1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes abort on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/TableGen/Error.h" 24 #include "llvm/TableGen/Record.h" 25 #include <algorithm> 26 using namespace llvm; 27 28 static cl::opt<unsigned> 29 AsmParserNum("asmparsernum", cl::init(0), 30 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 31 32 static cl::opt<unsigned> 33 AsmWriterNum("asmwriternum", cl::init(0), 34 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 35 36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 37 /// record corresponds to. 38 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 39 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 40 } 41 42 std::string llvm::getName(MVT::SimpleValueType T) { 43 switch (T) { 44 case MVT::Other: return "UNKNOWN"; 45 case MVT::iPTR: return "TLI.getPointerTy()"; 46 case MVT::iPTRAny: return "TLI.getPointerTy()"; 47 default: return getEnumName(T); 48 } 49 } 50 51 std::string llvm::getEnumName(MVT::SimpleValueType T) { 52 switch (T) { 53 case MVT::Other: return "MVT::Other"; 54 case MVT::i1: return "MVT::i1"; 55 case MVT::i8: return "MVT::i8"; 56 case MVT::i16: return "MVT::i16"; 57 case MVT::i32: return "MVT::i32"; 58 case MVT::i64: return "MVT::i64"; 59 case MVT::i128: return "MVT::i128"; 60 case MVT::Any: return "MVT::Any"; 61 case MVT::iAny: return "MVT::iAny"; 62 case MVT::fAny: return "MVT::fAny"; 63 case MVT::vAny: return "MVT::vAny"; 64 case MVT::f16: return "MVT::f16"; 65 case MVT::f32: return "MVT::f32"; 66 case MVT::f64: return "MVT::f64"; 67 case MVT::f80: return "MVT::f80"; 68 case MVT::f128: return "MVT::f128"; 69 case MVT::ppcf128: return "MVT::ppcf128"; 70 case MVT::x86mmx: return "MVT::x86mmx"; 71 case MVT::Glue: return "MVT::Glue"; 72 case MVT::isVoid: return "MVT::isVoid"; 73 case MVT::v2i1: return "MVT::v2i1"; 74 case MVT::v4i1: return "MVT::v4i1"; 75 case MVT::v8i1: return "MVT::v8i1"; 76 case MVT::v16i1: return "MVT::v16i1"; 77 case MVT::v32i1: return "MVT::v32i1"; 78 case MVT::v64i1: return "MVT::v64i1"; 79 case MVT::v1i8: return "MVT::v1i8"; 80 case MVT::v2i8: return "MVT::v2i8"; 81 case MVT::v4i8: return "MVT::v4i8"; 82 case MVT::v8i8: return "MVT::v8i8"; 83 case MVT::v16i8: return "MVT::v16i8"; 84 case MVT::v32i8: return "MVT::v32i8"; 85 case MVT::v64i8: return "MVT::v64i8"; 86 case MVT::v1i16: return "MVT::v1i16"; 87 case MVT::v2i16: return "MVT::v2i16"; 88 case MVT::v4i16: return "MVT::v4i16"; 89 case MVT::v8i16: return "MVT::v8i16"; 90 case MVT::v16i16: return "MVT::v16i16"; 91 case MVT::v32i16: return "MVT::v32i16"; 92 case MVT::v1i32: return "MVT::v1i32"; 93 case MVT::v2i32: return "MVT::v2i32"; 94 case MVT::v4i32: return "MVT::v4i32"; 95 case MVT::v8i32: return "MVT::v8i32"; 96 case MVT::v16i32: return "MVT::v16i32"; 97 case MVT::v1i64: return "MVT::v1i64"; 98 case MVT::v2i64: return "MVT::v2i64"; 99 case MVT::v4i64: return "MVT::v4i64"; 100 case MVT::v8i64: return "MVT::v8i64"; 101 case MVT::v16i64: return "MVT::v16i64"; 102 case MVT::v1i128: return "MVT::v1i128"; 103 case MVT::v2f16: return "MVT::v2f16"; 104 case MVT::v4f16: return "MVT::v4f16"; 105 case MVT::v8f16: return "MVT::v8f16"; 106 case MVT::v1f32: return "MVT::v1f32"; 107 case MVT::v2f32: return "MVT::v2f32"; 108 case MVT::v4f32: return "MVT::v4f32"; 109 case MVT::v8f32: return "MVT::v8f32"; 110 case MVT::v16f32: return "MVT::v16f32"; 111 case MVT::v1f64: return "MVT::v1f64"; 112 case MVT::v2f64: return "MVT::v2f64"; 113 case MVT::v4f64: return "MVT::v4f64"; 114 case MVT::v8f64: return "MVT::v8f64"; 115 case MVT::Metadata: return "MVT::Metadata"; 116 case MVT::iPTR: return "MVT::iPTR"; 117 case MVT::iPTRAny: return "MVT::iPTRAny"; 118 case MVT::Untyped: return "MVT::Untyped"; 119 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 120 } 121 } 122 123 /// getQualifiedName - Return the name of the specified record, with a 124 /// namespace qualifier if the record contains one. 125 /// 126 std::string llvm::getQualifiedName(const Record *R) { 127 std::string Namespace; 128 if (R->getValue("Namespace")) 129 Namespace = R->getValueAsString("Namespace"); 130 if (Namespace.empty()) return R->getName(); 131 return Namespace + "::" + R->getName(); 132 } 133 134 135 /// getTarget - Return the current instance of the Target class. 136 /// 137 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 138 : Records(records) { 139 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 140 if (Targets.size() == 0) 141 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 142 if (Targets.size() != 1) 143 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 144 TargetRec = Targets[0]; 145 } 146 147 CodeGenTarget::~CodeGenTarget() { 148 } 149 150 const std::string &CodeGenTarget::getName() const { 151 return TargetRec->getName(); 152 } 153 154 std::string CodeGenTarget::getInstNamespace() const { 155 for (const CodeGenInstruction *Inst : instructions()) { 156 // Make sure not to pick up "TargetOpcode" by accidentally getting 157 // the namespace off the PHI instruction or something. 158 if (Inst->Namespace != "TargetOpcode") 159 return Inst->Namespace; 160 } 161 162 return ""; 163 } 164 165 Record *CodeGenTarget::getInstructionSet() const { 166 return TargetRec->getValueAsDef("InstructionSet"); 167 } 168 169 170 /// getAsmParser - Return the AssemblyParser definition for this target. 171 /// 172 Record *CodeGenTarget::getAsmParser() const { 173 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 174 if (AsmParserNum >= LI.size()) 175 PrintFatalError("Target does not have an AsmParser #" + 176 Twine(AsmParserNum) + "!"); 177 return LI[AsmParserNum]; 178 } 179 180 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 181 /// this target. 182 /// 183 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 184 std::vector<Record*> LI = 185 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 186 if (i >= LI.size()) 187 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 188 "!"); 189 return LI[i]; 190 } 191 192 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 193 /// available for this target. 194 /// 195 unsigned CodeGenTarget::getAsmParserVariantCount() const { 196 std::vector<Record*> LI = 197 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 198 return LI.size(); 199 } 200 201 /// getAsmWriter - Return the AssemblyWriter definition for this target. 202 /// 203 Record *CodeGenTarget::getAsmWriter() const { 204 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 205 if (AsmWriterNum >= LI.size()) 206 PrintFatalError("Target does not have an AsmWriter #" + 207 Twine(AsmWriterNum) + "!"); 208 return LI[AsmWriterNum]; 209 } 210 211 CodeGenRegBank &CodeGenTarget::getRegBank() const { 212 if (!RegBank) 213 RegBank = llvm::make_unique<CodeGenRegBank>(Records); 214 return *RegBank; 215 } 216 217 void CodeGenTarget::ReadRegAltNameIndices() const { 218 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 219 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 220 } 221 222 /// getRegisterByName - If there is a register with the specific AsmName, 223 /// return it. 224 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 225 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 226 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 227 if (I == Regs.end()) 228 return nullptr; 229 return I->second; 230 } 231 232 std::vector<MVT::SimpleValueType> CodeGenTarget:: 233 getRegisterVTs(Record *R) const { 234 const CodeGenRegister *Reg = getRegBank().getReg(R); 235 std::vector<MVT::SimpleValueType> Result; 236 for (const auto &RC : getRegBank().getRegClasses()) { 237 if (RC.contains(Reg)) { 238 ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes(); 239 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 240 } 241 } 242 243 // Remove duplicates. 244 array_pod_sort(Result.begin(), Result.end()); 245 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 246 return Result; 247 } 248 249 250 void CodeGenTarget::ReadLegalValueTypes() const { 251 for (const auto &RC : getRegBank().getRegClasses()) 252 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 253 254 // Remove duplicates. 255 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 256 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 257 LegalValueTypes.end()), 258 LegalValueTypes.end()); 259 } 260 261 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 262 if (!SchedModels) 263 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this); 264 return *SchedModels; 265 } 266 267 void CodeGenTarget::ReadInstructions() const { 268 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 269 if (Insts.size() <= 2) 270 PrintFatalError("No 'Instruction' subclasses defined!"); 271 272 // Parse the instructions defined in the .td file. 273 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 274 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]); 275 } 276 277 static const CodeGenInstruction * 278 GetInstByName(const char *Name, 279 const DenseMap<const Record*, 280 std::unique_ptr<CodeGenInstruction>> &Insts, 281 RecordKeeper &Records) { 282 const Record *Rec = Records.getDef(Name); 283 284 const auto I = Insts.find(Rec); 285 if (!Rec || I == Insts.end()) 286 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 287 return I->second.get(); 288 } 289 290 /// \brief Return all of the instructions defined by the target, ordered by 291 /// their enum value. 292 void CodeGenTarget::ComputeInstrsByEnum() const { 293 // The ordering here must match the ordering in TargetOpcodes.h. 294 static const char *const FixedInstrs[] = { 295 "PHI", "INLINEASM", "CFI_INSTRUCTION", "EH_LABEL", 296 "GC_LABEL", "KILL", "EXTRACT_SUBREG", "INSERT_SUBREG", 297 "IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE", 298 "REG_SEQUENCE", "COPY", "BUNDLE", "LIFETIME_START", 299 "LIFETIME_END", "STACKMAP", "PATCHPOINT", "LOAD_STACK_GUARD", 300 "STATEPOINT", "FRAME_ALLOC", 301 nullptr}; 302 const auto &Insts = getInstructions(); 303 for (const char *const *p = FixedInstrs; *p; ++p) { 304 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 305 assert(Instr && "Missing target independent instruction"); 306 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 307 InstrsByEnum.push_back(Instr); 308 } 309 unsigned EndOfPredefines = InstrsByEnum.size(); 310 311 for (const auto &I : Insts) { 312 const CodeGenInstruction *CGI = I.second.get(); 313 if (CGI->Namespace != "TargetOpcode") 314 InstrsByEnum.push_back(CGI); 315 } 316 317 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 318 319 // All of the instructions are now in random order based on the map iteration. 320 // Sort them by name. 321 std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 322 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 323 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 324 }); 325 } 326 327 328 /// isLittleEndianEncoding - Return whether this target encodes its instruction 329 /// in little-endian format, i.e. bits laid out in the order [0..n] 330 /// 331 bool CodeGenTarget::isLittleEndianEncoding() const { 332 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 333 } 334 335 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 336 /// encodings, reverse the bit order of all instructions. 337 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 338 if (!isLittleEndianEncoding()) 339 return; 340 341 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 342 for (Record *R : Insts) { 343 if (R->getValueAsString("Namespace") == "TargetOpcode" || 344 R->getValueAsBit("isPseudo")) 345 continue; 346 347 BitsInit *BI = R->getValueAsBitsInit("Inst"); 348 349 unsigned numBits = BI->getNumBits(); 350 351 SmallVector<Init *, 16> NewBits(numBits); 352 353 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 354 unsigned bitSwapIdx = numBits - bit - 1; 355 Init *OrigBit = BI->getBit(bit); 356 Init *BitSwap = BI->getBit(bitSwapIdx); 357 NewBits[bit] = BitSwap; 358 NewBits[bitSwapIdx] = OrigBit; 359 } 360 if (numBits % 2) { 361 unsigned middle = (numBits + 1) / 2; 362 NewBits[middle] = BI->getBit(middle); 363 } 364 365 BitsInit *NewBI = BitsInit::get(NewBits); 366 367 // Update the bits in reversed order so that emitInstrOpBits will get the 368 // correct endianness. 369 R->getValue("Inst")->setValue(NewBI); 370 } 371 } 372 373 /// guessInstructionProperties - Return true if it's OK to guess instruction 374 /// properties instead of raising an error. 375 /// 376 /// This is configurable as a temporary migration aid. It will eventually be 377 /// permanently false. 378 bool CodeGenTarget::guessInstructionProperties() const { 379 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 380 } 381 382 //===----------------------------------------------------------------------===// 383 // ComplexPattern implementation 384 // 385 ComplexPattern::ComplexPattern(Record *R) { 386 Ty = ::getValueType(R->getValueAsDef("Ty")); 387 NumOperands = R->getValueAsInt("NumOperands"); 388 SelectFunc = R->getValueAsString("SelectFunc"); 389 RootNodes = R->getValueAsListOfDefs("RootNodes"); 390 391 // Parse the properties. 392 Properties = 0; 393 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 394 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 395 if (PropList[i]->getName() == "SDNPHasChain") { 396 Properties |= 1 << SDNPHasChain; 397 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 398 Properties |= 1 << SDNPOptInGlue; 399 } else if (PropList[i]->getName() == "SDNPMayStore") { 400 Properties |= 1 << SDNPMayStore; 401 } else if (PropList[i]->getName() == "SDNPMayLoad") { 402 Properties |= 1 << SDNPMayLoad; 403 } else if (PropList[i]->getName() == "SDNPSideEffect") { 404 Properties |= 1 << SDNPSideEffect; 405 } else if (PropList[i]->getName() == "SDNPMemOperand") { 406 Properties |= 1 << SDNPMemOperand; 407 } else if (PropList[i]->getName() == "SDNPVariadic") { 408 Properties |= 1 << SDNPVariadic; 409 } else if (PropList[i]->getName() == "SDNPWantRoot") { 410 Properties |= 1 << SDNPWantRoot; 411 } else if (PropList[i]->getName() == "SDNPWantParent") { 412 Properties |= 1 << SDNPWantParent; 413 } else { 414 PrintFatalError("Unsupported SD Node property '" + 415 PropList[i]->getName() + "' on ComplexPattern '" + 416 R->getName() + "'!"); 417 } 418 } 419 420 //===----------------------------------------------------------------------===// 421 // CodeGenIntrinsic Implementation 422 //===----------------------------------------------------------------------===// 423 424 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 425 bool TargetOnly) { 426 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 427 428 std::vector<CodeGenIntrinsic> Result; 429 430 for (unsigned i = 0, e = I.size(); i != e; ++i) { 431 bool isTarget = I[i]->getValueAsBit("isTarget"); 432 if (isTarget == TargetOnly) 433 Result.push_back(CodeGenIntrinsic(I[i])); 434 } 435 return Result; 436 } 437 438 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 439 TheDef = R; 440 std::string DefName = R->getName(); 441 ModRef = ReadWriteMem; 442 isOverloaded = false; 443 isCommutative = false; 444 canThrow = false; 445 isNoReturn = false; 446 isNoDuplicate = false; 447 448 if (DefName.size() <= 4 || 449 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 450 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!"); 451 452 EnumName = std::string(DefName.begin()+4, DefName.end()); 453 454 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 455 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 456 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 457 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 458 459 TargetPrefix = R->getValueAsString("TargetPrefix"); 460 Name = R->getValueAsString("LLVMName"); 461 462 if (Name == "") { 463 // If an explicit name isn't specified, derive one from the DefName. 464 Name = "llvm."; 465 466 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 467 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 468 } else { 469 // Verify it starts with "llvm.". 470 if (Name.size() <= 5 || 471 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 472 PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); 473 } 474 475 // If TargetPrefix is specified, make sure that Name starts with 476 // "llvm.<targetprefix>.". 477 if (!TargetPrefix.empty()) { 478 if (Name.size() < 6+TargetPrefix.size() || 479 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 480 != (TargetPrefix + ".")) 481 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." + 482 TargetPrefix + ".'!"); 483 } 484 485 // Parse the list of return types. 486 std::vector<MVT::SimpleValueType> OverloadedVTs; 487 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 488 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 489 Record *TyEl = TypeList->getElementAsRecord(i); 490 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 491 MVT::SimpleValueType VT; 492 if (TyEl->isSubClassOf("LLVMMatchType")) { 493 unsigned MatchTy = TyEl->getValueAsInt("Number"); 494 assert(MatchTy < OverloadedVTs.size() && 495 "Invalid matching number!"); 496 VT = OverloadedVTs[MatchTy]; 497 // It only makes sense to use the extended and truncated vector element 498 // variants with iAny types; otherwise, if the intrinsic is not 499 // overloaded, all the types can be specified directly. 500 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 501 !TyEl->isSubClassOf("LLVMTruncatedType")) || 502 VT == MVT::iAny || VT == MVT::vAny) && 503 "Expected iAny or vAny type"); 504 } else { 505 VT = getValueType(TyEl->getValueAsDef("VT")); 506 } 507 if (MVT(VT).isOverloaded()) { 508 OverloadedVTs.push_back(VT); 509 isOverloaded = true; 510 } 511 512 // Reject invalid types. 513 if (VT == MVT::isVoid) 514 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 515 516 IS.RetVTs.push_back(VT); 517 IS.RetTypeDefs.push_back(TyEl); 518 } 519 520 // Parse the list of parameter types. 521 TypeList = R->getValueAsListInit("ParamTypes"); 522 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 523 Record *TyEl = TypeList->getElementAsRecord(i); 524 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 525 MVT::SimpleValueType VT; 526 if (TyEl->isSubClassOf("LLVMMatchType")) { 527 unsigned MatchTy = TyEl->getValueAsInt("Number"); 528 assert(MatchTy < OverloadedVTs.size() && 529 "Invalid matching number!"); 530 VT = OverloadedVTs[MatchTy]; 531 // It only makes sense to use the extended and truncated vector element 532 // variants with iAny types; otherwise, if the intrinsic is not 533 // overloaded, all the types can be specified directly. 534 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 535 !TyEl->isSubClassOf("LLVMTruncatedType") && 536 !TyEl->isSubClassOf("LLVMVectorSameWidth") && 537 !TyEl->isSubClassOf("LLVMPointerToElt")) || 538 VT == MVT::iAny || VT == MVT::vAny) && 539 "Expected iAny or vAny type"); 540 } else 541 VT = getValueType(TyEl->getValueAsDef("VT")); 542 543 if (MVT(VT).isOverloaded()) { 544 OverloadedVTs.push_back(VT); 545 isOverloaded = true; 546 } 547 548 // Reject invalid types. 549 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 550 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 551 552 IS.ParamVTs.push_back(VT); 553 IS.ParamTypeDefs.push_back(TyEl); 554 } 555 556 // Parse the intrinsic properties. 557 ListInit *PropList = R->getValueAsListInit("Properties"); 558 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 559 Record *Property = PropList->getElementAsRecord(i); 560 assert(Property->isSubClassOf("IntrinsicProperty") && 561 "Expected a property!"); 562 563 if (Property->getName() == "IntrNoMem") 564 ModRef = NoMem; 565 else if (Property->getName() == "IntrReadArgMem") 566 ModRef = ReadArgMem; 567 else if (Property->getName() == "IntrReadMem") 568 ModRef = ReadMem; 569 else if (Property->getName() == "IntrReadWriteArgMem") 570 ModRef = ReadWriteArgMem; 571 else if (Property->getName() == "Commutative") 572 isCommutative = true; 573 else if (Property->getName() == "Throws") 574 canThrow = true; 575 else if (Property->getName() == "IntrNoDuplicate") 576 isNoDuplicate = true; 577 else if (Property->getName() == "IntrNoReturn") 578 isNoReturn = true; 579 else if (Property->isSubClassOf("NoCapture")) { 580 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 581 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 582 } else if (Property->isSubClassOf("ReadOnly")) { 583 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 584 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 585 } else if (Property->isSubClassOf("ReadNone")) { 586 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 587 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 588 } else 589 llvm_unreachable("Unknown property!"); 590 } 591 592 // Sort the argument attributes for later benefit. 593 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 594 } 595