1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes throw exceptions on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "llvm/TableGen/Record.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include <algorithm> 24 using namespace llvm; 25 26 static cl::opt<unsigned> 27 AsmParserNum("asmparsernum", cl::init(0), 28 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 29 30 static cl::opt<unsigned> 31 AsmWriterNum("asmwriternum", cl::init(0), 32 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 33 34 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 35 /// record corresponds to. 36 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 37 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 38 } 39 40 std::string llvm::getName(MVT::SimpleValueType T) { 41 switch (T) { 42 case MVT::Other: return "UNKNOWN"; 43 case MVT::iPTR: return "TLI.getPointerTy()"; 44 case MVT::iPTRAny: return "TLI.getPointerTy()"; 45 default: return getEnumName(T); 46 } 47 } 48 49 std::string llvm::getEnumName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "MVT::Other"; 52 case MVT::i1: return "MVT::i1"; 53 case MVT::i8: return "MVT::i8"; 54 case MVT::i16: return "MVT::i16"; 55 case MVT::i32: return "MVT::i32"; 56 case MVT::i64: return "MVT::i64"; 57 case MVT::i128: return "MVT::i128"; 58 case MVT::iAny: return "MVT::iAny"; 59 case MVT::fAny: return "MVT::fAny"; 60 case MVT::vAny: return "MVT::vAny"; 61 case MVT::f32: return "MVT::f32"; 62 case MVT::f64: return "MVT::f64"; 63 case MVT::f80: return "MVT::f80"; 64 case MVT::f128: return "MVT::f128"; 65 case MVT::ppcf128: return "MVT::ppcf128"; 66 case MVT::x86mmx: return "MVT::x86mmx"; 67 case MVT::Glue: return "MVT::Glue"; 68 case MVT::isVoid: return "MVT::isVoid"; 69 case MVT::v2i8: return "MVT::v2i8"; 70 case MVT::v4i8: return "MVT::v4i8"; 71 case MVT::v8i8: return "MVT::v8i8"; 72 case MVT::v16i8: return "MVT::v16i8"; 73 case MVT::v32i8: return "MVT::v32i8"; 74 case MVT::v2i16: return "MVT::v2i16"; 75 case MVT::v4i16: return "MVT::v4i16"; 76 case MVT::v8i16: return "MVT::v8i16"; 77 case MVT::v16i16: return "MVT::v16i16"; 78 case MVT::v2i32: return "MVT::v2i32"; 79 case MVT::v4i32: return "MVT::v4i32"; 80 case MVT::v8i32: return "MVT::v8i32"; 81 case MVT::v1i64: return "MVT::v1i64"; 82 case MVT::v2i64: return "MVT::v2i64"; 83 case MVT::v4i64: return "MVT::v4i64"; 84 case MVT::v8i64: return "MVT::v8i64"; 85 case MVT::v2f32: return "MVT::v2f32"; 86 case MVT::v4f32: return "MVT::v4f32"; 87 case MVT::v8f32: return "MVT::v8f32"; 88 case MVT::v2f64: return "MVT::v2f64"; 89 case MVT::v4f64: return "MVT::v4f64"; 90 case MVT::Metadata: return "MVT::Metadata"; 91 case MVT::iPTR: return "MVT::iPTR"; 92 case MVT::iPTRAny: return "MVT::iPTRAny"; 93 case MVT::Untyped: return "MVT::Untyped"; 94 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 95 } 96 } 97 98 /// getQualifiedName - Return the name of the specified record, with a 99 /// namespace qualifier if the record contains one. 100 /// 101 std::string llvm::getQualifiedName(const Record *R) { 102 std::string Namespace; 103 if (R->getValue("Namespace")) 104 Namespace = R->getValueAsString("Namespace"); 105 if (Namespace.empty()) return R->getName(); 106 return Namespace + "::" + R->getName(); 107 } 108 109 110 /// getTarget - Return the current instance of the Target class. 111 /// 112 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 113 : Records(records), RegBank(0) { 114 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 115 if (Targets.size() == 0) 116 throw std::string("ERROR: No 'Target' subclasses defined!"); 117 if (Targets.size() != 1) 118 throw std::string("ERROR: Multiple subclasses of Target defined!"); 119 TargetRec = Targets[0]; 120 } 121 122 123 const std::string &CodeGenTarget::getName() const { 124 return TargetRec->getName(); 125 } 126 127 std::string CodeGenTarget::getInstNamespace() const { 128 for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { 129 // Make sure not to pick up "TargetOpcode" by accidentally getting 130 // the namespace off the PHI instruction or something. 131 if ((*i)->Namespace != "TargetOpcode") 132 return (*i)->Namespace; 133 } 134 135 return ""; 136 } 137 138 Record *CodeGenTarget::getInstructionSet() const { 139 return TargetRec->getValueAsDef("InstructionSet"); 140 } 141 142 143 /// getAsmParser - Return the AssemblyParser definition for this target. 144 /// 145 Record *CodeGenTarget::getAsmParser() const { 146 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 147 if (AsmParserNum >= LI.size()) 148 throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!"; 149 return LI[AsmParserNum]; 150 } 151 152 /// getAsmWriter - Return the AssemblyWriter definition for this target. 153 /// 154 Record *CodeGenTarget::getAsmWriter() const { 155 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 156 if (AsmWriterNum >= LI.size()) 157 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; 158 return LI[AsmWriterNum]; 159 } 160 161 CodeGenRegBank &CodeGenTarget::getRegBank() const { 162 if (!RegBank) 163 RegBank = new CodeGenRegBank(Records); 164 return *RegBank; 165 } 166 167 void CodeGenTarget::ReadRegAltNameIndices() const { 168 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 169 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 170 } 171 172 /// getRegisterByName - If there is a register with the specific AsmName, 173 /// return it. 174 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 175 const std::vector<CodeGenRegister*> &Regs = getRegBank().getRegisters(); 176 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 177 if (Regs[i]->TheDef->getValueAsString("AsmName") == Name) 178 return Regs[i]; 179 180 return 0; 181 } 182 183 std::vector<MVT::SimpleValueType> CodeGenTarget:: 184 getRegisterVTs(Record *R) const { 185 const CodeGenRegister *Reg = getRegBank().getReg(R); 186 std::vector<MVT::SimpleValueType> Result; 187 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 188 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 189 const CodeGenRegisterClass &RC = *RCs[i]; 190 if (RC.contains(Reg)) { 191 const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes(); 192 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 193 } 194 } 195 196 // Remove duplicates. 197 array_pod_sort(Result.begin(), Result.end()); 198 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 199 return Result; 200 } 201 202 203 void CodeGenTarget::ReadLegalValueTypes() const { 204 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 205 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 206 for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri) 207 LegalValueTypes.push_back(RCs[i]->VTs[ri]); 208 209 // Remove duplicates. 210 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 211 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 212 LegalValueTypes.end()), 213 LegalValueTypes.end()); 214 } 215 216 217 void CodeGenTarget::ReadInstructions() const { 218 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 219 if (Insts.size() <= 2) 220 throw std::string("No 'Instruction' subclasses defined!"); 221 222 // Parse the instructions defined in the .td file. 223 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 224 Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]); 225 } 226 227 static const CodeGenInstruction * 228 GetInstByName(const char *Name, 229 const DenseMap<const Record*, CodeGenInstruction*> &Insts, 230 RecordKeeper &Records) { 231 const Record *Rec = Records.getDef(Name); 232 233 DenseMap<const Record*, CodeGenInstruction*>::const_iterator 234 I = Insts.find(Rec); 235 if (Rec == 0 || I == Insts.end()) 236 throw std::string("Could not find '") + Name + "' instruction!"; 237 return I->second; 238 } 239 240 namespace { 241 /// SortInstByName - Sorting predicate to sort instructions by name. 242 /// 243 struct SortInstByName { 244 bool operator()(const CodeGenInstruction *Rec1, 245 const CodeGenInstruction *Rec2) const { 246 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 247 } 248 }; 249 } 250 251 /// getInstructionsByEnumValue - Return all of the instructions defined by the 252 /// target, ordered by their enum value. 253 void CodeGenTarget::ComputeInstrsByEnum() const { 254 // The ordering here must match the ordering in TargetOpcodes.h. 255 const char *const FixedInstrs[] = { 256 "PHI", 257 "INLINEASM", 258 "PROLOG_LABEL", 259 "EH_LABEL", 260 "GC_LABEL", 261 "KILL", 262 "EXTRACT_SUBREG", 263 "INSERT_SUBREG", 264 "IMPLICIT_DEF", 265 "SUBREG_TO_REG", 266 "COPY_TO_REGCLASS", 267 "DBG_VALUE", 268 "REG_SEQUENCE", 269 "COPY", 270 "BUNDLE", 271 0 272 }; 273 const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions(); 274 for (const char *const *p = FixedInstrs; *p; ++p) { 275 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 276 assert(Instr && "Missing target independent instruction"); 277 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 278 InstrsByEnum.push_back(Instr); 279 } 280 unsigned EndOfPredefines = InstrsByEnum.size(); 281 282 for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator 283 I = Insts.begin(), E = Insts.end(); I != E; ++I) { 284 const CodeGenInstruction *CGI = I->second; 285 if (CGI->Namespace != "TargetOpcode") 286 InstrsByEnum.push_back(CGI); 287 } 288 289 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 290 291 // All of the instructions are now in random order based on the map iteration. 292 // Sort them by name. 293 std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(), 294 SortInstByName()); 295 } 296 297 298 /// isLittleEndianEncoding - Return whether this target encodes its instruction 299 /// in little-endian format, i.e. bits laid out in the order [0..n] 300 /// 301 bool CodeGenTarget::isLittleEndianEncoding() const { 302 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 303 } 304 305 //===----------------------------------------------------------------------===// 306 // ComplexPattern implementation 307 // 308 ComplexPattern::ComplexPattern(Record *R) { 309 Ty = ::getValueType(R->getValueAsDef("Ty")); 310 NumOperands = R->getValueAsInt("NumOperands"); 311 SelectFunc = R->getValueAsString("SelectFunc"); 312 RootNodes = R->getValueAsListOfDefs("RootNodes"); 313 314 // Parse the properties. 315 Properties = 0; 316 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 317 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 318 if (PropList[i]->getName() == "SDNPHasChain") { 319 Properties |= 1 << SDNPHasChain; 320 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 321 Properties |= 1 << SDNPOptInGlue; 322 } else if (PropList[i]->getName() == "SDNPMayStore") { 323 Properties |= 1 << SDNPMayStore; 324 } else if (PropList[i]->getName() == "SDNPMayLoad") { 325 Properties |= 1 << SDNPMayLoad; 326 } else if (PropList[i]->getName() == "SDNPSideEffect") { 327 Properties |= 1 << SDNPSideEffect; 328 } else if (PropList[i]->getName() == "SDNPMemOperand") { 329 Properties |= 1 << SDNPMemOperand; 330 } else if (PropList[i]->getName() == "SDNPVariadic") { 331 Properties |= 1 << SDNPVariadic; 332 } else if (PropList[i]->getName() == "SDNPWantRoot") { 333 Properties |= 1 << SDNPWantRoot; 334 } else if (PropList[i]->getName() == "SDNPWantParent") { 335 Properties |= 1 << SDNPWantParent; 336 } else { 337 errs() << "Unsupported SD Node property '" << PropList[i]->getName() 338 << "' on ComplexPattern '" << R->getName() << "'!\n"; 339 exit(1); 340 } 341 } 342 343 //===----------------------------------------------------------------------===// 344 // CodeGenIntrinsic Implementation 345 //===----------------------------------------------------------------------===// 346 347 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 348 bool TargetOnly) { 349 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 350 351 std::vector<CodeGenIntrinsic> Result; 352 353 for (unsigned i = 0, e = I.size(); i != e; ++i) { 354 bool isTarget = I[i]->getValueAsBit("isTarget"); 355 if (isTarget == TargetOnly) 356 Result.push_back(CodeGenIntrinsic(I[i])); 357 } 358 return Result; 359 } 360 361 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 362 TheDef = R; 363 std::string DefName = R->getName(); 364 ModRef = ReadWriteMem; 365 isOverloaded = false; 366 isCommutative = false; 367 canThrow = false; 368 369 if (DefName.size() <= 4 || 370 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 371 throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; 372 373 EnumName = std::string(DefName.begin()+4, DefName.end()); 374 375 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 376 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 377 378 TargetPrefix = R->getValueAsString("TargetPrefix"); 379 Name = R->getValueAsString("LLVMName"); 380 381 if (Name == "") { 382 // If an explicit name isn't specified, derive one from the DefName. 383 Name = "llvm."; 384 385 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 386 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 387 } else { 388 // Verify it starts with "llvm.". 389 if (Name.size() <= 5 || 390 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 391 throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; 392 } 393 394 // If TargetPrefix is specified, make sure that Name starts with 395 // "llvm.<targetprefix>.". 396 if (!TargetPrefix.empty()) { 397 if (Name.size() < 6+TargetPrefix.size() || 398 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 399 != (TargetPrefix + ".")) 400 throw "Intrinsic '" + DefName + "' does not start with 'llvm." + 401 TargetPrefix + ".'!"; 402 } 403 404 // Parse the list of return types. 405 std::vector<MVT::SimpleValueType> OverloadedVTs; 406 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 407 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 408 Record *TyEl = TypeList->getElementAsRecord(i); 409 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 410 MVT::SimpleValueType VT; 411 if (TyEl->isSubClassOf("LLVMMatchType")) { 412 unsigned MatchTy = TyEl->getValueAsInt("Number"); 413 assert(MatchTy < OverloadedVTs.size() && 414 "Invalid matching number!"); 415 VT = OverloadedVTs[MatchTy]; 416 // It only makes sense to use the extended and truncated vector element 417 // variants with iAny types; otherwise, if the intrinsic is not 418 // overloaded, all the types can be specified directly. 419 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 420 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 421 VT == MVT::iAny || VT == MVT::vAny) && 422 "Expected iAny or vAny type"); 423 } else { 424 VT = getValueType(TyEl->getValueAsDef("VT")); 425 } 426 if (EVT(VT).isOverloaded()) { 427 OverloadedVTs.push_back(VT); 428 isOverloaded = true; 429 } 430 431 // Reject invalid types. 432 if (VT == MVT::isVoid) 433 throw "Intrinsic '" + DefName + " has void in result type list!"; 434 435 IS.RetVTs.push_back(VT); 436 IS.RetTypeDefs.push_back(TyEl); 437 } 438 439 // Parse the list of parameter types. 440 TypeList = R->getValueAsListInit("ParamTypes"); 441 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 442 Record *TyEl = TypeList->getElementAsRecord(i); 443 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 444 MVT::SimpleValueType VT; 445 if (TyEl->isSubClassOf("LLVMMatchType")) { 446 unsigned MatchTy = TyEl->getValueAsInt("Number"); 447 assert(MatchTy < OverloadedVTs.size() && 448 "Invalid matching number!"); 449 VT = OverloadedVTs[MatchTy]; 450 // It only makes sense to use the extended and truncated vector element 451 // variants with iAny types; otherwise, if the intrinsic is not 452 // overloaded, all the types can be specified directly. 453 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 454 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 455 VT == MVT::iAny || VT == MVT::vAny) && 456 "Expected iAny or vAny type"); 457 } else 458 VT = getValueType(TyEl->getValueAsDef("VT")); 459 460 if (EVT(VT).isOverloaded()) { 461 OverloadedVTs.push_back(VT); 462 isOverloaded = true; 463 } 464 465 // Reject invalid types. 466 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 467 throw "Intrinsic '" + DefName + " has void in result type list!"; 468 469 IS.ParamVTs.push_back(VT); 470 IS.ParamTypeDefs.push_back(TyEl); 471 } 472 473 // Parse the intrinsic properties. 474 ListInit *PropList = R->getValueAsListInit("Properties"); 475 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 476 Record *Property = PropList->getElementAsRecord(i); 477 assert(Property->isSubClassOf("IntrinsicProperty") && 478 "Expected a property!"); 479 480 if (Property->getName() == "IntrNoMem") 481 ModRef = NoMem; 482 else if (Property->getName() == "IntrReadArgMem") 483 ModRef = ReadArgMem; 484 else if (Property->getName() == "IntrReadMem") 485 ModRef = ReadMem; 486 else if (Property->getName() == "IntrReadWriteArgMem") 487 ModRef = ReadWriteArgMem; 488 else if (Property->getName() == "Commutative") 489 isCommutative = true; 490 else if (Property->getName() == "Throws") 491 canThrow = true; 492 else if (Property->isSubClassOf("NoCapture")) { 493 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 494 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 495 } else 496 assert(0 && "Unknown property!"); 497 } 498 499 // Sort the argument attributes for later benefit. 500 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 501 } 502