1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper ---------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wrap target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes throw exceptions on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "Record.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/Support/CommandLine.h" 22 #include "llvm/Support/Streams.h" 23 #include <set> 24 #include <algorithm> 25 using namespace llvm; 26 27 static cl::opt<unsigned> 28 AsmWriterNum("asmwriternum", cl::init(0), 29 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 30 31 /// getValueType - Return the MCV::ValueType that the specified TableGen record 32 /// corresponds to. 33 MVT::ValueType llvm::getValueType(Record *Rec, const CodeGenTarget *CGT) { 34 return (MVT::ValueType)Rec->getValueAsInt("Value"); 35 } 36 37 std::string llvm::getName(MVT::ValueType T) { 38 switch (T) { 39 case MVT::Other: return "UNKNOWN"; 40 case MVT::i1: return "MVT::i1"; 41 case MVT::i8: return "MVT::i8"; 42 case MVT::i16: return "MVT::i16"; 43 case MVT::i32: return "MVT::i32"; 44 case MVT::i64: return "MVT::i64"; 45 case MVT::i128: return "MVT::i128"; 46 case MVT::iAny: return "MVT::iAny"; 47 case MVT::f32: return "MVT::f32"; 48 case MVT::f64: return "MVT::f64"; 49 case MVT::f80: return "MVT::f80"; 50 case MVT::f128: return "MVT::f128"; 51 case MVT::Flag: return "MVT::Flag"; 52 case MVT::isVoid:return "MVT::void"; 53 case MVT::v8i8: return "MVT::v8i8"; 54 case MVT::v4i16: return "MVT::v4i16"; 55 case MVT::v2i32: return "MVT::v2i32"; 56 case MVT::v1i64: return "MVT::v1i64"; 57 case MVT::v16i8: return "MVT::v16i8"; 58 case MVT::v8i16: return "MVT::v8i16"; 59 case MVT::v4i32: return "MVT::v4i32"; 60 case MVT::v2i64: return "MVT::v2i64"; 61 case MVT::v2f32: return "MVT::v2f32"; 62 case MVT::v4f32: return "MVT::v4f32"; 63 case MVT::v2f64: return "MVT::v2f64"; 64 case MVT::iPTR: return "TLI.getPointerTy()"; 65 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 66 } 67 } 68 69 std::string llvm::getEnumName(MVT::ValueType T) { 70 switch (T) { 71 case MVT::Other: return "MVT::Other"; 72 case MVT::i1: return "MVT::i1"; 73 case MVT::i8: return "MVT::i8"; 74 case MVT::i16: return "MVT::i16"; 75 case MVT::i32: return "MVT::i32"; 76 case MVT::i64: return "MVT::i64"; 77 case MVT::i128: return "MVT::i128"; 78 case MVT::iAny: return "MVT::iAny"; 79 case MVT::f32: return "MVT::f32"; 80 case MVT::f64: return "MVT::f64"; 81 case MVT::f80: return "MVT::f80"; 82 case MVT::f128: return "MVT::f128"; 83 case MVT::Flag: return "MVT::Flag"; 84 case MVT::isVoid:return "MVT::isVoid"; 85 case MVT::v8i8: return "MVT::v8i8"; 86 case MVT::v4i16: return "MVT::v4i16"; 87 case MVT::v2i32: return "MVT::v2i32"; 88 case MVT::v1i64: return "MVT::v1i64"; 89 case MVT::v16i8: return "MVT::v16i8"; 90 case MVT::v8i16: return "MVT::v8i16"; 91 case MVT::v4i32: return "MVT::v4i32"; 92 case MVT::v2i64: return "MVT::v2i64"; 93 case MVT::v2f32: return "MVT::v2f32"; 94 case MVT::v4f32: return "MVT::v4f32"; 95 case MVT::v2f64: return "MVT::v2f64"; 96 case MVT::iPTR: return "TLI.getPointerTy()"; 97 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 98 } 99 } 100 101 102 /// getTarget - Return the current instance of the Target class. 103 /// 104 CodeGenTarget::CodeGenTarget() { 105 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 106 if (Targets.size() == 0) 107 throw std::string("ERROR: No 'Target' subclasses defined!"); 108 if (Targets.size() != 1) 109 throw std::string("ERROR: Multiple subclasses of Target defined!"); 110 TargetRec = Targets[0]; 111 } 112 113 114 const std::string &CodeGenTarget::getName() const { 115 return TargetRec->getName(); 116 } 117 118 Record *CodeGenTarget::getInstructionSet() const { 119 return TargetRec->getValueAsDef("InstructionSet"); 120 } 121 122 /// getAsmWriter - Return the AssemblyWriter definition for this target. 123 /// 124 Record *CodeGenTarget::getAsmWriter() const { 125 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 126 if (AsmWriterNum >= LI.size()) 127 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; 128 return LI[AsmWriterNum]; 129 } 130 131 void CodeGenTarget::ReadRegisters() const { 132 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 133 if (Regs.empty()) 134 throw std::string("No 'Register' subclasses defined!"); 135 136 Registers.reserve(Regs.size()); 137 Registers.assign(Regs.begin(), Regs.end()); 138 } 139 140 CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) { 141 DeclaredSpillSize = R->getValueAsInt("SpillSize"); 142 DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment"); 143 } 144 145 const std::string &CodeGenRegister::getName() const { 146 return TheDef->getName(); 147 } 148 149 void CodeGenTarget::ReadRegisterClasses() const { 150 std::vector<Record*> RegClasses = 151 Records.getAllDerivedDefinitions("RegisterClass"); 152 if (RegClasses.empty()) 153 throw std::string("No 'RegisterClass' subclasses defined!"); 154 155 RegisterClasses.reserve(RegClasses.size()); 156 RegisterClasses.assign(RegClasses.begin(), RegClasses.end()); 157 } 158 159 std::vector<unsigned char> CodeGenTarget::getRegisterVTs(Record *R) const { 160 std::vector<unsigned char> Result; 161 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 162 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 163 const CodeGenRegisterClass &RC = RegisterClasses[i]; 164 for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) { 165 if (R == RC.Elements[ei]) { 166 const std::vector<MVT::ValueType> &InVTs = RC.getValueTypes(); 167 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 168 Result.push_back(InVTs[i]); 169 } 170 } 171 } 172 return Result; 173 } 174 175 176 CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) { 177 // Rename anonymous register classes. 178 if (R->getName().size() > 9 && R->getName()[9] == '.') { 179 static unsigned AnonCounter = 0; 180 R->setName("AnonRegClass_"+utostr(AnonCounter++)); 181 } 182 183 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 184 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 185 Record *Type = TypeList[i]; 186 if (!Type->isSubClassOf("ValueType")) 187 throw "RegTypes list member '" + Type->getName() + 188 "' does not derive from the ValueType class!"; 189 VTs.push_back(getValueType(Type)); 190 } 191 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 192 193 std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList"); 194 for (unsigned i = 0, e = RegList.size(); i != e; ++i) { 195 Record *Reg = RegList[i]; 196 if (!Reg->isSubClassOf("Register")) 197 throw "Register Class member '" + Reg->getName() + 198 "' does not derive from the Register class!"; 199 Elements.push_back(Reg); 200 } 201 202 std::vector<Record*> SubRegClassList = 203 R->getValueAsListOfDefs("SubRegClassList"); 204 for (unsigned i = 0, e = SubRegClassList.size(); i != e; ++i) { 205 Record *SubRegClass = SubRegClassList[i]; 206 if (!SubRegClass->isSubClassOf("RegisterClass")) 207 throw "Register Class member '" + SubRegClass->getName() + 208 "' does not derive from the RegisterClass class!"; 209 SubRegClasses.push_back(SubRegClass); 210 } 211 212 // Allow targets to override the size in bits of the RegisterClass. 213 unsigned Size = R->getValueAsInt("Size"); 214 215 Namespace = R->getValueAsString("Namespace"); 216 SpillSize = Size ? Size : MVT::getSizeInBits(VTs[0]); 217 SpillAlignment = R->getValueAsInt("Alignment"); 218 MethodBodies = R->getValueAsCode("MethodBodies"); 219 MethodProtos = R->getValueAsCode("MethodProtos"); 220 } 221 222 const std::string &CodeGenRegisterClass::getName() const { 223 return TheDef->getName(); 224 } 225 226 void CodeGenTarget::ReadLegalValueTypes() const { 227 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 228 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 229 for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri) 230 LegalValueTypes.push_back(RCs[i].VTs[ri]); 231 232 // Remove duplicates. 233 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 234 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 235 LegalValueTypes.end()), 236 LegalValueTypes.end()); 237 } 238 239 240 void CodeGenTarget::ReadInstructions() const { 241 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 242 if (Insts.size() <= 2) 243 throw std::string("No 'Instruction' subclasses defined!"); 244 245 // Parse the instructions defined in the .td file. 246 std::string InstFormatName = 247 getAsmWriter()->getValueAsString("InstFormatName"); 248 249 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 250 std::string AsmStr = Insts[i]->getValueAsString(InstFormatName); 251 Instructions.insert(std::make_pair(Insts[i]->getName(), 252 CodeGenInstruction(Insts[i], AsmStr))); 253 } 254 } 255 256 /// getInstructionsByEnumValue - Return all of the instructions defined by the 257 /// target, ordered by their enum value. 258 void CodeGenTarget:: 259 getInstructionsByEnumValue(std::vector<const CodeGenInstruction*> 260 &NumberedInstructions) { 261 std::map<std::string, CodeGenInstruction>::const_iterator I; 262 I = getInstructions().find("PHI"); 263 if (I == Instructions.end()) throw "Could not find 'PHI' instruction!"; 264 const CodeGenInstruction *PHI = &I->second; 265 266 I = getInstructions().find("INLINEASM"); 267 if (I == Instructions.end()) throw "Could not find 'INLINEASM' instruction!"; 268 const CodeGenInstruction *INLINEASM = &I->second; 269 270 I = getInstructions().find("LABEL"); 271 if (I == Instructions.end()) throw "Could not find 'LABEL' instruction!"; 272 const CodeGenInstruction *LABEL = &I->second; 273 274 // Print out the rest of the instructions now. 275 NumberedInstructions.push_back(PHI); 276 NumberedInstructions.push_back(INLINEASM); 277 NumberedInstructions.push_back(LABEL); 278 for (inst_iterator II = inst_begin(), E = inst_end(); II != E; ++II) 279 if (&II->second != PHI && 280 &II->second != INLINEASM && 281 &II->second != LABEL) 282 NumberedInstructions.push_back(&II->second); 283 } 284 285 286 /// isLittleEndianEncoding - Return whether this target encodes its instruction 287 /// in little-endian format, i.e. bits laid out in the order [0..n] 288 /// 289 bool CodeGenTarget::isLittleEndianEncoding() const { 290 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 291 } 292 293 294 295 static void ParseConstraint(const std::string &CStr, CodeGenInstruction *I) { 296 // FIXME: Only supports TIED_TO for now. 297 std::string::size_type pos = CStr.find_first_of('='); 298 assert(pos != std::string::npos && "Unrecognized constraint"); 299 std::string Name = CStr.substr(0, pos); 300 301 // TIED_TO: $src1 = $dst 302 std::string::size_type wpos = Name.find_first_of(" \t"); 303 if (wpos == std::string::npos) 304 throw "Illegal format for tied-to constraint: '" + CStr + "'"; 305 std::string DestOpName = Name.substr(0, wpos); 306 std::pair<unsigned,unsigned> DestOp = I->ParseOperandName(DestOpName, false); 307 308 Name = CStr.substr(pos+1); 309 wpos = Name.find_first_not_of(" \t"); 310 if (wpos == std::string::npos) 311 throw "Illegal format for tied-to constraint: '" + CStr + "'"; 312 313 std::pair<unsigned,unsigned> SrcOp = 314 I->ParseOperandName(Name.substr(wpos), false); 315 if (SrcOp > DestOp) 316 throw "Illegal tied-to operand constraint '" + CStr + "'"; 317 318 319 unsigned FlatOpNo = I->getFlattenedOperandNumber(SrcOp); 320 // Build the string for the operand. 321 std::string OpConstraint = 322 "((" + utostr(FlatOpNo) + " << 16) | (1 << TOI::TIED_TO))"; 323 324 325 if (!I->OperandList[DestOp.first].Constraints[DestOp.second].empty()) 326 throw "Operand '" + DestOpName + "' cannot have multiple constraints!"; 327 I->OperandList[DestOp.first].Constraints[DestOp.second] = OpConstraint; 328 } 329 330 static void ParseConstraints(const std::string &CStr, CodeGenInstruction *I) { 331 // Make sure the constraints list for each operand is large enough to hold 332 // constraint info, even if none is present. 333 for (unsigned i = 0, e = I->OperandList.size(); i != e; ++i) 334 I->OperandList[i].Constraints.resize(I->OperandList[i].MINumOperands); 335 336 if (CStr.empty()) return; 337 338 const std::string delims(","); 339 std::string::size_type bidx, eidx; 340 341 bidx = CStr.find_first_not_of(delims); 342 while (bidx != std::string::npos) { 343 eidx = CStr.find_first_of(delims, bidx); 344 if (eidx == std::string::npos) 345 eidx = CStr.length(); 346 347 ParseConstraint(CStr.substr(bidx, eidx), I); 348 bidx = CStr.find_first_not_of(delims, eidx); 349 } 350 } 351 352 CodeGenInstruction::CodeGenInstruction(Record *R, const std::string &AsmStr) 353 : TheDef(R), AsmString(AsmStr) { 354 Name = R->getValueAsString("Name"); 355 Namespace = R->getValueAsString("Namespace"); 356 357 isReturn = R->getValueAsBit("isReturn"); 358 isBranch = R->getValueAsBit("isBranch"); 359 isBarrier = R->getValueAsBit("isBarrier"); 360 isCall = R->getValueAsBit("isCall"); 361 isLoad = R->getValueAsBit("isLoad"); 362 isStore = R->getValueAsBit("isStore"); 363 bool isTwoAddress = R->getValueAsBit("isTwoAddress"); 364 isPredicable = R->getValueAsBit("isPredicable"); 365 isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress"); 366 isCommutable = R->getValueAsBit("isCommutable"); 367 isTerminator = R->getValueAsBit("isTerminator"); 368 hasDelaySlot = R->getValueAsBit("hasDelaySlot"); 369 usesCustomDAGSchedInserter = R->getValueAsBit("usesCustomDAGSchedInserter"); 370 hasCtrlDep = R->getValueAsBit("hasCtrlDep"); 371 noResults = R->getValueAsBit("noResults"); 372 clobbersPred = R->getValueAsBit("clobbersPred"); 373 isNotDuplicable = R->getValueAsBit("isNotDuplicable"); 374 hasVariableNumberOfOperands = false; 375 376 DagInit *DI; 377 try { 378 DI = R->getValueAsDag("OperandList"); 379 } catch (...) { 380 // Error getting operand list, just ignore it (sparcv9). 381 AsmString.clear(); 382 OperandList.clear(); 383 return; 384 } 385 386 unsigned MIOperandNo = 0; 387 std::set<std::string> OperandNames; 388 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 389 DefInit *Arg = dynamic_cast<DefInit*>(DI->getArg(i)); 390 if (!Arg) 391 throw "Illegal operand for the '" + R->getName() + "' instruction!"; 392 393 Record *Rec = Arg->getDef(); 394 std::string PrintMethod = "printOperand"; 395 unsigned NumOps = 1; 396 DagInit *MIOpInfo = 0; 397 if (Rec->isSubClassOf("Operand")) { 398 PrintMethod = Rec->getValueAsString("PrintMethod"); 399 MIOpInfo = Rec->getValueAsDag("MIOperandInfo"); 400 401 // Verify that MIOpInfo has an 'ops' root value. 402 if (!dynamic_cast<DefInit*>(MIOpInfo->getOperator()) || 403 dynamic_cast<DefInit*>(MIOpInfo->getOperator()) 404 ->getDef()->getName() != "ops") 405 throw "Bad value for MIOperandInfo in operand '" + Rec->getName() + 406 "'\n"; 407 408 // If we have MIOpInfo, then we have #operands equal to number of entries 409 // in MIOperandInfo. 410 if (unsigned NumArgs = MIOpInfo->getNumArgs()) 411 NumOps = NumArgs; 412 413 isPredicable |= Rec->isSubClassOf("PredicateOperand"); 414 } else if (Rec->getName() == "variable_ops") { 415 hasVariableNumberOfOperands = true; 416 continue; 417 } else if (!Rec->isSubClassOf("RegisterClass") && 418 Rec->getName() != "ptr_rc") 419 throw "Unknown operand class '" + Rec->getName() + 420 "' in instruction '" + R->getName() + "' instruction!"; 421 422 // Check that the operand has a name and that it's unique. 423 if (DI->getArgName(i).empty()) 424 throw "In instruction '" + R->getName() + "', operand #" + utostr(i) + 425 " has no name!"; 426 if (!OperandNames.insert(DI->getArgName(i)).second) 427 throw "In instruction '" + R->getName() + "', operand #" + utostr(i) + 428 " has the same name as a previous operand!"; 429 430 OperandList.push_back(OperandInfo(Rec, DI->getArgName(i), PrintMethod, 431 MIOperandNo, NumOps, MIOpInfo)); 432 MIOperandNo += NumOps; 433 } 434 435 // Parse Constraints. 436 ParseConstraints(R->getValueAsString("Constraints"), this); 437 438 // For backward compatibility: isTwoAddress means operand 1 is tied to 439 // operand 0. 440 if (isTwoAddress) { 441 if (!OperandList[1].Constraints[0].empty()) 442 throw R->getName() + ": cannot use isTwoAddress property: instruction " 443 "already has constraint set!"; 444 OperandList[1].Constraints[0] = "((0 << 16) | (1 << TOI::TIED_TO))"; 445 } 446 447 // Any operands with unset constraints get 0 as their constraint. 448 for (unsigned op = 0, e = OperandList.size(); op != e; ++op) 449 for (unsigned j = 0, e = OperandList[op].MINumOperands; j != e; ++j) 450 if (OperandList[op].Constraints[j].empty()) 451 OperandList[op].Constraints[j] = "0"; 452 453 // Parse the DisableEncoding field. 454 std::string DisableEncoding = R->getValueAsString("DisableEncoding"); 455 while (1) { 456 std::string OpName = getToken(DisableEncoding, " ,\t"); 457 if (OpName.empty()) break; 458 459 // Figure out which operand this is. 460 std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false); 461 462 // Mark the operand as not-to-be encoded. 463 if (Op.second >= OperandList[Op.first].DoNotEncode.size()) 464 OperandList[Op.first].DoNotEncode.resize(Op.second+1); 465 OperandList[Op.first].DoNotEncode[Op.second] = true; 466 } 467 } 468 469 470 471 /// getOperandNamed - Return the index of the operand with the specified 472 /// non-empty name. If the instruction does not have an operand with the 473 /// specified name, throw an exception. 474 /// 475 unsigned CodeGenInstruction::getOperandNamed(const std::string &Name) const { 476 assert(!Name.empty() && "Cannot search for operand with no name!"); 477 for (unsigned i = 0, e = OperandList.size(); i != e; ++i) 478 if (OperandList[i].Name == Name) return i; 479 throw "Instruction '" + TheDef->getName() + 480 "' does not have an operand named '$" + Name + "'!"; 481 } 482 483 std::pair<unsigned,unsigned> 484 CodeGenInstruction::ParseOperandName(const std::string &Op, 485 bool AllowWholeOp) { 486 if (Op.empty() || Op[0] != '$') 487 throw TheDef->getName() + ": Illegal operand name: '" + Op + "'"; 488 489 std::string OpName = Op.substr(1); 490 std::string SubOpName; 491 492 // Check to see if this is $foo.bar. 493 std::string::size_type DotIdx = OpName.find_first_of("."); 494 if (DotIdx != std::string::npos) { 495 SubOpName = OpName.substr(DotIdx+1); 496 if (SubOpName.empty()) 497 throw TheDef->getName() + ": illegal empty suboperand name in '" +Op +"'"; 498 OpName = OpName.substr(0, DotIdx); 499 } 500 501 unsigned OpIdx = getOperandNamed(OpName); 502 503 if (SubOpName.empty()) { // If no suboperand name was specified: 504 // If one was needed, throw. 505 if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp && 506 SubOpName.empty()) 507 throw TheDef->getName() + ": Illegal to refer to" 508 " whole operand part of complex operand '" + Op + "'"; 509 510 // Otherwise, return the operand. 511 return std::make_pair(OpIdx, 0U); 512 } 513 514 // Find the suboperand number involved. 515 DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo; 516 if (MIOpInfo == 0) 517 throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'"; 518 519 // Find the operand with the right name. 520 for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i) 521 if (MIOpInfo->getArgName(i) == SubOpName) 522 return std::make_pair(OpIdx, i); 523 524 // Otherwise, didn't find it! 525 throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'"; 526 } 527 528 529 530 531 //===----------------------------------------------------------------------===// 532 // ComplexPattern implementation 533 // 534 ComplexPattern::ComplexPattern(Record *R) { 535 Ty = ::getValueType(R->getValueAsDef("Ty")); 536 NumOperands = R->getValueAsInt("NumOperands"); 537 SelectFunc = R->getValueAsString("SelectFunc"); 538 RootNodes = R->getValueAsListOfDefs("RootNodes"); 539 540 // Parse the properties. 541 Properties = 0; 542 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 543 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 544 if (PropList[i]->getName() == "SDNPHasChain") { 545 Properties |= 1 << SDNPHasChain; 546 } else if (PropList[i]->getName() == "SDNPOptInFlag") { 547 Properties |= 1 << SDNPOptInFlag; 548 } else { 549 cerr << "Unsupported SD Node property '" << PropList[i]->getName() 550 << "' on ComplexPattern '" << R->getName() << "'!\n"; 551 exit(1); 552 } 553 } 554 555 //===----------------------------------------------------------------------===// 556 // CodeGenIntrinsic Implementation 557 //===----------------------------------------------------------------------===// 558 559 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC) { 560 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 561 562 std::vector<CodeGenIntrinsic> Result; 563 564 // If we are in the context of a target .td file, get the target info so that 565 // we can decode the current intptr_t. 566 CodeGenTarget *CGT = 0; 567 if (Records.getClass("Target") && 568 Records.getAllDerivedDefinitions("Target").size() == 1) 569 CGT = new CodeGenTarget(); 570 571 for (unsigned i = 0, e = I.size(); i != e; ++i) 572 Result.push_back(CodeGenIntrinsic(I[i], CGT)); 573 delete CGT; 574 return Result; 575 } 576 577 CodeGenIntrinsic::CodeGenIntrinsic(Record *R, CodeGenTarget *CGT) { 578 TheDef = R; 579 std::string DefName = R->getName(); 580 ModRef = WriteMem; 581 isOverloaded = false; 582 583 if (DefName.size() <= 4 || 584 std::string(DefName.begin(), DefName.begin()+4) != "int_") 585 throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; 586 EnumName = std::string(DefName.begin()+4, DefName.end()); 587 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 588 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 589 TargetPrefix = R->getValueAsString("TargetPrefix"); 590 Name = R->getValueAsString("LLVMName"); 591 if (Name == "") { 592 // If an explicit name isn't specified, derive one from the DefName. 593 Name = "llvm."; 594 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 595 if (EnumName[i] == '_') 596 Name += '.'; 597 else 598 Name += EnumName[i]; 599 } else { 600 // Verify it starts with "llvm.". 601 if (Name.size() <= 5 || 602 std::string(Name.begin(), Name.begin()+5) != "llvm.") 603 throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; 604 } 605 606 // If TargetPrefix is specified, make sure that Name starts with 607 // "llvm.<targetprefix>.". 608 if (!TargetPrefix.empty()) { 609 if (Name.size() < 6+TargetPrefix.size() || 610 std::string(Name.begin()+5, Name.begin()+6+TargetPrefix.size()) 611 != (TargetPrefix+".")) 612 throw "Intrinsic '" + DefName + "' does not start with 'llvm." + 613 TargetPrefix + ".'!"; 614 } 615 616 // Parse the list of argument types. 617 ListInit *TypeList = R->getValueAsListInit("Types"); 618 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 619 Record *TyEl = TypeList->getElementAsRecord(i); 620 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 621 ArgTypes.push_back(TyEl->getValueAsString("TypeVal")); 622 MVT::ValueType VT = getValueType(TyEl->getValueAsDef("VT"), CGT); 623 isOverloaded |= VT == MVT::iAny; 624 ArgVTs.push_back(VT); 625 ArgTypeDefs.push_back(TyEl); 626 } 627 if (ArgTypes.size() == 0) 628 throw "Intrinsic '"+DefName+"' needs at least a type for the ret value!"; 629 630 631 // Parse the intrinsic properties. 632 ListInit *PropList = R->getValueAsListInit("Properties"); 633 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 634 Record *Property = PropList->getElementAsRecord(i); 635 assert(Property->isSubClassOf("IntrinsicProperty") && 636 "Expected a property!"); 637 638 if (Property->getName() == "IntrNoMem") 639 ModRef = NoMem; 640 else if (Property->getName() == "IntrReadArgMem") 641 ModRef = ReadArgMem; 642 else if (Property->getName() == "IntrReadMem") 643 ModRef = ReadMem; 644 else if (Property->getName() == "IntrWriteArgMem") 645 ModRef = WriteArgMem; 646 else if (Property->getName() == "IntrWriteMem") 647 ModRef = WriteMem; 648 else 649 assert(0 && "Unknown property!"); 650 } 651 } 652