1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes abort on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenDAGPatterns.h" 19 #include "CodeGenIntrinsics.h" 20 #include "CodeGenSchedule.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include <algorithm> 27 using namespace llvm; 28 29 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 30 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 31 32 static cl::opt<unsigned> 33 AsmParserNum("asmparsernum", cl::init(0), 34 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 35 cl::cat(AsmParserCat)); 36 37 static cl::opt<unsigned> 38 AsmWriterNum("asmwriternum", cl::init(0), 39 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 40 cl::cat(AsmWriterCat)); 41 42 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 43 /// record corresponds to. 44 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 45 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 46 } 47 48 StringRef llvm::getName(MVT::SimpleValueType T) { 49 switch (T) { 50 case MVT::Other: return "UNKNOWN"; 51 case MVT::iPTR: return "TLI.getPointerTy()"; 52 case MVT::iPTRAny: return "TLI.getPointerTy()"; 53 default: return getEnumName(T); 54 } 55 } 56 57 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 58 switch (T) { 59 case MVT::Other: return "MVT::Other"; 60 case MVT::i1: return "MVT::i1"; 61 case MVT::i8: return "MVT::i8"; 62 case MVT::i16: return "MVT::i16"; 63 case MVT::i32: return "MVT::i32"; 64 case MVT::i64: return "MVT::i64"; 65 case MVT::i128: return "MVT::i128"; 66 case MVT::Any: return "MVT::Any"; 67 case MVT::iAny: return "MVT::iAny"; 68 case MVT::fAny: return "MVT::fAny"; 69 case MVT::vAny: return "MVT::vAny"; 70 case MVT::f16: return "MVT::f16"; 71 case MVT::f32: return "MVT::f32"; 72 case MVT::f64: return "MVT::f64"; 73 case MVT::f80: return "MVT::f80"; 74 case MVT::f128: return "MVT::f128"; 75 case MVT::ppcf128: return "MVT::ppcf128"; 76 case MVT::x86mmx: return "MVT::x86mmx"; 77 case MVT::Glue: return "MVT::Glue"; 78 case MVT::isVoid: return "MVT::isVoid"; 79 case MVT::v1i1: return "MVT::v1i1"; 80 case MVT::v2i1: return "MVT::v2i1"; 81 case MVT::v4i1: return "MVT::v4i1"; 82 case MVT::v8i1: return "MVT::v8i1"; 83 case MVT::v16i1: return "MVT::v16i1"; 84 case MVT::v32i1: return "MVT::v32i1"; 85 case MVT::v64i1: return "MVT::v64i1"; 86 case MVT::v128i1: return "MVT::v128i1"; 87 case MVT::v512i1: return "MVT::v512i1"; 88 case MVT::v1024i1: return "MVT::v1024i1"; 89 case MVT::v1i8: return "MVT::v1i8"; 90 case MVT::v2i8: return "MVT::v2i8"; 91 case MVT::v4i8: return "MVT::v4i8"; 92 case MVT::v8i8: return "MVT::v8i8"; 93 case MVT::v16i8: return "MVT::v16i8"; 94 case MVT::v32i8: return "MVT::v32i8"; 95 case MVT::v64i8: return "MVT::v64i8"; 96 case MVT::v128i8: return "MVT::v128i8"; 97 case MVT::v256i8: return "MVT::v256i8"; 98 case MVT::v1i16: return "MVT::v1i16"; 99 case MVT::v2i16: return "MVT::v2i16"; 100 case MVT::v4i16: return "MVT::v4i16"; 101 case MVT::v8i16: return "MVT::v8i16"; 102 case MVT::v16i16: return "MVT::v16i16"; 103 case MVT::v32i16: return "MVT::v32i16"; 104 case MVT::v64i16: return "MVT::v64i16"; 105 case MVT::v128i16: return "MVT::v128i16"; 106 case MVT::v1i32: return "MVT::v1i32"; 107 case MVT::v2i32: return "MVT::v2i32"; 108 case MVT::v4i32: return "MVT::v4i32"; 109 case MVT::v8i32: return "MVT::v8i32"; 110 case MVT::v16i32: return "MVT::v16i32"; 111 case MVT::v32i32: return "MVT::v32i32"; 112 case MVT::v64i32: return "MVT::v64i32"; 113 case MVT::v1i64: return "MVT::v1i64"; 114 case MVT::v2i64: return "MVT::v2i64"; 115 case MVT::v4i64: return "MVT::v4i64"; 116 case MVT::v8i64: return "MVT::v8i64"; 117 case MVT::v16i64: return "MVT::v16i64"; 118 case MVT::v32i64: return "MVT::v32i64"; 119 case MVT::v1i128: return "MVT::v1i128"; 120 case MVT::v2f16: return "MVT::v2f16"; 121 case MVT::v4f16: return "MVT::v4f16"; 122 case MVT::v8f16: return "MVT::v8f16"; 123 case MVT::v1f32: return "MVT::v1f32"; 124 case MVT::v2f32: return "MVT::v2f32"; 125 case MVT::v4f32: return "MVT::v4f32"; 126 case MVT::v8f32: return "MVT::v8f32"; 127 case MVT::v16f32: return "MVT::v16f32"; 128 case MVT::v1f64: return "MVT::v1f64"; 129 case MVT::v2f64: return "MVT::v2f64"; 130 case MVT::v4f64: return "MVT::v4f64"; 131 case MVT::v8f64: return "MVT::v8f64"; 132 case MVT::nxv1i1: return "MVT::nxv1i1"; 133 case MVT::nxv2i1: return "MVT::nxv2i1"; 134 case MVT::nxv4i1: return "MVT::nxv4i1"; 135 case MVT::nxv8i1: return "MVT::nxv8i1"; 136 case MVT::nxv16i1: return "MVT::nxv16i1"; 137 case MVT::nxv32i1: return "MVT::nxv32i1"; 138 case MVT::nxv1i8: return "MVT::nxv1i8"; 139 case MVT::nxv2i8: return "MVT::nxv2i8"; 140 case MVT::nxv4i8: return "MVT::nxv4i8"; 141 case MVT::nxv8i8: return "MVT::nxv8i8"; 142 case MVT::nxv16i8: return "MVT::nxv16i8"; 143 case MVT::nxv32i8: return "MVT::nxv32i8"; 144 case MVT::nxv1i16: return "MVT::nxv1i16"; 145 case MVT::nxv2i16: return "MVT::nxv2i16"; 146 case MVT::nxv4i16: return "MVT::nxv4i16"; 147 case MVT::nxv8i16: return "MVT::nxv8i16"; 148 case MVT::nxv16i16: return "MVT::nxv16i16"; 149 case MVT::nxv32i16: return "MVT::nxv32i16"; 150 case MVT::nxv1i32: return "MVT::nxv1i32"; 151 case MVT::nxv2i32: return "MVT::nxv2i32"; 152 case MVT::nxv4i32: return "MVT::nxv4i32"; 153 case MVT::nxv8i32: return "MVT::nxv8i32"; 154 case MVT::nxv16i32: return "MVT::nxv16i32"; 155 case MVT::nxv1i64: return "MVT::nxv1i64"; 156 case MVT::nxv2i64: return "MVT::nxv2i64"; 157 case MVT::nxv4i64: return "MVT::nxv4i64"; 158 case MVT::nxv8i64: return "MVT::nxv8i64"; 159 case MVT::nxv16i64: return "MVT::nxv16i64"; 160 case MVT::nxv2f16: return "MVT::nxv2f16"; 161 case MVT::nxv4f16: return "MVT::nxv4f16"; 162 case MVT::nxv8f16: return "MVT::nxv8f16"; 163 case MVT::nxv1f32: return "MVT::nxv1f32"; 164 case MVT::nxv2f32: return "MVT::nxv2f32"; 165 case MVT::nxv4f32: return "MVT::nxv4f32"; 166 case MVT::nxv8f32: return "MVT::nxv8f32"; 167 case MVT::nxv16f32: return "MVT::nxv16f32"; 168 case MVT::nxv1f64: return "MVT::nxv1f64"; 169 case MVT::nxv2f64: return "MVT::nxv2f64"; 170 case MVT::nxv4f64: return "MVT::nxv4f64"; 171 case MVT::nxv8f64: return "MVT::nxv8f64"; 172 case MVT::token: return "MVT::token"; 173 case MVT::Metadata: return "MVT::Metadata"; 174 case MVT::iPTR: return "MVT::iPTR"; 175 case MVT::iPTRAny: return "MVT::iPTRAny"; 176 case MVT::Untyped: return "MVT::Untyped"; 177 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 178 } 179 } 180 181 /// getQualifiedName - Return the name of the specified record, with a 182 /// namespace qualifier if the record contains one. 183 /// 184 std::string llvm::getQualifiedName(const Record *R) { 185 std::string Namespace; 186 if (R->getValue("Namespace")) 187 Namespace = R->getValueAsString("Namespace"); 188 if (Namespace.empty()) return R->getName(); 189 return Namespace + "::" + R->getName().str(); 190 } 191 192 193 /// getTarget - Return the current instance of the Target class. 194 /// 195 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 196 : Records(records), CGH(records) { 197 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 198 if (Targets.size() == 0) 199 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 200 if (Targets.size() != 1) 201 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 202 TargetRec = Targets[0]; 203 } 204 205 CodeGenTarget::~CodeGenTarget() { 206 } 207 208 const StringRef CodeGenTarget::getName() const { 209 return TargetRec->getName(); 210 } 211 212 StringRef CodeGenTarget::getInstNamespace() const { 213 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 214 // Make sure not to pick up "TargetOpcode" by accidentally getting 215 // the namespace off the PHI instruction or something. 216 if (Inst->Namespace != "TargetOpcode") 217 return Inst->Namespace; 218 } 219 220 return ""; 221 } 222 223 Record *CodeGenTarget::getInstructionSet() const { 224 return TargetRec->getValueAsDef("InstructionSet"); 225 } 226 227 228 /// getAsmParser - Return the AssemblyParser definition for this target. 229 /// 230 Record *CodeGenTarget::getAsmParser() const { 231 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 232 if (AsmParserNum >= LI.size()) 233 PrintFatalError("Target does not have an AsmParser #" + 234 Twine(AsmParserNum) + "!"); 235 return LI[AsmParserNum]; 236 } 237 238 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 239 /// this target. 240 /// 241 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 242 std::vector<Record*> LI = 243 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 244 if (i >= LI.size()) 245 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 246 "!"); 247 return LI[i]; 248 } 249 250 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 251 /// available for this target. 252 /// 253 unsigned CodeGenTarget::getAsmParserVariantCount() const { 254 std::vector<Record*> LI = 255 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 256 return LI.size(); 257 } 258 259 /// getAsmWriter - Return the AssemblyWriter definition for this target. 260 /// 261 Record *CodeGenTarget::getAsmWriter() const { 262 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 263 if (AsmWriterNum >= LI.size()) 264 PrintFatalError("Target does not have an AsmWriter #" + 265 Twine(AsmWriterNum) + "!"); 266 return LI[AsmWriterNum]; 267 } 268 269 CodeGenRegBank &CodeGenTarget::getRegBank() const { 270 if (!RegBank) 271 RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes()); 272 return *RegBank; 273 } 274 275 void CodeGenTarget::ReadRegAltNameIndices() const { 276 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 277 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 278 } 279 280 /// getRegisterByName - If there is a register with the specific AsmName, 281 /// return it. 282 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 283 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 284 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 285 if (I == Regs.end()) 286 return nullptr; 287 return I->second; 288 } 289 290 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R) 291 const { 292 const CodeGenRegister *Reg = getRegBank().getReg(R); 293 std::vector<ValueTypeByHwMode> Result; 294 for (const auto &RC : getRegBank().getRegClasses()) { 295 if (RC.contains(Reg)) { 296 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); 297 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 298 } 299 } 300 301 // Remove duplicates. 302 std::sort(Result.begin(), Result.end()); 303 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 304 return Result; 305 } 306 307 308 void CodeGenTarget::ReadLegalValueTypes() const { 309 for (const auto &RC : getRegBank().getRegClasses()) 310 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 311 312 // Remove duplicates. 313 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 314 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 315 LegalValueTypes.end()), 316 LegalValueTypes.end()); 317 } 318 319 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 320 if (!SchedModels) 321 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this); 322 return *SchedModels; 323 } 324 325 void CodeGenTarget::ReadInstructions() const { 326 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 327 if (Insts.size() <= 2) 328 PrintFatalError("No 'Instruction' subclasses defined!"); 329 330 // Parse the instructions defined in the .td file. 331 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 332 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]); 333 } 334 335 static const CodeGenInstruction * 336 GetInstByName(const char *Name, 337 const DenseMap<const Record*, 338 std::unique_ptr<CodeGenInstruction>> &Insts, 339 RecordKeeper &Records) { 340 const Record *Rec = Records.getDef(Name); 341 342 const auto I = Insts.find(Rec); 343 if (!Rec || I == Insts.end()) 344 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 345 return I->second.get(); 346 } 347 348 static const char *const FixedInstrs[] = { 349 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 350 #include "llvm/CodeGen/TargetOpcodes.def" 351 nullptr}; 352 353 unsigned CodeGenTarget::getNumFixedInstructions() { 354 return array_lengthof(FixedInstrs) - 1; 355 } 356 357 /// \brief Return all of the instructions defined by the target, ordered by 358 /// their enum value. 359 void CodeGenTarget::ComputeInstrsByEnum() const { 360 const auto &Insts = getInstructions(); 361 for (const char *const *p = FixedInstrs; *p; ++p) { 362 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 363 assert(Instr && "Missing target independent instruction"); 364 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 365 InstrsByEnum.push_back(Instr); 366 } 367 unsigned EndOfPredefines = InstrsByEnum.size(); 368 assert(EndOfPredefines == getNumFixedInstructions() && 369 "Missing generic opcode"); 370 371 for (const auto &I : Insts) { 372 const CodeGenInstruction *CGI = I.second.get(); 373 if (CGI->Namespace != "TargetOpcode") 374 InstrsByEnum.push_back(CGI); 375 } 376 377 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 378 379 // All of the instructions are now in random order based on the map iteration. 380 // Sort them by name. 381 std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 382 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 383 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 384 }); 385 } 386 387 388 /// isLittleEndianEncoding - Return whether this target encodes its instruction 389 /// in little-endian format, i.e. bits laid out in the order [0..n] 390 /// 391 bool CodeGenTarget::isLittleEndianEncoding() const { 392 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 393 } 394 395 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 396 /// encodings, reverse the bit order of all instructions. 397 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 398 if (!isLittleEndianEncoding()) 399 return; 400 401 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 402 for (Record *R : Insts) { 403 if (R->getValueAsString("Namespace") == "TargetOpcode" || 404 R->getValueAsBit("isPseudo")) 405 continue; 406 407 BitsInit *BI = R->getValueAsBitsInit("Inst"); 408 409 unsigned numBits = BI->getNumBits(); 410 411 SmallVector<Init *, 16> NewBits(numBits); 412 413 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 414 unsigned bitSwapIdx = numBits - bit - 1; 415 Init *OrigBit = BI->getBit(bit); 416 Init *BitSwap = BI->getBit(bitSwapIdx); 417 NewBits[bit] = BitSwap; 418 NewBits[bitSwapIdx] = OrigBit; 419 } 420 if (numBits % 2) { 421 unsigned middle = (numBits + 1) / 2; 422 NewBits[middle] = BI->getBit(middle); 423 } 424 425 BitsInit *NewBI = BitsInit::get(NewBits); 426 427 // Update the bits in reversed order so that emitInstrOpBits will get the 428 // correct endianness. 429 R->getValue("Inst")->setValue(NewBI); 430 } 431 } 432 433 /// guessInstructionProperties - Return true if it's OK to guess instruction 434 /// properties instead of raising an error. 435 /// 436 /// This is configurable as a temporary migration aid. It will eventually be 437 /// permanently false. 438 bool CodeGenTarget::guessInstructionProperties() const { 439 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 440 } 441 442 //===----------------------------------------------------------------------===// 443 // ComplexPattern implementation 444 // 445 ComplexPattern::ComplexPattern(Record *R) { 446 Ty = ::getValueType(R->getValueAsDef("Ty")); 447 NumOperands = R->getValueAsInt("NumOperands"); 448 SelectFunc = R->getValueAsString("SelectFunc"); 449 RootNodes = R->getValueAsListOfDefs("RootNodes"); 450 451 // FIXME: This is a hack to statically increase the priority of patterns which 452 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 453 // possible pattern match we'll need to dynamically calculate the complexity 454 // of all patterns a dag can potentially map to. 455 int64_t RawComplexity = R->getValueAsInt("Complexity"); 456 if (RawComplexity == -1) 457 Complexity = NumOperands * 3; 458 else 459 Complexity = RawComplexity; 460 461 // FIXME: Why is this different from parseSDPatternOperatorProperties? 462 // Parse the properties. 463 Properties = 0; 464 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 465 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 466 if (PropList[i]->getName() == "SDNPHasChain") { 467 Properties |= 1 << SDNPHasChain; 468 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 469 Properties |= 1 << SDNPOptInGlue; 470 } else if (PropList[i]->getName() == "SDNPMayStore") { 471 Properties |= 1 << SDNPMayStore; 472 } else if (PropList[i]->getName() == "SDNPMayLoad") { 473 Properties |= 1 << SDNPMayLoad; 474 } else if (PropList[i]->getName() == "SDNPSideEffect") { 475 Properties |= 1 << SDNPSideEffect; 476 } else if (PropList[i]->getName() == "SDNPMemOperand") { 477 Properties |= 1 << SDNPMemOperand; 478 } else if (PropList[i]->getName() == "SDNPVariadic") { 479 Properties |= 1 << SDNPVariadic; 480 } else if (PropList[i]->getName() == "SDNPWantRoot") { 481 Properties |= 1 << SDNPWantRoot; 482 } else if (PropList[i]->getName() == "SDNPWantParent") { 483 Properties |= 1 << SDNPWantParent; 484 } else { 485 PrintFatalError("Unsupported SD Node property '" + 486 PropList[i]->getName() + "' on ComplexPattern '" + 487 R->getName() + "'!"); 488 } 489 } 490 491 //===----------------------------------------------------------------------===// 492 // CodeGenIntrinsic Implementation 493 //===----------------------------------------------------------------------===// 494 495 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC, 496 bool TargetOnly) { 497 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 498 499 Intrinsics.reserve(Defs.size()); 500 501 for (unsigned I = 0, e = Defs.size(); I != e; ++I) { 502 bool isTarget = Defs[I]->getValueAsBit("isTarget"); 503 if (isTarget == TargetOnly) 504 Intrinsics.push_back(CodeGenIntrinsic(Defs[I])); 505 } 506 std::sort(Intrinsics.begin(), Intrinsics.end(), 507 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 508 return std::tie(LHS.TargetPrefix, LHS.Name) < 509 std::tie(RHS.TargetPrefix, RHS.Name); 510 }); 511 Targets.push_back({"", 0, 0}); 512 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 513 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 514 Targets.back().Count = I - Targets.back().Offset; 515 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 516 } 517 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 518 } 519 520 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 521 TheDef = R; 522 std::string DefName = R->getName(); 523 ModRef = ReadWriteMem; 524 Properties = 0; 525 isOverloaded = false; 526 isCommutative = false; 527 canThrow = false; 528 isNoReturn = false; 529 isNoDuplicate = false; 530 isConvergent = false; 531 isSpeculatable = false; 532 hasSideEffects = false; 533 534 if (DefName.size() <= 4 || 535 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 536 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!"); 537 538 EnumName = std::string(DefName.begin()+4, DefName.end()); 539 540 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 541 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 542 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 543 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 544 545 TargetPrefix = R->getValueAsString("TargetPrefix"); 546 Name = R->getValueAsString("LLVMName"); 547 548 if (Name == "") { 549 // If an explicit name isn't specified, derive one from the DefName. 550 Name = "llvm."; 551 552 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 553 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 554 } else { 555 // Verify it starts with "llvm.". 556 if (Name.size() <= 5 || 557 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 558 PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); 559 } 560 561 // If TargetPrefix is specified, make sure that Name starts with 562 // "llvm.<targetprefix>.". 563 if (!TargetPrefix.empty()) { 564 if (Name.size() < 6+TargetPrefix.size() || 565 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 566 != (TargetPrefix + ".")) 567 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." + 568 TargetPrefix + ".'!"); 569 } 570 571 // Parse the list of return types. 572 std::vector<MVT::SimpleValueType> OverloadedVTs; 573 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 574 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 575 Record *TyEl = TypeList->getElementAsRecord(i); 576 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 577 MVT::SimpleValueType VT; 578 if (TyEl->isSubClassOf("LLVMMatchType")) { 579 unsigned MatchTy = TyEl->getValueAsInt("Number"); 580 assert(MatchTy < OverloadedVTs.size() && 581 "Invalid matching number!"); 582 VT = OverloadedVTs[MatchTy]; 583 // It only makes sense to use the extended and truncated vector element 584 // variants with iAny types; otherwise, if the intrinsic is not 585 // overloaded, all the types can be specified directly. 586 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 587 !TyEl->isSubClassOf("LLVMTruncatedType")) || 588 VT == MVT::iAny || VT == MVT::vAny) && 589 "Expected iAny or vAny type"); 590 } else { 591 VT = getValueType(TyEl->getValueAsDef("VT")); 592 } 593 if (MVT(VT).isOverloaded()) { 594 OverloadedVTs.push_back(VT); 595 isOverloaded = true; 596 } 597 598 // Reject invalid types. 599 if (VT == MVT::isVoid) 600 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 601 602 IS.RetVTs.push_back(VT); 603 IS.RetTypeDefs.push_back(TyEl); 604 } 605 606 // Parse the list of parameter types. 607 TypeList = R->getValueAsListInit("ParamTypes"); 608 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 609 Record *TyEl = TypeList->getElementAsRecord(i); 610 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 611 MVT::SimpleValueType VT; 612 if (TyEl->isSubClassOf("LLVMMatchType")) { 613 unsigned MatchTy = TyEl->getValueAsInt("Number"); 614 assert(MatchTy < OverloadedVTs.size() && 615 "Invalid matching number!"); 616 VT = OverloadedVTs[MatchTy]; 617 // It only makes sense to use the extended and truncated vector element 618 // variants with iAny types; otherwise, if the intrinsic is not 619 // overloaded, all the types can be specified directly. 620 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 621 !TyEl->isSubClassOf("LLVMTruncatedType") && 622 !TyEl->isSubClassOf("LLVMVectorSameWidth")) || 623 VT == MVT::iAny || VT == MVT::vAny) && 624 "Expected iAny or vAny type"); 625 } else 626 VT = getValueType(TyEl->getValueAsDef("VT")); 627 628 if (MVT(VT).isOverloaded()) { 629 OverloadedVTs.push_back(VT); 630 isOverloaded = true; 631 } 632 633 // Reject invalid types. 634 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 635 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 636 637 IS.ParamVTs.push_back(VT); 638 IS.ParamTypeDefs.push_back(TyEl); 639 } 640 641 // Parse the intrinsic properties. 642 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 643 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 644 Record *Property = PropList->getElementAsRecord(i); 645 assert(Property->isSubClassOf("IntrinsicProperty") && 646 "Expected a property!"); 647 648 if (Property->getName() == "IntrNoMem") 649 ModRef = NoMem; 650 else if (Property->getName() == "IntrReadMem") 651 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 652 else if (Property->getName() == "IntrWriteMem") 653 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 654 else if (Property->getName() == "IntrArgMemOnly") 655 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 656 else if (Property->getName() == "IntrInaccessibleMemOnly") 657 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 658 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly") 659 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 660 MR_InaccessibleMem); 661 else if (Property->getName() == "Commutative") 662 isCommutative = true; 663 else if (Property->getName() == "Throws") 664 canThrow = true; 665 else if (Property->getName() == "IntrNoDuplicate") 666 isNoDuplicate = true; 667 else if (Property->getName() == "IntrConvergent") 668 isConvergent = true; 669 else if (Property->getName() == "IntrNoReturn") 670 isNoReturn = true; 671 else if (Property->getName() == "IntrSpeculatable") 672 isSpeculatable = true; 673 else if (Property->getName() == "IntrHasSideEffects") 674 hasSideEffects = true; 675 else if (Property->isSubClassOf("NoCapture")) { 676 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 677 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 678 } else if (Property->isSubClassOf("Returned")) { 679 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 680 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned)); 681 } else if (Property->isSubClassOf("ReadOnly")) { 682 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 683 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 684 } else if (Property->isSubClassOf("WriteOnly")) { 685 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 686 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly)); 687 } else if (Property->isSubClassOf("ReadNone")) { 688 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 689 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 690 } else 691 llvm_unreachable("Unknown property!"); 692 } 693 694 // Also record the SDPatternOperator Properties. 695 Properties = parseSDPatternOperatorProperties(R); 696 697 // Sort the argument attributes for later benefit. 698 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 699 } 700 701