1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends.  This makes it easier to access the data and
11 // provides a single place that needs to check it for validity.  All of these
12 // classes abort on error conditions.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CodeGenTarget.h"
17 #include "CodeGenDAGPatterns.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Timer.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 #include <algorithm>
28 using namespace llvm;
29 
30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
32 
33 static cl::opt<unsigned>
34     AsmParserNum("asmparsernum", cl::init(0),
35                  cl::desc("Make -gen-asm-parser emit assembly parser #N"),
36                  cl::cat(AsmParserCat));
37 
38 static cl::opt<unsigned>
39     AsmWriterNum("asmwriternum", cl::init(0),
40                  cl::desc("Make -gen-asm-writer emit assembly writer #N"),
41                  cl::cat(AsmWriterCat));
42 
43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
44 /// record corresponds to.
45 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
46   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
47 }
48 
49 StringRef llvm::getName(MVT::SimpleValueType T) {
50   switch (T) {
51   case MVT::Other:   return "UNKNOWN";
52   case MVT::iPTR:    return "TLI.getPointerTy()";
53   case MVT::iPTRAny: return "TLI.getPointerTy()";
54   default: return getEnumName(T);
55   }
56 }
57 
58 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
59   switch (T) {
60   case MVT::Other:    return "MVT::Other";
61   case MVT::i1:       return "MVT::i1";
62   case MVT::i8:       return "MVT::i8";
63   case MVT::i16:      return "MVT::i16";
64   case MVT::i32:      return "MVT::i32";
65   case MVT::i64:      return "MVT::i64";
66   case MVT::i128:     return "MVT::i128";
67   case MVT::Any:      return "MVT::Any";
68   case MVT::iAny:     return "MVT::iAny";
69   case MVT::fAny:     return "MVT::fAny";
70   case MVT::vAny:     return "MVT::vAny";
71   case MVT::f16:      return "MVT::f16";
72   case MVT::bf16:     return "MVT::bf16";
73   case MVT::f32:      return "MVT::f32";
74   case MVT::f64:      return "MVT::f64";
75   case MVT::f80:      return "MVT::f80";
76   case MVT::f128:     return "MVT::f128";
77   case MVT::ppcf128:  return "MVT::ppcf128";
78   case MVT::x86mmx:   return "MVT::x86mmx";
79   case MVT::Glue:     return "MVT::Glue";
80   case MVT::isVoid:   return "MVT::isVoid";
81   case MVT::v1i1:     return "MVT::v1i1";
82   case MVT::v2i1:     return "MVT::v2i1";
83   case MVT::v4i1:     return "MVT::v4i1";
84   case MVT::v8i1:     return "MVT::v8i1";
85   case MVT::v16i1:    return "MVT::v16i1";
86   case MVT::v32i1:    return "MVT::v32i1";
87   case MVT::v64i1:    return "MVT::v64i1";
88   case MVT::v128i1:   return "MVT::v128i1";
89   case MVT::v256i1:   return "MVT::v256i1";
90   case MVT::v512i1:   return "MVT::v512i1";
91   case MVT::v1024i1:  return "MVT::v1024i1";
92   case MVT::v1i8:     return "MVT::v1i8";
93   case MVT::v2i8:     return "MVT::v2i8";
94   case MVT::v4i8:     return "MVT::v4i8";
95   case MVT::v8i8:     return "MVT::v8i8";
96   case MVT::v16i8:    return "MVT::v16i8";
97   case MVT::v32i8:    return "MVT::v32i8";
98   case MVT::v64i8:    return "MVT::v64i8";
99   case MVT::v128i8:   return "MVT::v128i8";
100   case MVT::v256i8:   return "MVT::v256i8";
101   case MVT::v1i16:    return "MVT::v1i16";
102   case MVT::v2i16:    return "MVT::v2i16";
103   case MVT::v3i16:    return "MVT::v3i16";
104   case MVT::v4i16:    return "MVT::v4i16";
105   case MVT::v8i16:    return "MVT::v8i16";
106   case MVT::v16i16:   return "MVT::v16i16";
107   case MVT::v32i16:   return "MVT::v32i16";
108   case MVT::v64i16:   return "MVT::v64i16";
109   case MVT::v128i16:  return "MVT::v128i16";
110   case MVT::v1i32:    return "MVT::v1i32";
111   case MVT::v2i32:    return "MVT::v2i32";
112   case MVT::v3i32:    return "MVT::v3i32";
113   case MVT::v4i32:    return "MVT::v4i32";
114   case MVT::v5i32:    return "MVT::v5i32";
115   case MVT::v8i32:    return "MVT::v8i32";
116   case MVT::v16i32:   return "MVT::v16i32";
117   case MVT::v32i32:   return "MVT::v32i32";
118   case MVT::v64i32:   return "MVT::v64i32";
119   case MVT::v128i32:  return "MVT::v128i32";
120   case MVT::v256i32:  return "MVT::v256i32";
121   case MVT::v512i32:  return "MVT::v512i32";
122   case MVT::v1024i32: return "MVT::v1024i32";
123   case MVT::v2048i32: return "MVT::v2048i32";
124   case MVT::v1i64:    return "MVT::v1i64";
125   case MVT::v2i64:    return "MVT::v2i64";
126   case MVT::v4i64:    return "MVT::v4i64";
127   case MVT::v8i64:    return "MVT::v8i64";
128   case MVT::v16i64:   return "MVT::v16i64";
129   case MVT::v32i64:   return "MVT::v32i64";
130   case MVT::v64i64:   return "MVT::v64i64";
131   case MVT::v128i64:  return "MVT::v128i64";
132   case MVT::v256i64:  return "MVT::v256i64";
133   case MVT::v1i128:   return "MVT::v1i128";
134   case MVT::v2f16:    return "MVT::v2f16";
135   case MVT::v3f16:    return "MVT::v3f16";
136   case MVT::v4f16:    return "MVT::v4f16";
137   case MVT::v8f16:    return "MVT::v8f16";
138   case MVT::v16f16:   return "MVT::v16f16";
139   case MVT::v32f16:   return "MVT::v32f16";
140   case MVT::v64f16:   return "MVT::v64f16";
141   case MVT::v128f16:  return "MVT::v128f16";
142   case MVT::v2bf16:   return "MVT::v2bf16";
143   case MVT::v3bf16:   return "MVT::v3bf16";
144   case MVT::v4bf16:   return "MVT::v4bf16";
145   case MVT::v8bf16:   return "MVT::v8bf16";
146   case MVT::v16bf16:  return "MVT::v16bf16";
147   case MVT::v32bf16:  return "MVT::v32bf16";
148   case MVT::v64bf16:  return "MVT::v64bf16";
149   case MVT::v128bf16: return "MVT::v128bf16";
150   case MVT::v1f32:    return "MVT::v1f32";
151   case MVT::v2f32:    return "MVT::v2f32";
152   case MVT::v3f32:    return "MVT::v3f32";
153   case MVT::v4f32:    return "MVT::v4f32";
154   case MVT::v5f32:    return "MVT::v5f32";
155   case MVT::v8f32:    return "MVT::v8f32";
156   case MVT::v16f32:   return "MVT::v16f32";
157   case MVT::v32f32:   return "MVT::v32f32";
158   case MVT::v64f32:   return "MVT::v64f32";
159   case MVT::v128f32:  return "MVT::v128f32";
160   case MVT::v256f32:  return "MVT::v256f32";
161   case MVT::v512f32:  return "MVT::v512f32";
162   case MVT::v1024f32: return "MVT::v1024f32";
163   case MVT::v2048f32: return "MVT::v2048f32";
164   case MVT::v1f64:    return "MVT::v1f64";
165   case MVT::v2f64:    return "MVT::v2f64";
166   case MVT::v4f64:    return "MVT::v4f64";
167   case MVT::v8f64:    return "MVT::v8f64";
168   case MVT::v16f64:   return "MVT::v16f64";
169   case MVT::v32f64:   return "MVT::v32f64";
170   case MVT::v64f64:   return "MVT::v64f64";
171   case MVT::v128f64:  return "MVT::v128f64";
172   case MVT::v256f64:  return "MVT::v256f64";
173   case MVT::nxv1i1:   return "MVT::nxv1i1";
174   case MVT::nxv2i1:   return "MVT::nxv2i1";
175   case MVT::nxv4i1:   return "MVT::nxv4i1";
176   case MVT::nxv8i1:   return "MVT::nxv8i1";
177   case MVT::nxv16i1:  return "MVT::nxv16i1";
178   case MVT::nxv32i1:  return "MVT::nxv32i1";
179   case MVT::nxv64i1:  return "MVT::nxv64i1";
180   case MVT::nxv1i8:   return "MVT::nxv1i8";
181   case MVT::nxv2i8:   return "MVT::nxv2i8";
182   case MVT::nxv4i8:   return "MVT::nxv4i8";
183   case MVT::nxv8i8:   return "MVT::nxv8i8";
184   case MVT::nxv16i8:  return "MVT::nxv16i8";
185   case MVT::nxv32i8:  return "MVT::nxv32i8";
186   case MVT::nxv64i8:  return "MVT::nxv64i8";
187   case MVT::nxv1i16:  return "MVT::nxv1i16";
188   case MVT::nxv2i16:  return "MVT::nxv2i16";
189   case MVT::nxv4i16:  return "MVT::nxv4i16";
190   case MVT::nxv8i16:  return "MVT::nxv8i16";
191   case MVT::nxv16i16: return "MVT::nxv16i16";
192   case MVT::nxv32i16: return "MVT::nxv32i16";
193   case MVT::nxv1i32:  return "MVT::nxv1i32";
194   case MVT::nxv2i32:  return "MVT::nxv2i32";
195   case MVT::nxv4i32:  return "MVT::nxv4i32";
196   case MVT::nxv8i32:  return "MVT::nxv8i32";
197   case MVT::nxv16i32: return "MVT::nxv16i32";
198   case MVT::nxv32i32: return "MVT::nxv32i32";
199   case MVT::nxv1i64:  return "MVT::nxv1i64";
200   case MVT::nxv2i64:  return "MVT::nxv2i64";
201   case MVT::nxv4i64:  return "MVT::nxv4i64";
202   case MVT::nxv8i64:  return "MVT::nxv8i64";
203   case MVT::nxv16i64: return "MVT::nxv16i64";
204   case MVT::nxv32i64: return "MVT::nxv32i64";
205   case MVT::nxv1f16:  return "MVT::nxv1f16";
206   case MVT::nxv2f16:  return "MVT::nxv2f16";
207   case MVT::nxv4f16:  return "MVT::nxv4f16";
208   case MVT::nxv8f16:  return "MVT::nxv8f16";
209   case MVT::nxv16f16: return "MVT::nxv16f16";
210   case MVT::nxv32f16: return "MVT::nxv32f16";
211   case MVT::nxv2bf16:  return "MVT::nxv2bf16";
212   case MVT::nxv4bf16:  return "MVT::nxv4bf16";
213   case MVT::nxv8bf16:  return "MVT::nxv8bf16";
214   case MVT::nxv1f32:   return "MVT::nxv1f32";
215   case MVT::nxv2f32:   return "MVT::nxv2f32";
216   case MVT::nxv4f32:   return "MVT::nxv4f32";
217   case MVT::nxv8f32:   return "MVT::nxv8f32";
218   case MVT::nxv16f32:  return "MVT::nxv16f32";
219   case MVT::nxv1f64:   return "MVT::nxv1f64";
220   case MVT::nxv2f64:   return "MVT::nxv2f64";
221   case MVT::nxv4f64:   return "MVT::nxv4f64";
222   case MVT::nxv8f64:   return "MVT::nxv8f64";
223   case MVT::token:     return "MVT::token";
224   case MVT::Metadata:  return "MVT::Metadata";
225   case MVT::iPTR:      return "MVT::iPTR";
226   case MVT::iPTRAny:   return "MVT::iPTRAny";
227   case MVT::Untyped:   return "MVT::Untyped";
228   case MVT::exnref:    return "MVT::exnref";
229   case MVT::funcref:   return "MVT::funcref";
230   case MVT::externref: return "MVT::externref";
231   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
232   }
233 }
234 
235 /// getQualifiedName - Return the name of the specified record, with a
236 /// namespace qualifier if the record contains one.
237 ///
238 std::string llvm::getQualifiedName(const Record *R) {
239   std::string Namespace;
240   if (R->getValue("Namespace"))
241     Namespace = std::string(R->getValueAsString("Namespace"));
242   if (Namespace.empty())
243     return std::string(R->getName());
244   return Namespace + "::" + R->getName().str();
245 }
246 
247 
248 /// getTarget - Return the current instance of the Target class.
249 ///
250 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
251   : Records(records), CGH(records) {
252   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
253   if (Targets.size() == 0)
254     PrintFatalError("ERROR: No 'Target' subclasses defined!");
255   if (Targets.size() != 1)
256     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
257   TargetRec = Targets[0];
258 }
259 
260 CodeGenTarget::~CodeGenTarget() {
261 }
262 
263 const StringRef CodeGenTarget::getName() const {
264   return TargetRec->getName();
265 }
266 
267 StringRef CodeGenTarget::getInstNamespace() const {
268   for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
269     // Make sure not to pick up "TargetOpcode" by accidentally getting
270     // the namespace off the PHI instruction or something.
271     if (Inst->Namespace != "TargetOpcode")
272       return Inst->Namespace;
273   }
274 
275   return "";
276 }
277 
278 StringRef CodeGenTarget::getRegNamespace() const {
279   auto &RegClasses = RegBank->getRegClasses();
280   return RegClasses.size() > 0 ? RegClasses.front().Namespace : "";
281 }
282 
283 Record *CodeGenTarget::getInstructionSet() const {
284   return TargetRec->getValueAsDef("InstructionSet");
285 }
286 
287 bool CodeGenTarget::getAllowRegisterRenaming() const {
288   return TargetRec->getValueAsInt("AllowRegisterRenaming");
289 }
290 
291 /// getAsmParser - Return the AssemblyParser definition for this target.
292 ///
293 Record *CodeGenTarget::getAsmParser() const {
294   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
295   if (AsmParserNum >= LI.size())
296     PrintFatalError("Target does not have an AsmParser #" +
297                     Twine(AsmParserNum) + "!");
298   return LI[AsmParserNum];
299 }
300 
301 /// getAsmParserVariant - Return the AssemblyParserVariant definition for
302 /// this target.
303 ///
304 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
305   std::vector<Record*> LI =
306     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
307   if (i >= LI.size())
308     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
309                     "!");
310   return LI[i];
311 }
312 
313 /// getAsmParserVariantCount - Return the AssemblyParserVariant definition
314 /// available for this target.
315 ///
316 unsigned CodeGenTarget::getAsmParserVariantCount() const {
317   std::vector<Record*> LI =
318     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
319   return LI.size();
320 }
321 
322 /// getAsmWriter - Return the AssemblyWriter definition for this target.
323 ///
324 Record *CodeGenTarget::getAsmWriter() const {
325   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
326   if (AsmWriterNum >= LI.size())
327     PrintFatalError("Target does not have an AsmWriter #" +
328                     Twine(AsmWriterNum) + "!");
329   return LI[AsmWriterNum];
330 }
331 
332 CodeGenRegBank &CodeGenTarget::getRegBank() const {
333   if (!RegBank)
334     RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
335   return *RegBank;
336 }
337 
338 Optional<CodeGenRegisterClass *>
339 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy,
340                                     CodeGenRegBank &RegBank,
341                                     const CodeGenSubRegIndex *SubIdx) const {
342   std::vector<CodeGenRegisterClass *> Candidates;
343   auto &RegClasses = RegBank.getRegClasses();
344 
345   // Try to find a register class which supports ValueTy, and also contains
346   // SubIdx.
347   for (CodeGenRegisterClass &RC : RegClasses) {
348     // Is there a subclass of this class which contains this subregister index?
349     CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
350     if (!SubClassWithSubReg)
351       continue;
352 
353     // We have a class. Check if it supports this value type.
354     if (llvm::none_of(SubClassWithSubReg->VTs,
355                       [&ValueTy](const ValueTypeByHwMode &ClassVT) {
356                         return ClassVT == ValueTy;
357                       }))
358       continue;
359 
360     // We have a register class which supports both the value type and
361     // subregister index. Remember it.
362     Candidates.push_back(SubClassWithSubReg);
363   }
364 
365   // If we didn't find anything, we're done.
366   if (Candidates.empty())
367     return None;
368 
369   // Find and return the largest of our candidate classes.
370   llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
371                                     const CodeGenRegisterClass *B) {
372     if (A->getMembers().size() > B->getMembers().size())
373       return true;
374 
375     if (A->getMembers().size() < B->getMembers().size())
376       return false;
377 
378     // Order by name as a tie-breaker.
379     return StringRef(A->getName()) < B->getName();
380   });
381 
382   return Candidates[0];
383 }
384 
385 void CodeGenTarget::ReadRegAltNameIndices() const {
386   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
387   llvm::sort(RegAltNameIndices, LessRecord());
388 }
389 
390 /// getRegisterByName - If there is a register with the specific AsmName,
391 /// return it.
392 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
393   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
394   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
395   if (I == Regs.end())
396     return nullptr;
397   return I->second;
398 }
399 
400 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
401       const {
402   const CodeGenRegister *Reg = getRegBank().getReg(R);
403   std::vector<ValueTypeByHwMode> Result;
404   for (const auto &RC : getRegBank().getRegClasses()) {
405     if (RC.contains(Reg)) {
406       ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
407       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
408     }
409   }
410 
411   // Remove duplicates.
412   llvm::sort(Result);
413   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
414   return Result;
415 }
416 
417 
418 void CodeGenTarget::ReadLegalValueTypes() const {
419   for (const auto &RC : getRegBank().getRegClasses())
420     LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
421 
422   // Remove duplicates.
423   llvm::sort(LegalValueTypes);
424   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
425                                     LegalValueTypes.end()),
426                         LegalValueTypes.end());
427 }
428 
429 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
430   if (!SchedModels)
431     SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
432   return *SchedModels;
433 }
434 
435 void CodeGenTarget::ReadInstructions() const {
436   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
437   if (Insts.size() <= 2)
438     PrintFatalError("No 'Instruction' subclasses defined!");
439 
440   // Parse the instructions defined in the .td file.
441   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
442     Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
443 }
444 
445 static const CodeGenInstruction *
446 GetInstByName(const char *Name,
447               const DenseMap<const Record*,
448                              std::unique_ptr<CodeGenInstruction>> &Insts,
449               RecordKeeper &Records) {
450   const Record *Rec = Records.getDef(Name);
451 
452   const auto I = Insts.find(Rec);
453   if (!Rec || I == Insts.end())
454     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
455   return I->second.get();
456 }
457 
458 static const char *const FixedInstrs[] = {
459 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
460 #include "llvm/Support/TargetOpcodes.def"
461     nullptr};
462 
463 unsigned CodeGenTarget::getNumFixedInstructions() {
464   return array_lengthof(FixedInstrs) - 1;
465 }
466 
467 /// Return all of the instructions defined by the target, ordered by
468 /// their enum value.
469 void CodeGenTarget::ComputeInstrsByEnum() const {
470   const auto &Insts = getInstructions();
471   for (const char *const *p = FixedInstrs; *p; ++p) {
472     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
473     assert(Instr && "Missing target independent instruction");
474     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
475     InstrsByEnum.push_back(Instr);
476   }
477   unsigned EndOfPredefines = InstrsByEnum.size();
478   assert(EndOfPredefines == getNumFixedInstructions() &&
479          "Missing generic opcode");
480 
481   for (const auto &I : Insts) {
482     const CodeGenInstruction *CGI = I.second.get();
483     if (CGI->Namespace != "TargetOpcode") {
484       InstrsByEnum.push_back(CGI);
485       if (CGI->TheDef->getValueAsBit("isPseudo"))
486         ++NumPseudoInstructions;
487     }
488   }
489 
490   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
491 
492   // All of the instructions are now in random order based on the map iteration.
493   llvm::sort(
494       InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
495       [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
496         const auto &D1 = *Rec1->TheDef;
497         const auto &D2 = *Rec2->TheDef;
498         return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
499                std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
500       });
501 }
502 
503 
504 /// isLittleEndianEncoding - Return whether this target encodes its instruction
505 /// in little-endian format, i.e. bits laid out in the order [0..n]
506 ///
507 bool CodeGenTarget::isLittleEndianEncoding() const {
508   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
509 }
510 
511 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
512 /// encodings, reverse the bit order of all instructions.
513 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
514   if (!isLittleEndianEncoding())
515     return;
516 
517   std::vector<Record *> Insts =
518       Records.getAllDerivedDefinitions("InstructionEncoding");
519   for (Record *R : Insts) {
520     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
521         R->getValueAsBit("isPseudo"))
522       continue;
523 
524     BitsInit *BI = R->getValueAsBitsInit("Inst");
525 
526     unsigned numBits = BI->getNumBits();
527 
528     SmallVector<Init *, 16> NewBits(numBits);
529 
530     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
531       unsigned bitSwapIdx = numBits - bit - 1;
532       Init *OrigBit = BI->getBit(bit);
533       Init *BitSwap = BI->getBit(bitSwapIdx);
534       NewBits[bit]        = BitSwap;
535       NewBits[bitSwapIdx] = OrigBit;
536     }
537     if (numBits % 2) {
538       unsigned middle = (numBits + 1) / 2;
539       NewBits[middle] = BI->getBit(middle);
540     }
541 
542     BitsInit *NewBI = BitsInit::get(NewBits);
543 
544     // Update the bits in reversed order so that emitInstrOpBits will get the
545     // correct endianness.
546     R->getValue("Inst")->setValue(NewBI);
547   }
548 }
549 
550 /// guessInstructionProperties - Return true if it's OK to guess instruction
551 /// properties instead of raising an error.
552 ///
553 /// This is configurable as a temporary migration aid. It will eventually be
554 /// permanently false.
555 bool CodeGenTarget::guessInstructionProperties() const {
556   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
557 }
558 
559 //===----------------------------------------------------------------------===//
560 // ComplexPattern implementation
561 //
562 ComplexPattern::ComplexPattern(Record *R) {
563   Ty          = ::getValueType(R->getValueAsDef("Ty"));
564   NumOperands = R->getValueAsInt("NumOperands");
565   SelectFunc = std::string(R->getValueAsString("SelectFunc"));
566   RootNodes   = R->getValueAsListOfDefs("RootNodes");
567 
568   // FIXME: This is a hack to statically increase the priority of patterns which
569   // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
570   // possible pattern match we'll need to dynamically calculate the complexity
571   // of all patterns a dag can potentially map to.
572   int64_t RawComplexity = R->getValueAsInt("Complexity");
573   if (RawComplexity == -1)
574     Complexity = NumOperands * 3;
575   else
576     Complexity = RawComplexity;
577 
578   // FIXME: Why is this different from parseSDPatternOperatorProperties?
579   // Parse the properties.
580   Properties = 0;
581   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
582   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
583     if (PropList[i]->getName() == "SDNPHasChain") {
584       Properties |= 1 << SDNPHasChain;
585     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
586       Properties |= 1 << SDNPOptInGlue;
587     } else if (PropList[i]->getName() == "SDNPMayStore") {
588       Properties |= 1 << SDNPMayStore;
589     } else if (PropList[i]->getName() == "SDNPMayLoad") {
590       Properties |= 1 << SDNPMayLoad;
591     } else if (PropList[i]->getName() == "SDNPSideEffect") {
592       Properties |= 1 << SDNPSideEffect;
593     } else if (PropList[i]->getName() == "SDNPMemOperand") {
594       Properties |= 1 << SDNPMemOperand;
595     } else if (PropList[i]->getName() == "SDNPVariadic") {
596       Properties |= 1 << SDNPVariadic;
597     } else if (PropList[i]->getName() == "SDNPWantRoot") {
598       Properties |= 1 << SDNPWantRoot;
599     } else if (PropList[i]->getName() == "SDNPWantParent") {
600       Properties |= 1 << SDNPWantParent;
601     } else {
602       PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
603                                        PropList[i]->getName() +
604                                        "' on ComplexPattern '" + R->getName() +
605                                        "'!");
606     }
607 }
608 
609 //===----------------------------------------------------------------------===//
610 // CodeGenIntrinsic Implementation
611 //===----------------------------------------------------------------------===//
612 
613 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
614   std::vector<Record *> IntrProperties =
615       RC.getAllDerivedDefinitions("IntrinsicProperty");
616 
617   std::vector<Record *> DefaultProperties;
618   for (Record *Rec : IntrProperties)
619     if (Rec->getValueAsBit("IsDefault"))
620       DefaultProperties.push_back(Rec);
621 
622   std::vector<Record *> Defs = RC.getAllDerivedDefinitions("Intrinsic");
623   Intrinsics.reserve(Defs.size());
624 
625   for (unsigned I = 0, e = Defs.size(); I != e; ++I)
626     Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties));
627 
628   llvm::sort(Intrinsics,
629              [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
630                return std::tie(LHS.TargetPrefix, LHS.Name) <
631                       std::tie(RHS.TargetPrefix, RHS.Name);
632              });
633   Targets.push_back({"", 0, 0});
634   for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
635     if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
636       Targets.back().Count = I - Targets.back().Offset;
637       Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
638     }
639   Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
640 }
641 
642 CodeGenIntrinsic::CodeGenIntrinsic(Record *R,
643                                    std::vector<Record *> DefaultProperties) {
644   TheDef = R;
645   std::string DefName = std::string(R->getName());
646   ArrayRef<SMLoc> DefLoc = R->getLoc();
647   ModRef = ReadWriteMem;
648   Properties = 0;
649   isOverloaded = false;
650   isCommutative = false;
651   canThrow = false;
652   isNoReturn = false;
653   isNoSync = false;
654   isNoFree = false;
655   isWillReturn = false;
656   isCold = false;
657   isNoDuplicate = false;
658   isConvergent = false;
659   isSpeculatable = false;
660   hasSideEffects = false;
661 
662   if (DefName.size() <= 4 ||
663       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
664     PrintFatalError(DefLoc,
665                     "Intrinsic '" + DefName + "' does not start with 'int_'!");
666 
667   EnumName = std::string(DefName.begin()+4, DefName.end());
668 
669   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
670     GCCBuiltinName = std::string(R->getValueAsString("GCCBuiltinName"));
671   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
672     MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName"));
673 
674   TargetPrefix = std::string(R->getValueAsString("TargetPrefix"));
675   Name = std::string(R->getValueAsString("LLVMName"));
676 
677   if (Name == "") {
678     // If an explicit name isn't specified, derive one from the DefName.
679     Name = "llvm.";
680 
681     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
682       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
683   } else {
684     // Verify it starts with "llvm.".
685     if (Name.size() <= 5 ||
686         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
687       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
688                                   "'s name does not start with 'llvm.'!");
689   }
690 
691   // If TargetPrefix is specified, make sure that Name starts with
692   // "llvm.<targetprefix>.".
693   if (!TargetPrefix.empty()) {
694     if (Name.size() < 6+TargetPrefix.size() ||
695         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
696         != (TargetPrefix + "."))
697       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
698                                   "' does not start with 'llvm." +
699                                   TargetPrefix + ".'!");
700   }
701 
702   ListInit *RetTypes = R->getValueAsListInit("RetTypes");
703   ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
704 
705   // First collate a list of overloaded types.
706   std::vector<MVT::SimpleValueType> OverloadedVTs;
707   for (ListInit *TypeList : {RetTypes, ParamTypes}) {
708     for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
709       Record *TyEl = TypeList->getElementAsRecord(i);
710       assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
711 
712       if (TyEl->isSubClassOf("LLVMMatchType"))
713         continue;
714 
715       MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
716       if (MVT(VT).isOverloaded()) {
717         OverloadedVTs.push_back(VT);
718         isOverloaded = true;
719       }
720     }
721   }
722 
723   // Parse the list of return types.
724   ListInit *TypeList = RetTypes;
725   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
726     Record *TyEl = TypeList->getElementAsRecord(i);
727     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
728     MVT::SimpleValueType VT;
729     if (TyEl->isSubClassOf("LLVMMatchType")) {
730       unsigned MatchTy = TyEl->getValueAsInt("Number");
731       assert(MatchTy < OverloadedVTs.size() &&
732              "Invalid matching number!");
733       VT = OverloadedVTs[MatchTy];
734       // It only makes sense to use the extended and truncated vector element
735       // variants with iAny types; otherwise, if the intrinsic is not
736       // overloaded, all the types can be specified directly.
737       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
738                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
739               VT == MVT::iAny || VT == MVT::vAny) &&
740              "Expected iAny or vAny type");
741     } else {
742       VT = getValueType(TyEl->getValueAsDef("VT"));
743     }
744 
745     // Reject invalid types.
746     if (VT == MVT::isVoid)
747       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
748                                   " has void in result type list!");
749 
750     IS.RetVTs.push_back(VT);
751     IS.RetTypeDefs.push_back(TyEl);
752   }
753 
754   // Parse the list of parameter types.
755   TypeList = ParamTypes;
756   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
757     Record *TyEl = TypeList->getElementAsRecord(i);
758     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
759     MVT::SimpleValueType VT;
760     if (TyEl->isSubClassOf("LLVMMatchType")) {
761       unsigned MatchTy = TyEl->getValueAsInt("Number");
762       if (MatchTy >= OverloadedVTs.size()) {
763         PrintError(R->getLoc(),
764                    "Parameter #" + Twine(i) + " has out of bounds matching "
765                    "number " + Twine(MatchTy));
766         PrintFatalError(DefLoc,
767                         Twine("ParamTypes is ") + TypeList->getAsString());
768       }
769       VT = OverloadedVTs[MatchTy];
770       // It only makes sense to use the extended and truncated vector element
771       // variants with iAny types; otherwise, if the intrinsic is not
772       // overloaded, all the types can be specified directly.
773       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
774                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
775               VT == MVT::iAny || VT == MVT::vAny) &&
776              "Expected iAny or vAny type");
777     } else
778       VT = getValueType(TyEl->getValueAsDef("VT"));
779 
780     // Reject invalid types.
781     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
782       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
783                                   " has void in result type list!");
784 
785     IS.ParamVTs.push_back(VT);
786     IS.ParamTypeDefs.push_back(TyEl);
787   }
788 
789   // Parse the intrinsic properties.
790   ListInit *PropList = R->getValueAsListInit("IntrProperties");
791   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
792     Record *Property = PropList->getElementAsRecord(i);
793     assert(Property->isSubClassOf("IntrinsicProperty") &&
794            "Expected a property!");
795 
796     setProperty(Property);
797   }
798 
799   // Set default properties to true.
800   setDefaultProperties(R, DefaultProperties);
801 
802   // Also record the SDPatternOperator Properties.
803   Properties = parseSDPatternOperatorProperties(R);
804 
805   // Sort the argument attributes for later benefit.
806   llvm::sort(ArgumentAttributes);
807 }
808 
809 void CodeGenIntrinsic::setDefaultProperties(
810     Record *R, std::vector<Record *> DefaultProperties) {
811   // opt-out of using default attributes.
812   if (R->getValueAsBit("DisableDefaultAttributes"))
813     return;
814 
815   for (Record *Rec : DefaultProperties)
816     setProperty(Rec);
817 }
818 
819 void CodeGenIntrinsic::setProperty(Record *R) {
820   if (R->getName() == "IntrNoMem")
821     ModRef = NoMem;
822   else if (R->getName() == "IntrReadMem")
823     ModRef = ModRefBehavior(ModRef & ~MR_Mod);
824   else if (R->getName() == "IntrWriteMem")
825     ModRef = ModRefBehavior(ModRef & ~MR_Ref);
826   else if (R->getName() == "IntrArgMemOnly")
827     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
828   else if (R->getName() == "IntrInaccessibleMemOnly")
829     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
830   else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly")
831     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
832                             MR_InaccessibleMem);
833   else if (R->getName() == "Commutative")
834     isCommutative = true;
835   else if (R->getName() == "Throws")
836     canThrow = true;
837   else if (R->getName() == "IntrNoDuplicate")
838     isNoDuplicate = true;
839   else if (R->getName() == "IntrConvergent")
840     isConvergent = true;
841   else if (R->getName() == "IntrNoReturn")
842     isNoReturn = true;
843   else if (R->getName() == "IntrNoSync")
844     isNoSync = true;
845   else if (R->getName() == "IntrNoFree")
846     isNoFree = true;
847   else if (R->getName() == "IntrWillReturn")
848     isWillReturn = !isNoReturn;
849   else if (R->getName() == "IntrCold")
850     isCold = true;
851   else if (R->getName() == "IntrSpeculatable")
852     isSpeculatable = true;
853   else if (R->getName() == "IntrHasSideEffects")
854     hasSideEffects = true;
855   else if (R->isSubClassOf("NoCapture")) {
856     unsigned ArgNo = R->getValueAsInt("ArgNo");
857     ArgumentAttributes.emplace_back(ArgNo, NoCapture, 0);
858   } else if (R->isSubClassOf("NoAlias")) {
859     unsigned ArgNo = R->getValueAsInt("ArgNo");
860     ArgumentAttributes.emplace_back(ArgNo, NoAlias, 0);
861   } else if (R->isSubClassOf("NoUndef")) {
862     unsigned ArgNo = R->getValueAsInt("ArgNo");
863     ArgumentAttributes.emplace_back(ArgNo, NoUndef, 0);
864   } else if (R->isSubClassOf("Returned")) {
865     unsigned ArgNo = R->getValueAsInt("ArgNo");
866     ArgumentAttributes.emplace_back(ArgNo, Returned, 0);
867   } else if (R->isSubClassOf("ReadOnly")) {
868     unsigned ArgNo = R->getValueAsInt("ArgNo");
869     ArgumentAttributes.emplace_back(ArgNo, ReadOnly, 0);
870   } else if (R->isSubClassOf("WriteOnly")) {
871     unsigned ArgNo = R->getValueAsInt("ArgNo");
872     ArgumentAttributes.emplace_back(ArgNo, WriteOnly, 0);
873   } else if (R->isSubClassOf("ReadNone")) {
874     unsigned ArgNo = R->getValueAsInt("ArgNo");
875     ArgumentAttributes.emplace_back(ArgNo, ReadNone, 0);
876   } else if (R->isSubClassOf("ImmArg")) {
877     unsigned ArgNo = R->getValueAsInt("ArgNo");
878     ArgumentAttributes.emplace_back(ArgNo, ImmArg, 0);
879   } else if (R->isSubClassOf("Align")) {
880     unsigned ArgNo = R->getValueAsInt("ArgNo");
881     uint64_t Align = R->getValueAsInt("Align");
882     ArgumentAttributes.emplace_back(ArgNo, Alignment, Align);
883   } else
884     llvm_unreachable("Unknown property!");
885 }
886 
887 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
888   if (ParamIdx >= IS.ParamVTs.size())
889     return false;
890   MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
891   return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
892 }
893 
894 bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
895   // Convert argument index to attribute index starting from `FirstArgIndex`.
896   ArgAttribute Val{ParamIdx + 1, ImmArg, 0};
897   return std::binary_search(ArgumentAttributes.begin(),
898                             ArgumentAttributes.end(), Val);
899 }
900