == "SDNPMemOperand") { 371 Properties |= 1 << SDNPMemOperand; 372 } else if (PropList[i]->getName() == "SDNPVariadic") { 373 Properties |= 1 << SDNPVariadic; 374 } else if (PropList[i]->getName() == "SDNPWantRoot") { 375 Properties |= 1 << SDNPWantRoot; 376 } else if (PropList[i]->getName() == "SDNPWantParent") { 377 Properties |= 1 << SDNPWantParent; 378 } else { 379 errs() << "Unsupported SD Node property '" << PropList[i]->getName() 380 << "' on ComplexPattern '" << R->getName() << "'!\n"; 381 exit(1); 382 } 383 } 384 385 //===----------------------------------------------------------------------===// 386 // CodeGenIntrinsic Implementation 387 //===----------------------------------------------------------------------===// 388 389 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 390 bool TargetOnly) { 391 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 392 393 std::vector<CodeGenIntrinsic> Result; 394 395 for (unsigned i = 0, e = I.size(); i != e; ++i) { 396 bool isTarget = I[i]->getValueAsBit("isTarget"); 397 if (isTarget == TargetOnly) 398 Result.push_back(CodeGenIntrinsic(I[i])); 399 } 400 return Result; 401 } 402 403 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 404 TheDef = R; 405 std::string DefName = R->getName(); 406 ModRef = ReadWriteMem; 407 isOverloaded = false; 408 isCommutative = false; 409 canThrow = false; 410 isNoReturn = false; 411 412 if (DefName.size() <= 4 || 413 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 414 throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; 415 416 EnumName = std::string(DefName.begin()+4, DefName.end()); 417 418 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 419 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 420 421 TargetPrefix = R->getValueAsString("TargetPrefix"); 422 Name = R->getValueAsString("LLVMName"); 423 424 if (Name == "") { 425 // If an explicit name isn't specified, derive one from the DefName. 426 Name = "llvm."; 427 428 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 429 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 430 } else { 431 // Verify it starts with "llvm.". 432 if (Name.size() <= 5 || 433 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 434 throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; 435 } 436 437 // If TargetPrefix is specified, make sure that Name starts with 438 // "llvm.<targetprefix>.". 439 if (!TargetPrefix.empty()) { 440 if (Name.size() < 6+TargetPrefix.size() || 441 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 442 != (TargetPrefix + ".")) 443 throw "Intrinsic '" + DefName + "' does not start with 'llvm." + 444 TargetPrefix + ".'!"; 445 } 446 447 // Parse the list of return types. 448 std::vector<MVT::SimpleValueType> OverloadedVTs; 449 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 450 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 451 Record *TyEl = TypeList->getElementAsRecord(i); 452 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 453 MVT::SimpleValueType VT; 454 if (TyEl->isSubClassOf("LLVMMatchType")) { 455 unsigned MatchTy = TyEl->getValueAsInt("Number"); 456 assert(MatchTy < OverloadedVTs.size() && 457 "Invalid matching number!"); 458 VT = OverloadedVTs[MatchTy]; 459 // It only makes sense to use the extended and truncated vector element 460 // variants with iAny types; otherwise, if the intrinsic is not 461 // overloaded, all the types can be specified directly. 462 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 463 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 464 VT == MVT::iAny || VT == MVT::vAny) && 465 "Expected iAny or vAny type"); 466 } else { 467 VT = getValueType(TyEl->getValueAsDef("VT")); 468 } 469 if (EVT(VT).isOverloaded()) { 470 OverloadedVTs.push_back(VT); 471 isOverloaded = true; 472 } 473 474 // Reject invalid types. 475 if (VT == MVT::isVoid) 476 throw "Intrinsic '" + DefName + " has void in result type list!"; 477 478 IS.RetVTs.push_back(VT); 479 IS.RetTypeDefs.push_back(TyEl); 480 } 481 482 // Parse the list of parameter types. 483 TypeList = R->getValueAsListInit("ParamTypes"); 484 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 485 Record *TyEl = TypeList->getElementAsRecord(i); 486 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 487 MVT::SimpleValueType VT; 488 if (TyEl->isSubClassOf("LLVMMatchType")) { 489 unsigned MatchTy = TyEl->getValueAsInt("Number"); 490 assert(MatchTy < OverloadedVTs.size() && 491 "Invalid matching number!"); 492 VT = OverloadedVTs[MatchTy]; 493 // It only makes sense to use the extended and truncated vector element 494 // variants with iAny types; otherwise, if the intrinsic is not 495 // overloaded, all the types can be specified directly. 496 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 497 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 498 VT == MVT::iAny || VT == MVT::vAny) && 499 "Expected iAny or vAny type"); 500 } else 501 VT = getValueType(TyEl->getValueAsDef("VT")); 502 503 if (EVT(VT).isOverloaded()) { 504 OverloadedVTs.push_back(VT); 505 isOverloaded = true; 506 } 507 508 // Reject invalid types. 509 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 510 throw "Intrinsic '" + DefName + " has void in result type list!"; 511 512 IS.ParamVTs.push_back(VT); 513 IS.ParamTypeDefs.push_back(TyEl); 514 } 515 516 // Parse the intrinsic properties. 517 ListInit *PropList = R->getValueAsListInit("Properties"); 518 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 519 Record *Property = PropList->getElementAsRecord(i); 520 assert(Property->isSubClassOf("IntrinsicProperty") && 521 "Expected a property!"); 522 523 if (Property->getName() == "IntrNoMem") 524 ModRef = NoMem; 525 else if (Property->getName() == "IntrReadArgMem") 526 ModRef = ReadArgMem; 527 else if (Property->getName() == "IntrReadMem") 528 ModRef = ReadMem; 529 else if (Property->getName() == "IntrReadWriteArgMem") 530 ModRef = ReadWriteArgMem; 531 else if (Property->getName() == "Commutative") 532 isCommutative = true; 533 else if (Property->getName() == "Throws") 534 canThrow = true; 535 else if (Property->getName() == "IntrNoReturn") 536 isNoReturn = true; 537 else if (Property->isSubClassOf("NoCapture")) { 538 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 539 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 540 } else 541 llvm_unreachable("Unknown property!"); 542 } 543 544 // Sort the argument attributes for later benefit. 545 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 546 } 547