1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends.  This makes it easier to access the data and
11 // provides a single place that needs to check it for validity.  All of these
12 // classes abort on error conditions.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CodeGenTarget.h"
17 #include "CodeGenDAGPatterns.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Timer.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 #include <algorithm>
28 using namespace llvm;
29 
30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
32 
33 static cl::opt<unsigned>
34     AsmParserNum("asmparsernum", cl::init(0),
35                  cl::desc("Make -gen-asm-parser emit assembly parser #N"),
36                  cl::cat(AsmParserCat));
37 
38 static cl::opt<unsigned>
39     AsmWriterNum("asmwriternum", cl::init(0),
40                  cl::desc("Make -gen-asm-writer emit assembly writer #N"),
41                  cl::cat(AsmWriterCat));
42 
43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
44 /// record corresponds to.
45 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
46   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
47 }
48 
49 StringRef llvm::getName(MVT::SimpleValueType T) {
50   switch (T) {
51   case MVT::Other:   return "UNKNOWN";
52   case MVT::iPTR:    return "TLI.getPointerTy()";
53   case MVT::iPTRAny: return "TLI.getPointerTy()";
54   default: return getEnumName(T);
55   }
56 }
57 
58 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
59   switch (T) {
60   case MVT::Other:    return "MVT::Other";
61   case MVT::i1:       return "MVT::i1";
62   case MVT::i8:       return "MVT::i8";
63   case MVT::i16:      return "MVT::i16";
64   case MVT::i32:      return "MVT::i32";
65   case MVT::i64:      return "MVT::i64";
66   case MVT::i128:     return "MVT::i128";
67   case MVT::Any:      return "MVT::Any";
68   case MVT::iAny:     return "MVT::iAny";
69   case MVT::fAny:     return "MVT::fAny";
70   case MVT::vAny:     return "MVT::vAny";
71   case MVT::f16:      return "MVT::f16";
72   case MVT::bf16:     return "MVT::bf16";
73   case MVT::f32:      return "MVT::f32";
74   case MVT::f64:      return "MVT::f64";
75   case MVT::f80:      return "MVT::f80";
76   case MVT::f128:     return "MVT::f128";
77   case MVT::ppcf128:  return "MVT::ppcf128";
78   case MVT::x86mmx:   return "MVT::x86mmx";
79   case MVT::Glue:     return "MVT::Glue";
80   case MVT::isVoid:   return "MVT::isVoid";
81   case MVT::v1i1:     return "MVT::v1i1";
82   case MVT::v2i1:     return "MVT::v2i1";
83   case MVT::v4i1:     return "MVT::v4i1";
84   case MVT::v8i1:     return "MVT::v8i1";
85   case MVT::v16i1:    return "MVT::v16i1";
86   case MVT::v32i1:    return "MVT::v32i1";
87   case MVT::v64i1:    return "MVT::v64i1";
88   case MVT::v128i1:   return "MVT::v128i1";
89   case MVT::v256i1:   return "MVT::v256i1";
90   case MVT::v512i1:   return "MVT::v512i1";
91   case MVT::v1024i1:  return "MVT::v1024i1";
92   case MVT::v1i8:     return "MVT::v1i8";
93   case MVT::v2i8:     return "MVT::v2i8";
94   case MVT::v4i8:     return "MVT::v4i8";
95   case MVT::v8i8:     return "MVT::v8i8";
96   case MVT::v16i8:    return "MVT::v16i8";
97   case MVT::v32i8:    return "MVT::v32i8";
98   case MVT::v64i8:    return "MVT::v64i8";
99   case MVT::v128i8:   return "MVT::v128i8";
100   case MVT::v256i8:   return "MVT::v256i8";
101   case MVT::v1i16:    return "MVT::v1i16";
102   case MVT::v2i16:    return "MVT::v2i16";
103   case MVT::v3i16:    return "MVT::v3i16";
104   case MVT::v4i16:    return "MVT::v4i16";
105   case MVT::v8i16:    return "MVT::v8i16";
106   case MVT::v16i16:   return "MVT::v16i16";
107   case MVT::v32i16:   return "MVT::v32i16";
108   case MVT::v64i16:   return "MVT::v64i16";
109   case MVT::v128i16:  return "MVT::v128i16";
110   case MVT::v1i32:    return "MVT::v1i32";
111   case MVT::v2i32:    return "MVT::v2i32";
112   case MVT::v3i32:    return "MVT::v3i32";
113   case MVT::v4i32:    return "MVT::v4i32";
114   case MVT::v5i32:    return "MVT::v5i32";
115   case MVT::v8i32:    return "MVT::v8i32";
116   case MVT::v16i32:   return "MVT::v16i32";
117   case MVT::v32i32:   return "MVT::v32i32";
118   case MVT::v64i32:   return "MVT::v64i32";
119   case MVT::v128i32:  return "MVT::v128i32";
120   case MVT::v256i32:  return "MVT::v256i32";
121   case MVT::v512i32:  return "MVT::v512i32";
122   case MVT::v1024i32: return "MVT::v1024i32";
123   case MVT::v2048i32: return "MVT::v2048i32";
124   case MVT::v1i64:    return "MVT::v1i64";
125   case MVT::v2i64:    return "MVT::v2i64";
126   case MVT::v4i64:    return "MVT::v4i64";
127   case MVT::v8i64:    return "MVT::v8i64";
128   case MVT::v16i64:   return "MVT::v16i64";
129   case MVT::v32i64:   return "MVT::v32i64";
130   case MVT::v1i128:   return "MVT::v1i128";
131   case MVT::v2f16:    return "MVT::v2f16";
132   case MVT::v3f16:    return "MVT::v3f16";
133   case MVT::v4f16:    return "MVT::v4f16";
134   case MVT::v8f16:    return "MVT::v8f16";
135   case MVT::v16f16:   return "MVT::v16f16";
136   case MVT::v32f16:   return "MVT::v32f16";
137   case MVT::v64f16:   return "MVT::v64f16";
138   case MVT::v128f16:  return "MVT::v128f16";
139   case MVT::v2bf16:   return "MVT::v2bf16";
140   case MVT::v3bf16:   return "MVT::v3bf16";
141   case MVT::v4bf16:   return "MVT::v4bf16";
142   case MVT::v8bf16:   return "MVT::v8bf16";
143   case MVT::v16bf16:  return "MVT::v16bf16";
144   case MVT::v32bf16:  return "MVT::v32bf16";
145   case MVT::v64bf16:  return "MVT::v64bf16";
146   case MVT::v128bf16: return "MVT::v128bf16";
147   case MVT::v1f32:    return "MVT::v1f32";
148   case MVT::v2f32:    return "MVT::v2f32";
149   case MVT::v3f32:    return "MVT::v3f32";
150   case MVT::v4f32:    return "MVT::v4f32";
151   case MVT::v5f32:    return "MVT::v5f32";
152   case MVT::v8f32:    return "MVT::v8f32";
153   case MVT::v16f32:   return "MVT::v16f32";
154   case MVT::v32f32:   return "MVT::v32f32";
155   case MVT::v64f32:   return "MVT::v64f32";
156   case MVT::v128f32:  return "MVT::v128f32";
157   case MVT::v256f32:  return "MVT::v256f32";
158   case MVT::v512f32:  return "MVT::v512f32";
159   case MVT::v1024f32: return "MVT::v1024f32";
160   case MVT::v2048f32: return "MVT::v2048f32";
161   case MVT::v1f64:    return "MVT::v1f64";
162   case MVT::v2f64:    return "MVT::v2f64";
163   case MVT::v4f64:    return "MVT::v4f64";
164   case MVT::v8f64:    return "MVT::v8f64";
165   case MVT::v16f64:   return "MVT::v16f64";
166   case MVT::v32f64:   return "MVT::v32f64";
167   case MVT::nxv1i1:   return "MVT::nxv1i1";
168   case MVT::nxv2i1:   return "MVT::nxv2i1";
169   case MVT::nxv4i1:   return "MVT::nxv4i1";
170   case MVT::nxv8i1:   return "MVT::nxv8i1";
171   case MVT::nxv16i1:  return "MVT::nxv16i1";
172   case MVT::nxv32i1:  return "MVT::nxv32i1";
173   case MVT::nxv64i1:  return "MVT::nxv64i1";
174   case MVT::nxv1i8:   return "MVT::nxv1i8";
175   case MVT::nxv2i8:   return "MVT::nxv2i8";
176   case MVT::nxv4i8:   return "MVT::nxv4i8";
177   case MVT::nxv8i8:   return "MVT::nxv8i8";
178   case MVT::nxv16i8:  return "MVT::nxv16i8";
179   case MVT::nxv32i8:  return "MVT::nxv32i8";
180   case MVT::nxv64i8:  return "MVT::nxv64i8";
181   case MVT::nxv1i16:  return "MVT::nxv1i16";
182   case MVT::nxv2i16:  return "MVT::nxv2i16";
183   case MVT::nxv4i16:  return "MVT::nxv4i16";
184   case MVT::nxv8i16:  return "MVT::nxv8i16";
185   case MVT::nxv16i16: return "MVT::nxv16i16";
186   case MVT::nxv32i16: return "MVT::nxv32i16";
187   case MVT::nxv1i32:  return "MVT::nxv1i32";
188   case MVT::nxv2i32:  return "MVT::nxv2i32";
189   case MVT::nxv4i32:  return "MVT::nxv4i32";
190   case MVT::nxv8i32:  return "MVT::nxv8i32";
191   case MVT::nxv16i32: return "MVT::nxv16i32";
192   case MVT::nxv32i32: return "MVT::nxv32i32";
193   case MVT::nxv1i64:  return "MVT::nxv1i64";
194   case MVT::nxv2i64:  return "MVT::nxv2i64";
195   case MVT::nxv4i64:  return "MVT::nxv4i64";
196   case MVT::nxv8i64:  return "MVT::nxv8i64";
197   case MVT::nxv16i64: return "MVT::nxv16i64";
198   case MVT::nxv32i64: return "MVT::nxv32i64";
199   case MVT::nxv1f16:  return "MVT::nxv1f16";
200   case MVT::nxv2f16:  return "MVT::nxv2f16";
201   case MVT::nxv4f16:  return "MVT::nxv4f16";
202   case MVT::nxv8f16:  return "MVT::nxv8f16";
203   case MVT::nxv16f16: return "MVT::nxv16f16";
204   case MVT::nxv32f16: return "MVT::nxv32f16";
205   case MVT::nxv2bf16:  return "MVT::nxv2bf16";
206   case MVT::nxv4bf16:  return "MVT::nxv4bf16";
207   case MVT::nxv8bf16:  return "MVT::nxv8bf16";
208   case MVT::nxv1f32:  return "MVT::nxv1f32";
209   case MVT::nxv2f32:  return "MVT::nxv2f32";
210   case MVT::nxv4f32:  return "MVT::nxv4f32";
211   case MVT::nxv8f32:  return "MVT::nxv8f32";
212   case MVT::nxv16f32: return "MVT::nxv16f32";
213   case MVT::nxv1f64:  return "MVT::nxv1f64";
214   case MVT::nxv2f64:  return "MVT::nxv2f64";
215   case MVT::nxv4f64:  return "MVT::nxv4f64";
216   case MVT::nxv8f64:  return "MVT::nxv8f64";
217   case MVT::token:    return "MVT::token";
218   case MVT::Metadata: return "MVT::Metadata";
219   case MVT::iPTR:     return "MVT::iPTR";
220   case MVT::iPTRAny:  return "MVT::iPTRAny";
221   case MVT::Untyped:  return "MVT::Untyped";
222   case MVT::exnref:   return "MVT::exnref";
223   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
224   }
225 }
226 
227 /// getQualifiedName - Return the name of the specified record, with a
228 /// namespace qualifier if the record contains one.
229 ///
230 std::string llvm::getQualifiedName(const Record *R) {
231   std::string Namespace;
232   if (R->getValue("Namespace"))
233     Namespace = std::string(R->getValueAsString("Namespace"));
234   if (Namespace.empty())
235     return std::string(R->getName());
236   return Namespace + "::" + R->getName().str();
237 }
238 
239 
240 /// getTarget - Return the current instance of the Target class.
241 ///
242 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
243   : Records(records), CGH(records) {
244   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
245   if (Targets.size() == 0)
246     PrintFatalError("ERROR: No 'Target' subclasses defined!");
247   if (Targets.size() != 1)
248     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
249   TargetRec = Targets[0];
250 }
251 
252 CodeGenTarget::~CodeGenTarget() {
253 }
254 
255 const StringRef CodeGenTarget::getName() const {
256   return TargetRec->getName();
257 }
258 
259 StringRef CodeGenTarget::getInstNamespace() const {
260   for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
261     // Make sure not to pick up "TargetOpcode" by accidentally getting
262     // the namespace off the PHI instruction or something.
263     if (Inst->Namespace != "TargetOpcode")
264       return Inst->Namespace;
265   }
266 
267   return "";
268 }
269 
270 StringRef CodeGenTarget::getRegNamespace() const {
271   auto &RegClasses = RegBank->getRegClasses();
272   return RegClasses.size() > 0 ? RegClasses.front().Namespace : "";
273 }
274 
275 Record *CodeGenTarget::getInstructionSet() const {
276   return TargetRec->getValueAsDef("InstructionSet");
277 }
278 
279 bool CodeGenTarget::getAllowRegisterRenaming() const {
280   return TargetRec->getValueAsInt("AllowRegisterRenaming");
281 }
282 
283 /// getAsmParser - Return the AssemblyParser definition for this target.
284 ///
285 Record *CodeGenTarget::getAsmParser() const {
286   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
287   if (AsmParserNum >= LI.size())
288     PrintFatalError("Target does not have an AsmParser #" +
289                     Twine(AsmParserNum) + "!");
290   return LI[AsmParserNum];
291 }
292 
293 /// getAsmParserVariant - Return the AssemblyParserVariant definition for
294 /// this target.
295 ///
296 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
297   std::vector<Record*> LI =
298     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
299   if (i >= LI.size())
300     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
301                     "!");
302   return LI[i];
303 }
304 
305 /// getAsmParserVariantCount - Return the AssemblyParserVariant definition
306 /// available for this target.
307 ///
308 unsigned CodeGenTarget::getAsmParserVariantCount() const {
309   std::vector<Record*> LI =
310     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
311   return LI.size();
312 }
313 
314 /// getAsmWriter - Return the AssemblyWriter definition for this target.
315 ///
316 Record *CodeGenTarget::getAsmWriter() const {
317   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
318   if (AsmWriterNum >= LI.size())
319     PrintFatalError("Target does not have an AsmWriter #" +
320                     Twine(AsmWriterNum) + "!");
321   return LI[AsmWriterNum];
322 }
323 
324 CodeGenRegBank &CodeGenTarget::getRegBank() const {
325   if (!RegBank)
326     RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
327   return *RegBank;
328 }
329 
330 Optional<CodeGenRegisterClass *>
331 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy,
332                                     CodeGenRegBank &RegBank,
333                                     const CodeGenSubRegIndex *SubIdx) const {
334   std::vector<CodeGenRegisterClass *> Candidates;
335   auto &RegClasses = RegBank.getRegClasses();
336 
337   // Try to find a register class which supports ValueTy, and also contains
338   // SubIdx.
339   for (CodeGenRegisterClass &RC : RegClasses) {
340     // Is there a subclass of this class which contains this subregister index?
341     CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
342     if (!SubClassWithSubReg)
343       continue;
344 
345     // We have a class. Check if it supports this value type.
346     if (llvm::none_of(SubClassWithSubReg->VTs,
347                       [&ValueTy](const ValueTypeByHwMode &ClassVT) {
348                         return ClassVT == ValueTy;
349                       }))
350       continue;
351 
352     // We have a register class which supports both the value type and
353     // subregister index. Remember it.
354     Candidates.push_back(SubClassWithSubReg);
355   }
356 
357   // If we didn't find anything, we're done.
358   if (Candidates.empty())
359     return None;
360 
361   // Find and return the largest of our candidate classes.
362   llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
363                                     const CodeGenRegisterClass *B) {
364     if (A->getMembers().size() > B->getMembers().size())
365       return true;
366 
367     if (A->getMembers().size() < B->getMembers().size())
368       return false;
369 
370     // Order by name as a tie-breaker.
371     return StringRef(A->getName()) < B->getName();
372   });
373 
374   return Candidates[0];
375 }
376 
377 void CodeGenTarget::ReadRegAltNameIndices() const {
378   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
379   llvm::sort(RegAltNameIndices, LessRecord());
380 }
381 
382 /// getRegisterByName - If there is a register with the specific AsmName,
383 /// return it.
384 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
385   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
386   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
387   if (I == Regs.end())
388     return nullptr;
389   return I->second;
390 }
391 
392 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
393       const {
394   const CodeGenRegister *Reg = getRegBank().getReg(R);
395   std::vector<ValueTypeByHwMode> Result;
396   for (const auto &RC : getRegBank().getRegClasses()) {
397     if (RC.contains(Reg)) {
398       ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
399       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
400     }
401   }
402 
403   // Remove duplicates.
404   llvm::sort(Result);
405   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
406   return Result;
407 }
408 
409 
410 void CodeGenTarget::ReadLegalValueTypes() const {
411   for (const auto &RC : getRegBank().getRegClasses())
412     LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
413 
414   // Remove duplicates.
415   llvm::sort(LegalValueTypes);
416   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
417                                     LegalValueTypes.end()),
418                         LegalValueTypes.end());
419 }
420 
421 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
422   if (!SchedModels)
423     SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
424   return *SchedModels;
425 }
426 
427 void CodeGenTarget::ReadInstructions() const {
428   NamedRegionTimer T("Read Instructions", "Time spent reading instructions",
429                      "CodeGenTarget", "CodeGenTarget", TimeRegions);
430   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
431   if (Insts.size() <= 2)
432     PrintFatalError("No 'Instruction' subclasses defined!");
433 
434   // Parse the instructions defined in the .td file.
435   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
436     Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
437 }
438 
439 static const CodeGenInstruction *
440 GetInstByName(const char *Name,
441               const DenseMap<const Record*,
442                              std::unique_ptr<CodeGenInstruction>> &Insts,
443               RecordKeeper &Records) {
444   const Record *Rec = Records.getDef(Name);
445 
446   const auto I = Insts.find(Rec);
447   if (!Rec || I == Insts.end())
448     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
449   return I->second.get();
450 }
451 
452 static const char *const FixedInstrs[] = {
453 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
454 #include "llvm/Support/TargetOpcodes.def"
455     nullptr};
456 
457 unsigned CodeGenTarget::getNumFixedInstructions() {
458   return array_lengthof(FixedInstrs) - 1;
459 }
460 
461 /// Return all of the instructions defined by the target, ordered by
462 /// their enum value.
463 void CodeGenTarget::ComputeInstrsByEnum() const {
464   const auto &Insts = getInstructions();
465   for (const char *const *p = FixedInstrs; *p; ++p) {
466     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
467     assert(Instr && "Missing target independent instruction");
468     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
469     InstrsByEnum.push_back(Instr);
470   }
471   unsigned EndOfPredefines = InstrsByEnum.size();
472   assert(EndOfPredefines == getNumFixedInstructions() &&
473          "Missing generic opcode");
474 
475   for (const auto &I : Insts) {
476     const CodeGenInstruction *CGI = I.second.get();
477     if (CGI->Namespace != "TargetOpcode") {
478       InstrsByEnum.push_back(CGI);
479       if (CGI->TheDef->getValueAsBit("isPseudo"))
480         ++NumPseudoInstructions;
481     }
482   }
483 
484   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
485 
486   // All of the instructions are now in random order based on the map iteration.
487   llvm::sort(
488       InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
489       [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
490         const auto &D1 = *Rec1->TheDef;
491         const auto &D2 = *Rec2->TheDef;
492         return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
493                std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
494       });
495 }
496 
497 
498 /// isLittleEndianEncoding - Return whether this target encodes its instruction
499 /// in little-endian format, i.e. bits laid out in the order [0..n]
500 ///
501 bool CodeGenTarget::isLittleEndianEncoding() const {
502   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
503 }
504 
505 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
506 /// encodings, reverse the bit order of all instructions.
507 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
508   if (!isLittleEndianEncoding())
509     return;
510 
511   std::vector<Record *> Insts =
512       Records.getAllDerivedDefinitions("InstructionEncoding");
513   for (Record *R : Insts) {
514     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
515         R->getValueAsBit("isPseudo"))
516       continue;
517 
518     BitsInit *BI = R->getValueAsBitsInit("Inst");
519 
520     unsigned numBits = BI->getNumBits();
521 
522     SmallVector<Init *, 16> NewBits(numBits);
523 
524     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
525       unsigned bitSwapIdx = numBits - bit - 1;
526       Init *OrigBit = BI->getBit(bit);
527       Init *BitSwap = BI->getBit(bitSwapIdx);
528       NewBits[bit]        = BitSwap;
529       NewBits[bitSwapIdx] = OrigBit;
530     }
531     if (numBits % 2) {
532       unsigned middle = (numBits + 1) / 2;
533       NewBits[middle] = BI->getBit(middle);
534     }
535 
536     BitsInit *NewBI = BitsInit::get(NewBits);
537 
538     // Update the bits in reversed order so that emitInstrOpBits will get the
539     // correct endianness.
540     R->getValue("Inst")->setValue(NewBI);
541   }
542 }
543 
544 /// guessInstructionProperties - Return true if it's OK to guess instruction
545 /// properties instead of raising an error.
546 ///
547 /// This is configurable as a temporary migration aid. It will eventually be
548 /// permanently false.
549 bool CodeGenTarget::guessInstructionProperties() const {
550   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
551 }
552 
553 //===----------------------------------------------------------------------===//
554 // ComplexPattern implementation
555 //
556 ComplexPattern::ComplexPattern(Record *R) {
557   Ty          = ::getValueType(R->getValueAsDef("Ty"));
558   NumOperands = R->getValueAsInt("NumOperands");
559   SelectFunc = std::string(R->getValueAsString("SelectFunc"));
560   RootNodes   = R->getValueAsListOfDefs("RootNodes");
561 
562   // FIXME: This is a hack to statically increase the priority of patterns which
563   // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
564   // possible pattern match we'll need to dynamically calculate the complexity
565   // of all patterns a dag can potentially map to.
566   int64_t RawComplexity = R->getValueAsInt("Complexity");
567   if (RawComplexity == -1)
568     Complexity = NumOperands * 3;
569   else
570     Complexity = RawComplexity;
571 
572   // FIXME: Why is this different from parseSDPatternOperatorProperties?
573   // Parse the properties.
574   Properties = 0;
575   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
576   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
577     if (PropList[i]->getName() == "SDNPHasChain") {
578       Properties |= 1 << SDNPHasChain;
579     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
580       Properties |= 1 << SDNPOptInGlue;
581     } else if (PropList[i]->getName() == "SDNPMayStore") {
582       Properties |= 1 << SDNPMayStore;
583     } else if (PropList[i]->getName() == "SDNPMayLoad") {
584       Properties |= 1 << SDNPMayLoad;
585     } else if (PropList[i]->getName() == "SDNPSideEffect") {
586       Properties |= 1 << SDNPSideEffect;
587     } else if (PropList[i]->getName() == "SDNPMemOperand") {
588       Properties |= 1 << SDNPMemOperand;
589     } else if (PropList[i]->getName() == "SDNPVariadic") {
590       Properties |= 1 << SDNPVariadic;
591     } else if (PropList[i]->getName() == "SDNPWantRoot") {
592       Properties |= 1 << SDNPWantRoot;
593     } else if (PropList[i]->getName() == "SDNPWantParent") {
594       Properties |= 1 << SDNPWantParent;
595     } else {
596       PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
597                                        PropList[i]->getName() +
598                                        "' on ComplexPattern '" + R->getName() +
599                                        "'!");
600     }
601 }
602 
603 //===----------------------------------------------------------------------===//
604 // CodeGenIntrinsic Implementation
605 //===----------------------------------------------------------------------===//
606 
607 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
608   std::vector<Record *> IntrProperties =
609       RC.getAllDerivedDefinitions("IntrinsicProperty");
610 
611   std::vector<Record *> DefaultProperties;
612   for (Record *Rec : IntrProperties)
613     if (Rec->getValueAsBit("IsDefault"))
614       DefaultProperties.push_back(Rec);
615 
616   std::vector<Record *> Defs = RC.getAllDerivedDefinitions("Intrinsic");
617   Intrinsics.reserve(Defs.size());
618 
619   for (unsigned I = 0, e = Defs.size(); I != e; ++I)
620     Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties));
621 
622   llvm::sort(Intrinsics,
623              [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
624                return std::tie(LHS.TargetPrefix, LHS.Name) <
625                       std::tie(RHS.TargetPrefix, RHS.Name);
626              });
627   Targets.push_back({"", 0, 0});
628   for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
629     if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
630       Targets.back().Count = I - Targets.back().Offset;
631       Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
632     }
633   Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
634 }
635 
636 CodeGenIntrinsic::CodeGenIntrinsic(Record *R,
637                                    std::vector<Record *> DefaultProperties) {
638   TheDef = R;
639   std::string DefName = std::string(R->getName());
640   ArrayRef<SMLoc> DefLoc = R->getLoc();
641   ModRef = ReadWriteMem;
642   Properties = 0;
643   isOverloaded = false;
644   isCommutative = false;
645   canThrow = false;
646   isNoReturn = false;
647   isNoSync = false;
648   isNoFree = false;
649   isWillReturn = false;
650   isCold = false;
651   isNoDuplicate = false;
652   isConvergent = false;
653   isSpeculatable = false;
654   hasSideEffects = false;
655 
656   if (DefName.size() <= 4 ||
657       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
658     PrintFatalError(DefLoc,
659                     "Intrinsic '" + DefName + "' does not start with 'int_'!");
660 
661   EnumName = std::string(DefName.begin()+4, DefName.end());
662 
663   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
664     GCCBuiltinName = std::string(R->getValueAsString("GCCBuiltinName"));
665   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
666     MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName"));
667 
668   TargetPrefix = std::string(R->getValueAsString("TargetPrefix"));
669   Name = std::string(R->getValueAsString("LLVMName"));
670 
671   if (Name == "") {
672     // If an explicit name isn't specified, derive one from the DefName.
673     Name = "llvm.";
674 
675     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
676       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
677   } else {
678     // Verify it starts with "llvm.".
679     if (Name.size() <= 5 ||
680         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
681       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
682                                   "'s name does not start with 'llvm.'!");
683   }
684 
685   // If TargetPrefix is specified, make sure that Name starts with
686   // "llvm.<targetprefix>.".
687   if (!TargetPrefix.empty()) {
688     if (Name.size() < 6+TargetPrefix.size() ||
689         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
690         != (TargetPrefix + "."))
691       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
692                                   "' does not start with 'llvm." +
693                                   TargetPrefix + ".'!");
694   }
695 
696   ListInit *RetTypes = R->getValueAsListInit("RetTypes");
697   ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
698 
699   // First collate a list of overloaded types.
700   std::vector<MVT::SimpleValueType> OverloadedVTs;
701   for (ListInit *TypeList : {RetTypes, ParamTypes}) {
702     for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
703       Record *TyEl = TypeList->getElementAsRecord(i);
704       assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
705 
706       if (TyEl->isSubClassOf("LLVMMatchType"))
707         continue;
708 
709       MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
710       if (MVT(VT).isOverloaded()) {
711         OverloadedVTs.push_back(VT);
712         isOverloaded = true;
713       }
714     }
715   }
716 
717   // Parse the list of return types.
718   ListInit *TypeList = RetTypes;
719   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
720     Record *TyEl = TypeList->getElementAsRecord(i);
721     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
722     MVT::SimpleValueType VT;
723     if (TyEl->isSubClassOf("LLVMMatchType")) {
724       unsigned MatchTy = TyEl->getValueAsInt("Number");
725       assert(MatchTy < OverloadedVTs.size() &&
726              "Invalid matching number!");
727       VT = OverloadedVTs[MatchTy];
728       // It only makes sense to use the extended and truncated vector element
729       // variants with iAny types; otherwise, if the intrinsic is not
730       // overloaded, all the types can be specified directly.
731       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
732                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
733               VT == MVT::iAny || VT == MVT::vAny) &&
734              "Expected iAny or vAny type");
735     } else {
736       VT = getValueType(TyEl->getValueAsDef("VT"));
737     }
738 
739     // Reject invalid types.
740     if (VT == MVT::isVoid)
741       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
742                                   " has void in result type list!");
743 
744     IS.RetVTs.push_back(VT);
745     IS.RetTypeDefs.push_back(TyEl);
746   }
747 
748   // Parse the list of parameter types.
749   TypeList = ParamTypes;
750   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
751     Record *TyEl = TypeList->getElementAsRecord(i);
752     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
753     MVT::SimpleValueType VT;
754     if (TyEl->isSubClassOf("LLVMMatchType")) {
755       unsigned MatchTy = TyEl->getValueAsInt("Number");
756       if (MatchTy >= OverloadedVTs.size()) {
757         PrintError(R->getLoc(),
758                    "Parameter #" + Twine(i) + " has out of bounds matching "
759                    "number " + Twine(MatchTy));
760         PrintFatalError(DefLoc,
761                         Twine("ParamTypes is ") + TypeList->getAsString());
762       }
763       VT = OverloadedVTs[MatchTy];
764       // It only makes sense to use the extended and truncated vector element
765       // variants with iAny types; otherwise, if the intrinsic is not
766       // overloaded, all the types can be specified directly.
767       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
768                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
769               VT == MVT::iAny || VT == MVT::vAny) &&
770              "Expected iAny or vAny type");
771     } else
772       VT = getValueType(TyEl->getValueAsDef("VT"));
773 
774     // Reject invalid types.
775     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
776       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
777                                   " has void in result type list!");
778 
779     IS.ParamVTs.push_back(VT);
780     IS.ParamTypeDefs.push_back(TyEl);
781   }
782 
783   // Set default properties to true.
784   setDefaultProperties(R, DefaultProperties);
785 
786   // Parse the intrinsic properties.
787   ListInit *PropList = R->getValueAsListInit("IntrProperties");
788   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
789     Record *Property = PropList->getElementAsRecord(i);
790     assert(Property->isSubClassOf("IntrinsicProperty") &&
791            "Expected a property!");
792 
793     setProperty(Property);
794   }
795 
796   // Also record the SDPatternOperator Properties.
797   Properties = parseSDPatternOperatorProperties(R);
798 
799   // Sort the argument attributes for later benefit.
800   llvm::sort(ArgumentAttributes);
801 }
802 
803 void CodeGenIntrinsic::setDefaultProperties(
804     Record *R, std::vector<Record *> DefaultProperties) {
805   // opt-out of using default attributes.
806   if (R->getValueAsBit("DisableDefaultAttributes"))
807     return;
808 
809   for (Record *Rec : DefaultProperties)
810     setProperty(Rec);
811 }
812 
813 void CodeGenIntrinsic::setProperty(Record *R) {
814   if (R->getName() == "IntrNoMem")
815     ModRef = NoMem;
816   else if (R->getName() == "IntrReadMem")
817     ModRef = ModRefBehavior(ModRef & ~MR_Mod);
818   else if (R->getName() == "IntrWriteMem")
819     ModRef = ModRefBehavior(ModRef & ~MR_Ref);
820   else if (R->getName() == "IntrArgMemOnly")
821     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
822   else if (R->getName() == "IntrInaccessibleMemOnly")
823     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
824   else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly")
825     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
826                             MR_InaccessibleMem);
827   else if (R->getName() == "Commutative")
828     isCommutative = true;
829   else if (R->getName() == "Throws")
830     canThrow = true;
831   else if (R->getName() == "IntrNoDuplicate")
832     isNoDuplicate = true;
833   else if (R->getName() == "IntrConvergent")
834     isConvergent = true;
835   else if (R->getName() == "IntrNoReturn")
836     isNoReturn = true;
837   else if (R->getName() == "IntrNoSync")
838     isNoSync = true;
839   else if (R->getName() == "IntrNoFree")
840     isNoFree = true;
841   else if (R->getName() == "IntrWillReturn")
842     isWillReturn = true;
843   else if (R->getName() == "IntrCold")
844     isCold = true;
845   else if (R->getName() == "IntrSpeculatable")
846     isSpeculatable = true;
847   else if (R->getName() == "IntrHasSideEffects")
848     hasSideEffects = true;
849   else if (R->isSubClassOf("NoCapture")) {
850     unsigned ArgNo = R->getValueAsInt("ArgNo");
851     ArgumentAttributes.emplace_back(ArgNo, NoCapture, 0);
852   } else if (R->isSubClassOf("NoAlias")) {
853     unsigned ArgNo = R->getValueAsInt("ArgNo");
854     ArgumentAttributes.emplace_back(ArgNo, NoAlias, 0);
855   } else if (R->isSubClassOf("NoUndef")) {
856     unsigned ArgNo = R->getValueAsInt("ArgNo");
857     ArgumentAttributes.emplace_back(ArgNo, NoUndef, 0);
858   } else if (R->isSubClassOf("Returned")) {
859     unsigned ArgNo = R->getValueAsInt("ArgNo");
860     ArgumentAttributes.emplace_back(ArgNo, Returned, 0);
861   } else if (R->isSubClassOf("ReadOnly")) {
862     unsigned ArgNo = R->getValueAsInt("ArgNo");
863     ArgumentAttributes.emplace_back(ArgNo, ReadOnly, 0);
864   } else if (R->isSubClassOf("WriteOnly")) {
865     unsigned ArgNo = R->getValueAsInt("ArgNo");
866     ArgumentAttributes.emplace_back(ArgNo, WriteOnly, 0);
867   } else if (R->isSubClassOf("ReadNone")) {
868     unsigned ArgNo = R->getValueAsInt("ArgNo");
869     ArgumentAttributes.emplace_back(ArgNo, ReadNone, 0);
870   } else if (R->isSubClassOf("ImmArg")) {
871     unsigned ArgNo = R->getValueAsInt("ArgNo");
872     ArgumentAttributes.emplace_back(ArgNo, ImmArg, 0);
873   } else if (R->isSubClassOf("Align")) {
874     unsigned ArgNo = R->getValueAsInt("ArgNo");
875     uint64_t Align = R->getValueAsInt("Align");
876     ArgumentAttributes.emplace_back(ArgNo, Alignment, Align);
877   } else
878     llvm_unreachable("Unknown property!");
879 }
880 
881 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
882   if (ParamIdx >= IS.ParamVTs.size())
883     return false;
884   MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
885   return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
886 }
887 
888 bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
889   // Convert argument index to attribute index starting from `FirstArgIndex`.
890   ArgAttribute Val{ParamIdx + 1, ImmArg, 0};
891   return std::binary_search(ArgumentAttributes.begin(),
892                             ArgumentAttributes.end(), Val);
893 }
894