1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper ---------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wrap target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes throw exceptions on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "Record.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/Support/CommandLine.h" 22 #include "llvm/Support/Streams.h" 23 #include <set> 24 #include <algorithm> 25 using namespace llvm; 26 27 static cl::opt<unsigned> 28 AsmWriterNum("asmwriternum", cl::init(0), 29 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 30 31 /// getValueType - Return the MCV::ValueType that the specified TableGen record 32 /// corresponds to. 33 MVT::ValueType llvm::getValueType(Record *Rec, const CodeGenTarget *CGT) { 34 return (MVT::ValueType)Rec->getValueAsInt("Value"); 35 } 36 37 std::string llvm::getName(MVT::ValueType T) { 38 switch (T) { 39 case MVT::Other: return "UNKNOWN"; 40 case MVT::i1: return "MVT::i1"; 41 case MVT::i8: return "MVT::i8"; 42 case MVT::i16: return "MVT::i16"; 43 case MVT::i32: return "MVT::i32"; 44 case MVT::i64: return "MVT::i64"; 45 case MVT::i128: return "MVT::i128"; 46 case MVT::f32: return "MVT::f32"; 47 case MVT::f64: return "MVT::f64"; 48 case MVT::f80: return "MVT::f80"; 49 case MVT::f128: return "MVT::f128"; 50 case MVT::Flag: return "MVT::Flag"; 51 case MVT::isVoid:return "MVT::void"; 52 case MVT::v8i8: return "MVT::v8i8"; 53 case MVT::v4i16: return "MVT::v4i16"; 54 case MVT::v2i32: return "MVT::v2i32"; 55 case MVT::v16i8: return "MVT::v16i8"; 56 case MVT::v8i16: return "MVT::v8i16"; 57 case MVT::v4i32: return "MVT::v4i32"; 58 case MVT::v2i64: return "MVT::v2i64"; 59 case MVT::v2f32: return "MVT::v2f32"; 60 case MVT::v4f32: return "MVT::v4f32"; 61 case MVT::v2f64: return "MVT::v2f64"; 62 case MVT::iPTR: return "TLI.getPointerTy()"; 63 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 64 } 65 } 66 67 std::string llvm::getEnumName(MVT::ValueType T) { 68 switch (T) { 69 case MVT::Other: return "MVT::Other"; 70 case MVT::i1: return "MVT::i1"; 71 case MVT::i8: return "MVT::i8"; 72 case MVT::i16: return "MVT::i16"; 73 case MVT::i32: return "MVT::i32"; 74 case MVT::i64: return "MVT::i64"; 75 case MVT::i128: return "MVT::i128"; 76 case MVT::f32: return "MVT::f32"; 77 case MVT::f64: return "MVT::f64"; 78 case MVT::f80: return "MVT::f80"; 79 case MVT::f128: return "MVT::f128"; 80 case MVT::Flag: return "MVT::Flag"; 81 case MVT::isVoid:return "MVT::isVoid"; 82 case MVT::v8i8: return "MVT::v8i8"; 83 case MVT::v4i16: return "MVT::v4i16"; 84 case MVT::v2i32: return "MVT::v2i32"; 85 case MVT::v16i8: return "MVT::v16i8"; 86 case MVT::v8i16: return "MVT::v8i16"; 87 case MVT::v4i32: return "MVT::v4i32"; 88 case MVT::v2i64: return "MVT::v2i64"; 89 case MVT::v2f32: return "MVT::v2f32"; 90 case MVT::v4f32: return "MVT::v4f32"; 91 case MVT::v2f64: return "MVT::v2f64"; 92 case MVT::iPTR: return "TLI.getPointerTy()"; 93 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 94 } 95 } 96 97 98 std::ostream &llvm::operator<<(std::ostream &OS, MVT::ValueType T) { 99 return OS << getName(T); 100 } 101 102 103 /// getTarget - Return the current instance of the Target class. 104 /// 105 CodeGenTarget::CodeGenTarget() { 106 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 107 if (Targets.size() == 0) 108 throw std::string("ERROR: No 'Target' subclasses defined!"); 109 if (Targets.size() != 1) 110 throw std::string("ERROR: Multiple subclasses of Target defined!"); 111 TargetRec = Targets[0]; 112 } 113 114 115 const std::string &CodeGenTarget::getName() const { 116 return TargetRec->getName(); 117 } 118 119 Record *CodeGenTarget::getInstructionSet() const { 120 return TargetRec->getValueAsDef("InstructionSet"); 121 } 122 123 /// getAsmWriter - Return the AssemblyWriter definition for this target. 124 /// 125 Record *CodeGenTarget::getAsmWriter() const { 126 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 127 if (AsmWriterNum >= LI.size()) 128 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; 129 return LI[AsmWriterNum]; 130 } 131 132 void CodeGenTarget::ReadRegisters() const { 133 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 134 if (Regs.empty()) 135 throw std::string("No 'Register' subclasses defined!"); 136 137 Registers.reserve(Regs.size()); 138 Registers.assign(Regs.begin(), Regs.end()); 139 } 140 141 CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) { 142 DeclaredSpillSize = R->getValueAsInt("SpillSize"); 143 DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment"); 144 } 145 146 const std::string &CodeGenRegister::getName() const { 147 return TheDef->getName(); 148 } 149 150 void CodeGenTarget::ReadRegisterClasses() const { 151 std::vector<Record*> RegClasses = 152 Records.getAllDerivedDefinitions("RegisterClass"); 153 if (RegClasses.empty()) 154 throw std::string("No 'RegisterClass' subclasses defined!"); 155 156 RegisterClasses.reserve(RegClasses.size()); 157 RegisterClasses.assign(RegClasses.begin(), RegClasses.end()); 158 } 159 160 std::vector<unsigned char> CodeGenTarget::getRegisterVTs(Record *R) const { 161 std::vector<unsigned char> Result; 162 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 163 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 164 const CodeGenRegisterClass &RC = RegisterClasses[i]; 165 for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) { 166 if (R == RC.Elements[ei]) { 167 const std::vector<MVT::ValueType> &InVTs = RC.getValueTypes(); 168 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 169 Result.push_back(InVTs[i]); 170 } 171 } 172 } 173 return Result; 174 } 175 176 177 CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) { 178 // Rename anonymous register classes. 179 if (R->getName().size() > 9 && R->getName()[9] == '.') { 180 static unsigned AnonCounter = 0; 181 R->setName("AnonRegClass_"+utostr(AnonCounter++)); 182 } 183 184 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 185 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 186 Record *Type = TypeList[i]; 187 if (!Type->isSubClassOf("ValueType")) 188 throw "RegTypes list member '" + Type->getName() + 189 "' does not derive from the ValueType class!"; 190 VTs.push_back(getValueType(Type)); 191 } 192 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 193 194 std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList"); 195 for (unsigned i = 0, e = RegList.size(); i != e; ++i) { 196 Record *Reg = RegList[i]; 197 if (!Reg->isSubClassOf("Register")) 198 throw "Register Class member '" + Reg->getName() + 199 "' does not derive from the Register class!"; 200 Elements.push_back(Reg); 201 } 202 203 // Allow targets to override the size in bits of the RegisterClass. 204 unsigned Size = R->getValueAsInt("Size"); 205 206 Namespace = R->getValueAsString("Namespace"); 207 SpillSize = Size ? Size : MVT::getSizeInBits(VTs[0]); 208 SpillAlignment = R->getValueAsInt("Alignment"); 209 MethodBodies = R->getValueAsCode("MethodBodies"); 210 MethodProtos = R->getValueAsCode("MethodProtos"); 211 } 212 213 const std::string &CodeGenRegisterClass::getName() const { 214 return TheDef->getName(); 215 } 216 217 void CodeGenTarget::ReadLegalValueTypes() const { 218 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 219 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 220 for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri) 221 LegalValueTypes.push_back(RCs[i].VTs[ri]); 222 223 // Remove duplicates. 224 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 225 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 226 LegalValueTypes.end()), 227 LegalValueTypes.end()); 228 } 229 230 231 void CodeGenTarget::ReadInstructions() const { 232 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 233 if (Insts.size() <= 2) 234 throw std::string("No 'Instruction' subclasses defined!"); 235 236 // Parse the instructions defined in the .td file. 237 std::string InstFormatName = 238 getAsmWriter()->getValueAsString("InstFormatName"); 239 240 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 241 std::string AsmStr = Insts[i]->getValueAsString(InstFormatName); 242 Instructions.insert(std::make_pair(Insts[i]->getName(), 243 CodeGenInstruction(Insts[i], AsmStr))); 244 } 245 } 246 247 /// getInstructionsByEnumValue - Return all of the instructions defined by the 248 /// target, ordered by their enum value. 249 void CodeGenTarget:: 250 getInstructionsByEnumValue(std::vector<const CodeGenInstruction*> 251 &NumberedInstructions) { 252 std::map<std::string, CodeGenInstruction>::const_iterator I; 253 I = getInstructions().find("PHI"); 254 if (I == Instructions.end()) throw "Could not find 'PHI' instruction!"; 255 const CodeGenInstruction *PHI = &I->second; 256 257 I = getInstructions().find("INLINEASM"); 258 if (I == Instructions.end()) throw "Could not find 'INLINEASM' instruction!"; 259 const CodeGenInstruction *INLINEASM = &I->second; 260 261 // Print out the rest of the instructions now. 262 NumberedInstructions.push_back(PHI); 263 NumberedInstructions.push_back(INLINEASM); 264 for (inst_iterator II = inst_begin(), E = inst_end(); II != E; ++II) 265 if (&II->second != PHI &&&II->second != INLINEASM) 266 NumberedInstructions.push_back(&II->second); 267 } 268 269 270 /// isLittleEndianEncoding - Return whether this target encodes its instruction 271 /// in little-endian format, i.e. bits laid out in the order [0..n] 272 /// 273 bool CodeGenTarget::isLittleEndianEncoding() const { 274 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 275 } 276 277 278 279 static void ParseConstraint(const std::string &CStr, CodeGenInstruction *I) { 280 // FIXME: Only supports TIED_TO for now. 281 std::string::size_type pos = CStr.find_first_of('='); 282 assert(pos != std::string::npos && "Unrecognized constraint"); 283 std::string Name = CStr.substr(0, pos); 284 285 // TIED_TO: $src1 = $dst 286 std::string::size_type wpos = Name.find_first_of(" \t"); 287 if (wpos == std::string::npos) 288 throw "Illegal format for tied-to constraint: '" + CStr + "'"; 289 std::string DestOpName = Name.substr(0, wpos); 290 std::pair<unsigned,unsigned> DestOp = I->ParseOperandName(DestOpName, false); 291 292 Name = CStr.substr(pos+1); 293 wpos = Name.find_first_not_of(" \t"); 294 if (wpos == std::string::npos) 295 throw "Illegal format for tied-to constraint: '" + CStr + "'"; 296 297 std::pair<unsigned,unsigned> SrcOp = 298 I->ParseOperandName(Name.substr(wpos), false); 299 if (SrcOp > DestOp) 300 throw "Illegal tied-to operand constraint '" + CStr + "'"; 301 302 303 unsigned FlatOpNo = I->getFlattenedOperandNumber(SrcOp); 304 // Build the string for the operand. 305 std::string OpConstraint = 306 "((" + utostr(FlatOpNo) + " << 16) | (1 << TOI::TIED_TO))"; 307 308 309 if (!I->OperandList[DestOp.first].Constraints[DestOp.second].empty()) 310 throw "Operand '" + DestOpName + "' cannot have multiple constraints!"; 311 I->OperandList[DestOp.first].Constraints[DestOp.second] = OpConstraint; 312 } 313 314 static void ParseConstraints(const std::string &CStr, CodeGenInstruction *I) { 315 // Make sure the constraints list for each operand is large enough to hold 316 // constraint info, even if none is present. 317 for (unsigned i = 0, e = I->OperandList.size(); i != e; ++i) 318 I->OperandList[i].Constraints.resize(I->OperandList[i].MINumOperands); 319 320 if (CStr.empty()) return; 321 322 const std::string delims(","); 323 std::string::size_type bidx, eidx; 324 325 bidx = CStr.find_first_not_of(delims); 326 while (bidx != std::string::npos) { 327 eidx = CStr.find_first_of(delims, bidx); 328 if (eidx == std::string::npos) 329 eidx = CStr.length(); 330 331 ParseConstraint(CStr.substr(bidx, eidx), I); 332 bidx = CStr.find_first_not_of(delims, eidx); 333 } 334 } 335 336 CodeGenInstruction::CodeGenInstruction(Record *R, const std::string &AsmStr) 337 : TheDef(R), AsmString(AsmStr) { 338 Name = R->getValueAsString("Name"); 339 Namespace = R->getValueAsString("Namespace"); 340 341 isReturn = R->getValueAsBit("isReturn"); 342 isBranch = R->getValueAsBit("isBranch"); 343 isBarrier = R->getValueAsBit("isBarrier"); 344 isCall = R->getValueAsBit("isCall"); 345 isLoad = R->getValueAsBit("isLoad"); 346 isStore = R->getValueAsBit("isStore"); 347 bool isTwoAddress = R->getValueAsBit("isTwoAddress"); 348 isPredicated = false; // set below. 349 isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress"); 350 isCommutable = R->getValueAsBit("isCommutable"); 351 isTerminator = R->getValueAsBit("isTerminator"); 352 hasDelaySlot = R->getValueAsBit("hasDelaySlot"); 353 usesCustomDAGSchedInserter = R->getValueAsBit("usesCustomDAGSchedInserter"); 354 hasCtrlDep = R->getValueAsBit("hasCtrlDep"); 355 noResults = R->getValueAsBit("noResults"); 356 hasVariableNumberOfOperands = false; 357 358 DagInit *DI; 359 try { 360 DI = R->getValueAsDag("OperandList"); 361 } catch (...) { 362 // Error getting operand list, just ignore it (sparcv9). 363 AsmString.clear(); 364 OperandList.clear(); 365 return; 366 } 367 368 unsigned MIOperandNo = 0; 369 std::set<std::string> OperandNames; 370 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 371 DefInit *Arg = dynamic_cast<DefInit*>(DI->getArg(i)); 372 if (!Arg) 373 throw "Illegal operand for the '" + R->getName() + "' instruction!"; 374 375 Record *Rec = Arg->getDef(); 376 std::string PrintMethod = "printOperand"; 377 unsigned NumOps = 1; 378 DagInit *MIOpInfo = 0; 379 if (Rec->isSubClassOf("Operand")) { 380 PrintMethod = Rec->getValueAsString("PrintMethod"); 381 MIOpInfo = Rec->getValueAsDag("MIOperandInfo"); 382 383 // Verify that MIOpInfo has an 'ops' root value. 384 if (!dynamic_cast<DefInit*>(MIOpInfo->getOperator()) || 385 dynamic_cast<DefInit*>(MIOpInfo->getOperator()) 386 ->getDef()->getName() != "ops") 387 throw "Bad value for MIOperandInfo in operand '" + Rec->getName() + 388 "'\n"; 389 390 // If we have MIOpInfo, then we have #operands equal to number of entries 391 // in MIOperandInfo. 392 if (unsigned NumArgs = MIOpInfo->getNumArgs()) 393 NumOps = NumArgs; 394 395 isPredicated |= Rec->isSubClassOf("PredicateOperand"); 396 } else if (Rec->getName() == "variable_ops") { 397 hasVariableNumberOfOperands = true; 398 continue; 399 } else if (!Rec->isSubClassOf("RegisterClass") && 400 Rec->getName() != "ptr_rc") 401 throw "Unknown operand class '" + Rec->getName() + 402 "' in instruction '" + R->getName() + "' instruction!"; 403 404 // Check that the operand has a name and that it's unique. 405 if (DI->getArgName(i).empty()) 406 throw "In instruction '" + R->getName() + "', operand #" + utostr(i) + 407 " has no name!"; 408 if (!OperandNames.insert(DI->getArgName(i)).second) 409 throw "In instruction '" + R->getName() + "', operand #" + utostr(i) + 410 " has the same name as a previous operand!"; 411 412 OperandList.push_back(OperandInfo(Rec, DI->getArgName(i), PrintMethod, 413 MIOperandNo, NumOps, MIOpInfo)); 414 MIOperandNo += NumOps; 415 } 416 417 // Parse Constraints. 418 ParseConstraints(R->getValueAsString("Constraints"), this); 419 420 // For backward compatibility: isTwoAddress means operand 1 is tied to 421 // operand 0. 422 if (isTwoAddress) { 423 if (!OperandList[1].Constraints[0].empty()) 424 throw R->getName() + ": cannot use isTwoAddress property: instruction " 425 "already has constraint set!"; 426 OperandList[1].Constraints[0] = "((0 << 16) | (1 << TOI::TIED_TO))"; 427 } 428 429 // Any operands with unset constraints get 0 as their constraint. 430 for (unsigned op = 0, e = OperandList.size(); op != e; ++op) 431 for (unsigned j = 0, e = OperandList[op].MINumOperands; j != e; ++j) 432 if (OperandList[op].Constraints[j].empty()) 433 OperandList[op].Constraints[j] = "0"; 434 435 // Parse the DisableEncoding field. 436 std::string DisableEncoding = R->getValueAsString("DisableEncoding"); 437 while (1) { 438 std::string OpName = getToken(DisableEncoding, " ,\t"); 439 if (OpName.empty()) break; 440 441 // Figure out which operand this is. 442 std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false); 443 444 // Mark the operand as not-to-be encoded. 445 if (Op.second >= OperandList[Op.first].DoNotEncode.size()) 446 OperandList[Op.first].DoNotEncode.resize(Op.second+1); 447 OperandList[Op.first].DoNotEncode[Op.second] = true; 448 } 449 } 450 451 452 453 /// getOperandNamed - Return the index of the operand with the specified 454 /// non-empty name. If the instruction does not have an operand with the 455 /// specified name, throw an exception. 456 /// 457 unsigned CodeGenInstruction::getOperandNamed(const std::string &Name) const { 458 assert(!Name.empty() && "Cannot search for operand with no name!"); 459 for (unsigned i = 0, e = OperandList.size(); i != e; ++i) 460 if (OperandList[i].Name == Name) return i; 461 throw "Instruction '" + TheDef->getName() + 462 "' does not have an operand named '$" + Name + "'!"; 463 } 464 465 std::pair<unsigned,unsigned> 466 CodeGenInstruction::ParseOperandName(const std::string &Op, 467 bool AllowWholeOp) { 468 if (Op.empty() || Op[0] != '$') 469 throw TheDef->getName() + ": Illegal operand name: '" + Op + "'"; 470 471 std::string OpName = Op.substr(1); 472 std::string SubOpName; 473 474 // Check to see if this is $foo.bar. 475 std::string::size_type DotIdx = OpName.find_first_of("."); 476 if (DotIdx != std::string::npos) { 477 SubOpName = OpName.substr(DotIdx+1); 478 if (SubOpName.empty()) 479 throw TheDef->getName() + ": illegal empty suboperand name in '" +Op +"'"; 480 OpName = OpName.substr(0, DotIdx); 481 } 482 483 unsigned OpIdx = getOperandNamed(OpName); 484 485 if (SubOpName.empty()) { // If no suboperand name was specified: 486 // If one was needed, throw. 487 if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp && 488 SubOpName.empty()) 489 throw TheDef->getName() + ": Illegal to refer to" 490 " whole operand part of complex operand '" + Op + "'"; 491 492 // Otherwise, return the operand. 493 return std::make_pair(OpIdx, 0U); 494 } 495 496 // Find the suboperand number involved. 497 DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo; 498 if (MIOpInfo == 0) 499 throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'"; 500 501 // Find the operand with the right name. 502 for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i) 503 if (MIOpInfo->getArgName(i) == SubOpName) 504 return std::make_pair(OpIdx, i); 505 506 // Otherwise, didn't find it! 507 throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'"; 508 } 509 510 511 512 513 //===----------------------------------------------------------------------===// 514 // ComplexPattern implementation 515 // 516 ComplexPattern::ComplexPattern(Record *R) { 517 Ty = ::getValueType(R->getValueAsDef("Ty")); 518 NumOperands = R->getValueAsInt("NumOperands"); 519 SelectFunc = R->getValueAsString("SelectFunc"); 520 RootNodes = R->getValueAsListOfDefs("RootNodes"); 521 522 // Parse the properties. 523 Properties = 0; 524 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 525 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 526 if (PropList[i]->getName() == "SDNPHasChain") { 527 Properties |= 1 << SDNPHasChain; 528 } else if (PropList[i]->getName() == "SDNPOptInFlag") { 529 Properties |= 1 << SDNPOptInFlag; 530 } else { 531 cerr << "Unsupported SD Node property '" << PropList[i]->getName() 532 << "' on ComplexPattern '" << R->getName() << "'!\n"; 533 exit(1); 534 } 535 } 536 537 //===----------------------------------------------------------------------===// 538 // CodeGenIntrinsic Implementation 539 //===----------------------------------------------------------------------===// 540 541 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC) { 542 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 543 544 std::vector<CodeGenIntrinsic> Result; 545 546 // If we are in the context of a target .td file, get the target info so that 547 // we can decode the current intptr_t. 548 CodeGenTarget *CGT = 0; 549 if (Records.getClass("Target") && 550 Records.getAllDerivedDefinitions("Target").size() == 1) 551 CGT = new CodeGenTarget(); 552 553 for (unsigned i = 0, e = I.size(); i != e; ++i) 554 Result.push_back(CodeGenIntrinsic(I[i], CGT)); 555 delete CGT; 556 return Result; 557 } 558 559 CodeGenIntrinsic::CodeGenIntrinsic(Record *R, CodeGenTarget *CGT) { 560 TheDef = R; 561 std::string DefName = R->getName(); 562 ModRef = WriteMem; 563 564 if (DefName.size() <= 4 || 565 std::string(DefName.begin(), DefName.begin()+4) != "int_") 566 throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; 567 EnumName = std::string(DefName.begin()+4, DefName.end()); 568 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 569 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 570 TargetPrefix = R->getValueAsString("TargetPrefix"); 571 Name = R->getValueAsString("LLVMName"); 572 if (Name == "") { 573 // If an explicit name isn't specified, derive one from the DefName. 574 Name = "llvm."; 575 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 576 if (EnumName[i] == '_') 577 Name += '.'; 578 else 579 Name += EnumName[i]; 580 } else { 581 // Verify it starts with "llvm.". 582 if (Name.size() <= 5 || 583 std::string(Name.begin(), Name.begin()+5) != "llvm.") 584 throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; 585 } 586 587 // If TargetPrefix is specified, make sure that Name starts with 588 // "llvm.<targetprefix>.". 589 if (!TargetPrefix.empty()) { 590 if (Name.size() < 6+TargetPrefix.size() || 591 std::string(Name.begin()+5, Name.begin()+6+TargetPrefix.size()) 592 != (TargetPrefix+".")) 593 throw "Intrinsic '" + DefName + "' does not start with 'llvm." + 594 TargetPrefix + ".'!"; 595 } 596 597 // Parse the list of argument types. 598 ListInit *TypeList = R->getValueAsListInit("Types"); 599 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 600 DefInit *DI = dynamic_cast<DefInit*>(TypeList->getElement(i)); 601 assert(DI && "Invalid list type!"); 602 Record *TyEl = DI->getDef(); 603 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 604 ArgTypes.push_back(TyEl->getValueAsString("TypeVal")); 605 606 if (CGT) 607 ArgVTs.push_back(getValueType(TyEl->getValueAsDef("VT"), CGT)); 608 ArgTypeDefs.push_back(TyEl); 609 } 610 if (ArgTypes.size() == 0) 611 throw "Intrinsic '"+DefName+"' needs at least a type for the ret value!"; 612 613 // Parse the intrinsic properties. 614 ListInit *PropList = R->getValueAsListInit("Properties"); 615 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 616 DefInit *DI = dynamic_cast<DefInit*>(PropList->getElement(i)); 617 assert(DI && "Invalid list type!"); 618 Record *Property = DI->getDef(); 619 assert(Property->isSubClassOf("IntrinsicProperty") && 620 "Expected a property!"); 621 622 if (Property->getName() == "IntrNoMem") 623 ModRef = NoMem; 624 else if (Property->getName() == "IntrReadArgMem") 625 ModRef = ReadArgMem; 626 else if (Property->getName() == "IntrReadMem") 627 ModRef = ReadMem; 628 else if (Property->getName() == "IntrWriteArgMem") 629 ModRef = WriteArgMem; 630 else if (Property->getName() == "IntrWriteMem") 631 ModRef = WriteMem; 632 else 633 assert(0 && "Unknown property!"); 634 } 635 } 636