1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class wraps target description classes used by the various code 10 // generation TableGen backends. This makes it easier to access the data and 11 // provides a single place that needs to check it for validity. All of these 12 // classes abort on error conditions. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CodeGenTarget.h" 17 #include "CodeGenDAGPatterns.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Timer.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <algorithm> 28 using namespace llvm; 29 30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 32 33 static cl::opt<unsigned> 34 AsmParserNum("asmparsernum", cl::init(0), 35 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 36 cl::cat(AsmParserCat)); 37 38 static cl::opt<unsigned> 39 AsmWriterNum("asmwriternum", cl::init(0), 40 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 41 cl::cat(AsmWriterCat)); 42 43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 44 /// record corresponds to. 45 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 46 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 47 } 48 49 StringRef llvm::getName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "UNKNOWN"; 52 case MVT::iPTR: return "TLI.getPointerTy()"; 53 case MVT::iPTRAny: return "TLI.getPointerTy()"; 54 default: return getEnumName(T); 55 } 56 } 57 58 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 59 switch (T) { 60 case MVT::Other: return "MVT::Other"; 61 case MVT::i1: return "MVT::i1"; 62 case MVT::i8: return "MVT::i8"; 63 case MVT::i16: return "MVT::i16"; 64 case MVT::i32: return "MVT::i32"; 65 case MVT::i64: return "MVT::i64"; 66 case MVT::i128: return "MVT::i128"; 67 case MVT::Any: return "MVT::Any"; 68 case MVT::iAny: return "MVT::iAny"; 69 case MVT::fAny: return "MVT::fAny"; 70 case MVT::vAny: return "MVT::vAny"; 71 case MVT::f16: return "MVT::f16"; 72 case MVT::f32: return "MVT::f32"; 73 case MVT::f64: return "MVT::f64"; 74 case MVT::f80: return "MVT::f80"; 75 case MVT::f128: return "MVT::f128"; 76 case MVT::ppcf128: return "MVT::ppcf128"; 77 case MVT::x86mmx: return "MVT::x86mmx"; 78 case MVT::Glue: return "MVT::Glue"; 79 case MVT::isVoid: return "MVT::isVoid"; 80 case MVT::v1i1: return "MVT::v1i1"; 81 case MVT::v2i1: return "MVT::v2i1"; 82 case MVT::v4i1: return "MVT::v4i1"; 83 case MVT::v8i1: return "MVT::v8i1"; 84 case MVT::v16i1: return "MVT::v16i1"; 85 case MVT::v32i1: return "MVT::v32i1"; 86 case MVT::v64i1: return "MVT::v64i1"; 87 case MVT::v128i1: return "MVT::v128i1"; 88 case MVT::v512i1: return "MVT::v512i1"; 89 case MVT::v1024i1: return "MVT::v1024i1"; 90 case MVT::v1i8: return "MVT::v1i8"; 91 case MVT::v2i8: return "MVT::v2i8"; 92 case MVT::v4i8: return "MVT::v4i8"; 93 case MVT::v8i8: return "MVT::v8i8"; 94 case MVT::v16i8: return "MVT::v16i8"; 95 case MVT::v32i8: return "MVT::v32i8"; 96 case MVT::v64i8: return "MVT::v64i8"; 97 case MVT::v128i8: return "MVT::v128i8"; 98 case MVT::v256i8: return "MVT::v256i8"; 99 case MVT::v1i16: return "MVT::v1i16"; 100 case MVT::v2i16: return "MVT::v2i16"; 101 case MVT::v3i16: return "MVT::v3i16"; 102 case MVT::v4i16: return "MVT::v4i16"; 103 case MVT::v8i16: return "MVT::v8i16"; 104 case MVT::v16i16: return "MVT::v16i16"; 105 case MVT::v32i16: return "MVT::v32i16"; 106 case MVT::v64i16: return "MVT::v64i16"; 107 case MVT::v128i16: return "MVT::v128i16"; 108 case MVT::v1i32: return "MVT::v1i32"; 109 case MVT::v2i32: return "MVT::v2i32"; 110 case MVT::v3i32: return "MVT::v3i32"; 111 case MVT::v4i32: return "MVT::v4i32"; 112 case MVT::v5i32: return "MVT::v5i32"; 113 case MVT::v8i32: return "MVT::v8i32"; 114 case MVT::v16i32: return "MVT::v16i32"; 115 case MVT::v32i32: return "MVT::v32i32"; 116 case MVT::v64i32: return "MVT::v64i32"; 117 case MVT::v128i32: return "MVT::v128i32"; 118 case MVT::v256i32: return "MVT::v256i32"; 119 case MVT::v512i32: return "MVT::v512i32"; 120 case MVT::v1024i32: return "MVT::v1024i32"; 121 case MVT::v2048i32: return "MVT::v2048i32"; 122 case MVT::v1i64: return "MVT::v1i64"; 123 case MVT::v2i64: return "MVT::v2i64"; 124 case MVT::v4i64: return "MVT::v4i64"; 125 case MVT::v8i64: return "MVT::v8i64"; 126 case MVT::v16i64: return "MVT::v16i64"; 127 case MVT::v32i64: return "MVT::v32i64"; 128 case MVT::v1i128: return "MVT::v1i128"; 129 case MVT::v2f16: return "MVT::v2f16"; 130 case MVT::v3f16: return "MVT::v3f16"; 131 case MVT::v4f16: return "MVT::v4f16"; 132 case MVT::v8f16: return "MVT::v8f16"; 133 case MVT::v16f16: return "MVT::v16f16"; 134 case MVT::v32f16: return "MVT::v32f16"; 135 case MVT::v1f32: return "MVT::v1f32"; 136 case MVT::v2f32: return "MVT::v2f32"; 137 case MVT::v3f32: return "MVT::v3f32"; 138 case MVT::v4f32: return "MVT::v4f32"; 139 case MVT::v5f32: return "MVT::v5f32"; 140 case MVT::v8f32: return "MVT::v8f32"; 141 case MVT::v16f32: return "MVT::v16f32"; 142 case MVT::v32f32: return "MVT::v32f32"; 143 case MVT::v64f32: return "MVT::v64f32"; 144 case MVT::v128f32: return "MVT::v128f32"; 145 case MVT::v256f32: return "MVT::v256f32"; 146 case MVT::v512f32: return "MVT::v512f32"; 147 case MVT::v1024f32: return "MVT::v1024f32"; 148 case MVT::v2048f32: return "MVT::v2048f32"; 149 case MVT::v1f64: return "MVT::v1f64"; 150 case MVT::v2f64: return "MVT::v2f64"; 151 case MVT::v4f64: return "MVT::v4f64"; 152 case MVT::v8f64: return "MVT::v8f64"; 153 case MVT::nxv1i1: return "MVT::nxv1i1"; 154 case MVT::nxv2i1: return "MVT::nxv2i1"; 155 case MVT::nxv4i1: return "MVT::nxv4i1"; 156 case MVT::nxv8i1: return "MVT::nxv8i1"; 157 case MVT::nxv16i1: return "MVT::nxv16i1"; 158 case MVT::nxv32i1: return "MVT::nxv32i1"; 159 case MVT::nxv1i8: return "MVT::nxv1i8"; 160 case MVT::nxv2i8: return "MVT::nxv2i8"; 161 case MVT::nxv4i8: return "MVT::nxv4i8"; 162 case MVT::nxv8i8: return "MVT::nxv8i8"; 163 case MVT::nxv16i8: return "MVT::nxv16i8"; 164 case MVT::nxv32i8: return "MVT::nxv32i8"; 165 case MVT::nxv1i16: return "MVT::nxv1i16"; 166 case MVT::nxv2i16: return "MVT::nxv2i16"; 167 case MVT::nxv4i16: return "MVT::nxv4i16"; 168 case MVT::nxv8i16: return "MVT::nxv8i16"; 169 case MVT::nxv16i16: return "MVT::nxv16i16"; 170 case MVT::nxv32i16: return "MVT::nxv32i16"; 171 case MVT::nxv1i32: return "MVT::nxv1i32"; 172 case MVT::nxv2i32: return "MVT::nxv2i32"; 173 case MVT::nxv4i32: return "MVT::nxv4i32"; 174 case MVT::nxv8i32: return "MVT::nxv8i32"; 175 case MVT::nxv16i32: return "MVT::nxv16i32"; 176 case MVT::nxv1i64: return "MVT::nxv1i64"; 177 case MVT::nxv2i64: return "MVT::nxv2i64"; 178 case MVT::nxv4i64: return "MVT::nxv4i64"; 179 case MVT::nxv8i64: return "MVT::nxv8i64"; 180 case MVT::nxv16i64: return "MVT::nxv16i64"; 181 case MVT::nxv2f16: return "MVT::nxv2f16"; 182 case MVT::nxv4f16: return "MVT::nxv4f16"; 183 case MVT::nxv8f16: return "MVT::nxv8f16"; 184 case MVT::nxv1f32: return "MVT::nxv1f32"; 185 case MVT::nxv2f32: return "MVT::nxv2f32"; 186 case MVT::nxv4f32: return "MVT::nxv4f32"; 187 case MVT::nxv8f32: return "MVT::nxv8f32"; 188 case MVT::nxv16f32: return "MVT::nxv16f32"; 189 case MVT::nxv1f64: return "MVT::nxv1f64"; 190 case MVT::nxv2f64: return "MVT::nxv2f64"; 191 case MVT::nxv4f64: return "MVT::nxv4f64"; 192 case MVT::nxv8f64: return "MVT::nxv8f64"; 193 case MVT::token: return "MVT::token"; 194 case MVT::Metadata: return "MVT::Metadata"; 195 case MVT::iPTR: return "MVT::iPTR"; 196 case MVT::iPTRAny: return "MVT::iPTRAny"; 197 case MVT::Untyped: return "MVT::Untyped"; 198 case MVT::exnref: return "MVT::exnref"; 199 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 200 } 201 } 202 203 /// getQualifiedName - Return the name of the specified record, with a 204 /// namespace qualifier if the record contains one. 205 /// 206 std::string llvm::getQualifiedName(const Record *R) { 207 std::string Namespace; 208 if (R->getValue("Namespace")) 209 Namespace = std::string(R->getValueAsString("Namespace")); 210 if (Namespace.empty()) 211 return std::string(R->getName()); 212 return Namespace + "::" + R->getName().str(); 213 } 214 215 216 /// getTarget - Return the current instance of the Target class. 217 /// 218 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 219 : Records(records), CGH(records) { 220 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 221 if (Targets.size() == 0) 222 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 223 if (Targets.size() != 1) 224 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 225 TargetRec = Targets[0]; 226 } 227 228 CodeGenTarget::~CodeGenTarget() { 229 } 230 231 const StringRef CodeGenTarget::getName() const { 232 return TargetRec->getName(); 233 } 234 235 StringRef CodeGenTarget::getInstNamespace() const { 236 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 237 // Make sure not to pick up "TargetOpcode" by accidentally getting 238 // the namespace off the PHI instruction or something. 239 if (Inst->Namespace != "TargetOpcode") 240 return Inst->Namespace; 241 } 242 243 return ""; 244 } 245 246 Record *CodeGenTarget::getInstructionSet() const { 247 return TargetRec->getValueAsDef("InstructionSet"); 248 } 249 250 bool CodeGenTarget::getAllowRegisterRenaming() const { 251 return TargetRec->getValueAsInt("AllowRegisterRenaming"); 252 } 253 254 /// getAsmParser - Return the AssemblyParser definition for this target. 255 /// 256 Record *CodeGenTarget::getAsmParser() const { 257 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 258 if (AsmParserNum >= LI.size()) 259 PrintFatalError("Target does not have an AsmParser #" + 260 Twine(AsmParserNum) + "!"); 261 return LI[AsmParserNum]; 262 } 263 264 /// getAsmParserVariant - Return the AssemblyParserVariant definition for 265 /// this target. 266 /// 267 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 268 std::vector<Record*> LI = 269 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 270 if (i >= LI.size()) 271 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 272 "!"); 273 return LI[i]; 274 } 275 276 /// getAsmParserVariantCount - Return the AssemblyParserVariant definition 277 /// available for this target. 278 /// 279 unsigned CodeGenTarget::getAsmParserVariantCount() const { 280 std::vector<Record*> LI = 281 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 282 return LI.size(); 283 } 284 285 /// getAsmWriter - Return the AssemblyWriter definition for this target. 286 /// 287 Record *CodeGenTarget::getAsmWriter() const { 288 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 289 if (AsmWriterNum >= LI.size()) 290 PrintFatalError("Target does not have an AsmWriter #" + 291 Twine(AsmWriterNum) + "!"); 292 return LI[AsmWriterNum]; 293 } 294 295 CodeGenRegBank &CodeGenTarget::getRegBank() const { 296 if (!RegBank) 297 RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes()); 298 return *RegBank; 299 } 300 301 Optional<CodeGenRegisterClass *> 302 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy, 303 CodeGenRegBank &RegBank, 304 const CodeGenSubRegIndex *SubIdx) const { 305 std::vector<CodeGenRegisterClass *> Candidates; 306 auto &RegClasses = RegBank.getRegClasses(); 307 308 // Try to find a register class which supports ValueTy, and also contains 309 // SubIdx. 310 for (CodeGenRegisterClass &RC : RegClasses) { 311 // Is there a subclass of this class which contains this subregister index? 312 CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx); 313 if (!SubClassWithSubReg) 314 continue; 315 316 // We have a class. Check if it supports this value type. 317 if (llvm::none_of(SubClassWithSubReg->VTs, 318 [&ValueTy](const ValueTypeByHwMode &ClassVT) { 319 return ClassVT == ValueTy; 320 })) 321 continue; 322 323 // We have a register class which supports both the value type and 324 // subregister index. Remember it. 325 Candidates.push_back(SubClassWithSubReg); 326 } 327 328 // If we didn't find anything, we're done. 329 if (Candidates.empty()) 330 return None; 331 332 // Find and return the largest of our candidate classes. 333 llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A, 334 const CodeGenRegisterClass *B) { 335 if (A->getMembers().size() > B->getMembers().size()) 336 return true; 337 338 if (A->getMembers().size() < B->getMembers().size()) 339 return false; 340 341 // Order by name as a tie-breaker. 342 return StringRef(A->getName()) < B->getName(); 343 }); 344 345 return Candidates[0]; 346 } 347 348 void CodeGenTarget::ReadRegAltNameIndices() const { 349 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 350 llvm::sort(RegAltNameIndices, LessRecord()); 351 } 352 353 /// getRegisterByName - If there is a register with the specific AsmName, 354 /// return it. 355 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 356 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 357 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 358 if (I == Regs.end()) 359 return nullptr; 360 return I->second; 361 } 362 363 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R) 364 const { 365 const CodeGenRegister *Reg = getRegBank().getReg(R); 366 std::vector<ValueTypeByHwMode> Result; 367 for (const auto &RC : getRegBank().getRegClasses()) { 368 if (RC.contains(Reg)) { 369 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); 370 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 371 } 372 } 373 374 // Remove duplicates. 375 llvm::sort(Result); 376 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 377 return Result; 378 } 379 380 381 void CodeGenTarget::ReadLegalValueTypes() const { 382 for (const auto &RC : getRegBank().getRegClasses()) 383 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 384 385 // Remove duplicates. 386 llvm::sort(LegalValueTypes); 387 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 388 LegalValueTypes.end()), 389 LegalValueTypes.end()); 390 } 391 392 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 393 if (!SchedModels) 394 SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this); 395 return *SchedModels; 396 } 397 398 void CodeGenTarget::ReadInstructions() const { 399 NamedRegionTimer T("Read Instructions", "Time spent reading instructions", 400 "CodeGenTarget", "CodeGenTarget", TimeRegions); 401 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 402 if (Insts.size() <= 2) 403 PrintFatalError("No 'Instruction' subclasses defined!"); 404 405 // Parse the instructions defined in the .td file. 406 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 407 Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]); 408 } 409 410 static const CodeGenInstruction * 411 GetInstByName(const char *Name, 412 const DenseMap<const Record*, 413 std::unique_ptr<CodeGenInstruction>> &Insts, 414 RecordKeeper &Records) { 415 const Record *Rec = Records.getDef(Name); 416 417 const auto I = Insts.find(Rec); 418 if (!Rec || I == Insts.end()) 419 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 420 return I->second.get(); 421 } 422 423 static const char *const FixedInstrs[] = { 424 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 425 #include "llvm/Support/TargetOpcodes.def" 426 nullptr}; 427 428 unsigned CodeGenTarget::getNumFixedInstructions() { 429 return array_lengthof(FixedInstrs) - 1; 430 } 431 432 /// Return all of the instructions defined by the target, ordered by 433 /// their enum value. 434 void CodeGenTarget::ComputeInstrsByEnum() const { 435 const auto &Insts = getInstructions(); 436 for (const char *const *p = FixedInstrs; *p; ++p) { 437 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 438 assert(Instr && "Missing target independent instruction"); 439 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 440 InstrsByEnum.push_back(Instr); 441 } 442 unsigned EndOfPredefines = InstrsByEnum.size(); 443 assert(EndOfPredefines == getNumFixedInstructions() && 444 "Missing generic opcode"); 445 446 for (const auto &I : Insts) { 447 const CodeGenInstruction *CGI = I.second.get(); 448 if (CGI->Namespace != "TargetOpcode") { 449 InstrsByEnum.push_back(CGI); 450 if (CGI->TheDef->getValueAsBit("isPseudo")) 451 ++NumPseudoInstructions; 452 } 453 } 454 455 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 456 457 // All of the instructions are now in random order based on the map iteration. 458 llvm::sort( 459 InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 460 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 461 const auto &D1 = *Rec1->TheDef; 462 const auto &D2 = *Rec2->TheDef; 463 return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < 464 std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); 465 }); 466 } 467 468 469 /// isLittleEndianEncoding - Return whether this target encodes its instruction 470 /// in little-endian format, i.e. bits laid out in the order [0..n] 471 /// 472 bool CodeGenTarget::isLittleEndianEncoding() const { 473 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 474 } 475 476 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 477 /// encodings, reverse the bit order of all instructions. 478 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 479 if (!isLittleEndianEncoding()) 480 return; 481 482 std::vector<Record *> Insts = 483 Records.getAllDerivedDefinitions("InstructionEncoding"); 484 for (Record *R : Insts) { 485 if (R->getValueAsString("Namespace") == "TargetOpcode" || 486 R->getValueAsBit("isPseudo")) 487 continue; 488 489 BitsInit *BI = R->getValueAsBitsInit("Inst"); 490 491 unsigned numBits = BI->getNumBits(); 492 493 SmallVector<Init *, 16> NewBits(numBits); 494 495 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 496 unsigned bitSwapIdx = numBits - bit - 1; 497 Init *OrigBit = BI->getBit(bit); 498 Init *BitSwap = BI->getBit(bitSwapIdx); 499 NewBits[bit] = BitSwap; 500 NewBits[bitSwapIdx] = OrigBit; 501 } 502 if (numBits % 2) { 503 unsigned middle = (numBits + 1) / 2; 504 NewBits[middle] = BI->getBit(middle); 505 } 506 507 BitsInit *NewBI = BitsInit::get(NewBits); 508 509 // Update the bits in reversed order so that emitInstrOpBits will get the 510 // correct endianness. 511 R->getValue("Inst")->setValue(NewBI); 512 } 513 } 514 515 /// guessInstructionProperties - Return true if it's OK to guess instruction 516 /// properties instead of raising an error. 517 /// 518 /// This is configurable as a temporary migration aid. It will eventually be 519 /// permanently false. 520 bool CodeGenTarget::guessInstructionProperties() const { 521 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 522 } 523 524 //===----------------------------------------------------------------------===// 525 // ComplexPattern implementation 526 // 527 ComplexPattern::ComplexPattern(Record *R) { 528 Ty = ::getValueType(R->getValueAsDef("Ty")); 529 NumOperands = R->getValueAsInt("NumOperands"); 530 SelectFunc = std::string(R->getValueAsString("SelectFunc")); 531 RootNodes = R->getValueAsListOfDefs("RootNodes"); 532 533 // FIXME: This is a hack to statically increase the priority of patterns which 534 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 535 // possible pattern match we'll need to dynamically calculate the complexity 536 // of all patterns a dag can potentially map to. 537 int64_t RawComplexity = R->getValueAsInt("Complexity"); 538 if (RawComplexity == -1) 539 Complexity = NumOperands * 3; 540 else 541 Complexity = RawComplexity; 542 543 // FIXME: Why is this different from parseSDPatternOperatorProperties? 544 // Parse the properties. 545 Properties = 0; 546 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 547 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 548 if (PropList[i]->getName() == "SDNPHasChain") { 549 Properties |= 1 << SDNPHasChain; 550 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 551 Properties |= 1 << SDNPOptInGlue; 552 } else if (PropList[i]->getName() == "SDNPMayStore") { 553 Properties |= 1 << SDNPMayStore; 554 } else if (PropList[i]->getName() == "SDNPMayLoad") { 555 Properties |= 1 << SDNPMayLoad; 556 } else if (PropList[i]->getName() == "SDNPSideEffect") { 557 Properties |= 1 << SDNPSideEffect; 558 } else if (PropList[i]->getName() == "SDNPMemOperand") { 559 Properties |= 1 << SDNPMemOperand; 560 } else if (PropList[i]->getName() == "SDNPVariadic") { 561 Properties |= 1 << SDNPVariadic; 562 } else if (PropList[i]->getName() == "SDNPWantRoot") { 563 Properties |= 1 << SDNPWantRoot; 564 } else if (PropList[i]->getName() == "SDNPWantParent") { 565 Properties |= 1 << SDNPWantParent; 566 } else { 567 PrintFatalError(R->getLoc(), "Unsupported SD Node property '" + 568 PropList[i]->getName() + 569 "' on ComplexPattern '" + R->getName() + 570 "'!"); 571 } 572 } 573 574 //===----------------------------------------------------------------------===// 575 // CodeGenIntrinsic Implementation 576 //===----------------------------------------------------------------------===// 577 578 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) { 579 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 580 581 Intrinsics.reserve(Defs.size()); 582 583 for (unsigned I = 0, e = Defs.size(); I != e; ++I) 584 Intrinsics.push_back(CodeGenIntrinsic(Defs[I])); 585 586 llvm::sort(Intrinsics, 587 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 588 return std::tie(LHS.TargetPrefix, LHS.Name) < 589 std::tie(RHS.TargetPrefix, RHS.Name); 590 }); 591 Targets.push_back({"", 0, 0}); 592 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 593 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 594 Targets.back().Count = I - Targets.back().Offset; 595 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 596 } 597 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 598 } 599 600 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 601 TheDef = R; 602 std::string DefName = std::string(R->getName()); 603 ArrayRef<SMLoc> DefLoc = R->getLoc(); 604 ModRef = ReadWriteMem; 605 Properties = 0; 606 isOverloaded = false; 607 isCommutative = false; 608 canThrow = false; 609 isNoReturn = false; 610 isNoSync = false; 611 isWillReturn = false; 612 isCold = false; 613 isNoDuplicate = false; 614 isConvergent = false; 615 isSpeculatable = false; 616 hasSideEffects = false; 617 618 if (DefName.size() <= 4 || 619 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 620 PrintFatalError(DefLoc, 621 "Intrinsic '" + DefName + "' does not start with 'int_'!"); 622 623 EnumName = std::string(DefName.begin()+4, DefName.end()); 624 625 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 626 GCCBuiltinName = std::string(R->getValueAsString("GCCBuiltinName")); 627 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 628 MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName")); 629 630 TargetPrefix = std::string(R->getValueAsString("TargetPrefix")); 631 Name = std::string(R->getValueAsString("LLVMName")); 632 633 if (Name == "") { 634 // If an explicit name isn't specified, derive one from the DefName. 635 Name = "llvm."; 636 637 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 638 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 639 } else { 640 // Verify it starts with "llvm.". 641 if (Name.size() <= 5 || 642 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 643 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 644 "'s name does not start with 'llvm.'!"); 645 } 646 647 // If TargetPrefix is specified, make sure that Name starts with 648 // "llvm.<targetprefix>.". 649 if (!TargetPrefix.empty()) { 650 if (Name.size() < 6+TargetPrefix.size() || 651 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 652 != (TargetPrefix + ".")) 653 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 654 "' does not start with 'llvm." + 655 TargetPrefix + ".'!"); 656 } 657 658 ListInit *RetTypes = R->getValueAsListInit("RetTypes"); 659 ListInit *ParamTypes = R->getValueAsListInit("ParamTypes"); 660 661 // First collate a list of overloaded types. 662 std::vector<MVT::SimpleValueType> OverloadedVTs; 663 for (ListInit *TypeList : {RetTypes, ParamTypes}) { 664 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 665 Record *TyEl = TypeList->getElementAsRecord(i); 666 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 667 668 if (TyEl->isSubClassOf("LLVMMatchType")) 669 continue; 670 671 MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT")); 672 if (MVT(VT).isOverloaded()) { 673 OverloadedVTs.push_back(VT); 674 isOverloaded = true; 675 } 676 } 677 } 678 679 // Parse the list of return types. 680 ListInit *TypeList = RetTypes; 681 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 682 Record *TyEl = TypeList->getElementAsRecord(i); 683 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 684 MVT::SimpleValueType VT; 685 if (TyEl->isSubClassOf("LLVMMatchType")) { 686 unsigned MatchTy = TyEl->getValueAsInt("Number"); 687 assert(MatchTy < OverloadedVTs.size() && 688 "Invalid matching number!"); 689 VT = OverloadedVTs[MatchTy]; 690 // It only makes sense to use the extended and truncated vector element 691 // variants with iAny types; otherwise, if the intrinsic is not 692 // overloaded, all the types can be specified directly. 693 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 694 !TyEl->isSubClassOf("LLVMTruncatedType")) || 695 VT == MVT::iAny || VT == MVT::vAny) && 696 "Expected iAny or vAny type"); 697 } else { 698 VT = getValueType(TyEl->getValueAsDef("VT")); 699 } 700 701 // Reject invalid types. 702 if (VT == MVT::isVoid) 703 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 704 " has void in result type list!"); 705 706 IS.RetVTs.push_back(VT); 707 IS.RetTypeDefs.push_back(TyEl); 708 } 709 710 // Parse the list of parameter types. 711 TypeList = ParamTypes; 712 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 713 Record *TyEl = TypeList->getElementAsRecord(i); 714 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 715 MVT::SimpleValueType VT; 716 if (TyEl->isSubClassOf("LLVMMatchType")) { 717 unsigned MatchTy = TyEl->getValueAsInt("Number"); 718 if (MatchTy >= OverloadedVTs.size()) { 719 PrintError(R->getLoc(), 720 "Parameter #" + Twine(i) + " has out of bounds matching " 721 "number " + Twine(MatchTy)); 722 PrintFatalError(DefLoc, 723 Twine("ParamTypes is ") + TypeList->getAsString()); 724 } 725 VT = OverloadedVTs[MatchTy]; 726 // It only makes sense to use the extended and truncated vector element 727 // variants with iAny types; otherwise, if the intrinsic is not 728 // overloaded, all the types can be specified directly. 729 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 730 !TyEl->isSubClassOf("LLVMTruncatedType")) || 731 VT == MVT::iAny || VT == MVT::vAny) && 732 "Expected iAny or vAny type"); 733 } else 734 VT = getValueType(TyEl->getValueAsDef("VT")); 735 736 // Reject invalid types. 737 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 738 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 739 " has void in result type list!"); 740 741 IS.ParamVTs.push_back(VT); 742 IS.ParamTypeDefs.push_back(TyEl); 743 } 744 745 // Parse the intrinsic properties. 746 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 747 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 748 Record *Property = PropList->getElementAsRecord(i); 749 assert(Property->isSubClassOf("IntrinsicProperty") && 750 "Expected a property!"); 751 752 if (Property->getName() == "IntrNoMem") 753 ModRef = NoMem; 754 else if (Property->getName() == "IntrReadMem") 755 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 756 else if (Property->getName() == "IntrWriteMem") 757 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 758 else if (Property->getName() == "IntrArgMemOnly") 759 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 760 else if (Property->getName() == "IntrInaccessibleMemOnly") 761 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 762 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly") 763 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 764 MR_InaccessibleMem); 765 else if (Property->getName() == "Commutative") 766 isCommutative = true; 767 else if (Property->getName() == "Throws") 768 canThrow = true; 769 else if (Property->getName() == "IntrNoDuplicate") 770 isNoDuplicate = true; 771 else if (Property->getName() == "IntrConvergent") 772 isConvergent = true; 773 else if (Property->getName() == "IntrNoReturn") 774 isNoReturn = true; 775 else if (Property->getName() == "IntrNoSync") 776 isNoSync = true; 777 else if (Property->getName() == "IntrWillReturn") 778 isWillReturn = true; 779 else if (Property->getName() == "IntrCold") 780 isCold = true; 781 else if (Property->getName() == "IntrSpeculatable") 782 isSpeculatable = true; 783 else if (Property->getName() == "IntrHasSideEffects") 784 hasSideEffects = true; 785 else if (Property->isSubClassOf("NoCapture")) { 786 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 787 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 788 } else if (Property->isSubClassOf("NoAlias")) { 789 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 790 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoAlias)); 791 } else if (Property->isSubClassOf("Returned")) { 792 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 793 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned)); 794 } else if (Property->isSubClassOf("ReadOnly")) { 795 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 796 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 797 } else if (Property->isSubClassOf("WriteOnly")) { 798 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 799 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly)); 800 } else if (Property->isSubClassOf("ReadNone")) { 801 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 802 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 803 } else if (Property->isSubClassOf("ImmArg")) { 804 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 805 ArgumentAttributes.push_back(std::make_pair(ArgNo, ImmArg)); 806 } else 807 llvm_unreachable("Unknown property!"); 808 } 809 810 // Also record the SDPatternOperator Properties. 811 Properties = parseSDPatternOperatorProperties(R); 812 813 // Sort the argument attributes for later benefit. 814 llvm::sort(ArgumentAttributes); 815 } 816 817 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const { 818 if (ParamIdx >= IS.ParamVTs.size()) 819 return false; 820 MVT ParamType = MVT(IS.ParamVTs[ParamIdx]); 821 return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny; 822 } 823 824 bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const { 825 std::pair<unsigned, ArgAttribute> Val = {ParamIdx, ImmArg}; 826 return std::binary_search(ArgumentAttributes.begin(), 827 ArgumentAttributes.end(), Val); 828 } 829