1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends.  This makes it easier to access the data and
12 // provides a single place that needs to check it for validity.  All of these
13 // classes abort on error conditions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodeGenTarget.h"
18 #include "CodeGenDAGPatterns.h"
19 #include "CodeGenIntrinsics.h"
20 #include "CodeGenSchedule.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include <algorithm>
27 using namespace llvm;
28 
29 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
30 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
31 
32 static cl::opt<unsigned>
33     AsmParserNum("asmparsernum", cl::init(0),
34                  cl::desc("Make -gen-asm-parser emit assembly parser #N"),
35                  cl::cat(AsmParserCat));
36 
37 static cl::opt<unsigned>
38     AsmWriterNum("asmwriternum", cl::init(0),
39                  cl::desc("Make -gen-asm-writer emit assembly writer #N"),
40                  cl::cat(AsmWriterCat));
41 
42 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
43 /// record corresponds to.
44 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
45   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
46 }
47 
48 StringRef llvm::getName(MVT::SimpleValueType T) {
49   switch (T) {
50   case MVT::Other:   return "UNKNOWN";
51   case MVT::iPTR:    return "TLI.getPointerTy()";
52   case MVT::iPTRAny: return "TLI.getPointerTy()";
53   default: return getEnumName(T);
54   }
55 }
56 
57 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
58   switch (T) {
59   case MVT::Other:    return "MVT::Other";
60   case MVT::i1:       return "MVT::i1";
61   case MVT::i8:       return "MVT::i8";
62   case MVT::i16:      return "MVT::i16";
63   case MVT::i32:      return "MVT::i32";
64   case MVT::i64:      return "MVT::i64";
65   case MVT::i128:     return "MVT::i128";
66   case MVT::Any:      return "MVT::Any";
67   case MVT::iAny:     return "MVT::iAny";
68   case MVT::fAny:     return "MVT::fAny";
69   case MVT::vAny:     return "MVT::vAny";
70   case MVT::f16:      return "MVT::f16";
71   case MVT::f32:      return "MVT::f32";
72   case MVT::f64:      return "MVT::f64";
73   case MVT::f80:      return "MVT::f80";
74   case MVT::f128:     return "MVT::f128";
75   case MVT::ppcf128:  return "MVT::ppcf128";
76   case MVT::x86mmx:   return "MVT::x86mmx";
77   case MVT::Glue:     return "MVT::Glue";
78   case MVT::isVoid:   return "MVT::isVoid";
79   case MVT::v1i1:     return "MVT::v1i1";
80   case MVT::v2i1:     return "MVT::v2i1";
81   case MVT::v4i1:     return "MVT::v4i1";
82   case MVT::v8i1:     return "MVT::v8i1";
83   case MVT::v16i1:    return "MVT::v16i1";
84   case MVT::v32i1:    return "MVT::v32i1";
85   case MVT::v64i1:    return "MVT::v64i1";
86   case MVT::v128i1:   return "MVT::v128i1";
87   case MVT::v512i1:   return "MVT::v512i1";
88   case MVT::v1024i1:  return "MVT::v1024i1";
89   case MVT::v1i8:     return "MVT::v1i8";
90   case MVT::v2i8:     return "MVT::v2i8";
91   case MVT::v4i8:     return "MVT::v4i8";
92   case MVT::v8i8:     return "MVT::v8i8";
93   case MVT::v16i8:    return "MVT::v16i8";
94   case MVT::v32i8:    return "MVT::v32i8";
95   case MVT::v64i8:    return "MVT::v64i8";
96   case MVT::v128i8:   return "MVT::v128i8";
97   case MVT::v256i8:   return "MVT::v256i8";
98   case MVT::v1i16:    return "MVT::v1i16";
99   case MVT::v2i16:    return "MVT::v2i16";
100   case MVT::v4i16:    return "MVT::v4i16";
101   case MVT::v8i16:    return "MVT::v8i16";
102   case MVT::v16i16:   return "MVT::v16i16";
103   case MVT::v32i16:   return "MVT::v32i16";
104   case MVT::v64i16:   return "MVT::v64i16";
105   case MVT::v128i16:  return "MVT::v128i16";
106   case MVT::v1i32:    return "MVT::v1i32";
107   case MVT::v2i32:    return "MVT::v2i32";
108   case MVT::v4i32:    return "MVT::v4i32";
109   case MVT::v8i32:    return "MVT::v8i32";
110   case MVT::v16i32:   return "MVT::v16i32";
111   case MVT::v32i32:   return "MVT::v32i32";
112   case MVT::v64i32:   return "MVT::v64i32";
113   case MVT::v1i64:    return "MVT::v1i64";
114   case MVT::v2i64:    return "MVT::v2i64";
115   case MVT::v4i64:    return "MVT::v4i64";
116   case MVT::v8i64:    return "MVT::v8i64";
117   case MVT::v16i64:   return "MVT::v16i64";
118   case MVT::v32i64:   return "MVT::v32i64";
119   case MVT::v1i128:   return "MVT::v1i128";
120   case MVT::v2f16:    return "MVT::v2f16";
121   case MVT::v4f16:    return "MVT::v4f16";
122   case MVT::v8f16:    return "MVT::v8f16";
123   case MVT::v1f32:    return "MVT::v1f32";
124   case MVT::v2f32:    return "MVT::v2f32";
125   case MVT::v4f32:    return "MVT::v4f32";
126   case MVT::v8f32:    return "MVT::v8f32";
127   case MVT::v16f32:   return "MVT::v16f32";
128   case MVT::v1f64:    return "MVT::v1f64";
129   case MVT::v2f64:    return "MVT::v2f64";
130   case MVT::v4f64:    return "MVT::v4f64";
131   case MVT::v8f64:    return "MVT::v8f64";
132   case MVT::nxv1i1:   return "MVT::nxv1i1";
133   case MVT::nxv2i1:   return "MVT::nxv2i1";
134   case MVT::nxv4i1:   return "MVT::nxv4i1";
135   case MVT::nxv8i1:   return "MVT::nxv8i1";
136   case MVT::nxv16i1:  return "MVT::nxv16i1";
137   case MVT::nxv32i1:  return "MVT::nxv32i1";
138   case MVT::nxv1i8:   return "MVT::nxv1i8";
139   case MVT::nxv2i8:   return "MVT::nxv2i8";
140   case MVT::nxv4i8:   return "MVT::nxv4i8";
141   case MVT::nxv8i8:   return "MVT::nxv8i8";
142   case MVT::nxv16i8:  return "MVT::nxv16i8";
143   case MVT::nxv32i8:  return "MVT::nxv32i8";
144   case MVT::nxv1i16:  return "MVT::nxv1i16";
145   case MVT::nxv2i16:  return "MVT::nxv2i16";
146   case MVT::nxv4i16:  return "MVT::nxv4i16";
147   case MVT::nxv8i16:  return "MVT::nxv8i16";
148   case MVT::nxv16i16: return "MVT::nxv16i16";
149   case MVT::nxv32i16: return "MVT::nxv32i16";
150   case MVT::nxv1i32:  return "MVT::nxv1i32";
151   case MVT::nxv2i32:  return "MVT::nxv2i32";
152   case MVT::nxv4i32:  return "MVT::nxv4i32";
153   case MVT::nxv8i32:  return "MVT::nxv8i32";
154   case MVT::nxv16i32: return "MVT::nxv16i32";
155   case MVT::nxv1i64:  return "MVT::nxv1i64";
156   case MVT::nxv2i64:  return "MVT::nxv2i64";
157   case MVT::nxv4i64:  return "MVT::nxv4i64";
158   case MVT::nxv8i64:  return "MVT::nxv8i64";
159   case MVT::nxv16i64: return "MVT::nxv16i64";
160   case MVT::nxv2f16:  return "MVT::nxv2f16";
161   case MVT::nxv4f16:  return "MVT::nxv4f16";
162   case MVT::nxv8f16:  return "MVT::nxv8f16";
163   case MVT::nxv1f32:  return "MVT::nxv1f32";
164   case MVT::nxv2f32:  return "MVT::nxv2f32";
165   case MVT::nxv4f32:  return "MVT::nxv4f32";
166   case MVT::nxv8f32:  return "MVT::nxv8f32";
167   case MVT::nxv16f32: return "MVT::nxv16f32";
168   case MVT::nxv1f64:  return "MVT::nxv1f64";
169   case MVT::nxv2f64:  return "MVT::nxv2f64";
170   case MVT::nxv4f64:  return "MVT::nxv4f64";
171   case MVT::nxv8f64:  return "MVT::nxv8f64";
172   case MVT::token:    return "MVT::token";
173   case MVT::Metadata: return "MVT::Metadata";
174   case MVT::iPTR:     return "MVT::iPTR";
175   case MVT::iPTRAny:  return "MVT::iPTRAny";
176   case MVT::Untyped:  return "MVT::Untyped";
177   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
178   }
179 }
180 
181 /// getQualifiedName - Return the name of the specified record, with a
182 /// namespace qualifier if the record contains one.
183 ///
184 std::string llvm::getQualifiedName(const Record *R) {
185   std::string Namespace;
186   if (R->getValue("Namespace"))
187      Namespace = R->getValueAsString("Namespace");
188   if (Namespace.empty()) return R->getName();
189   return Namespace + "::" + R->getName().str();
190 }
191 
192 
193 /// getTarget - Return the current instance of the Target class.
194 ///
195 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
196   : Records(records), CGH(records) {
197   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
198   if (Targets.size() == 0)
199     PrintFatalError("ERROR: No 'Target' subclasses defined!");
200   if (Targets.size() != 1)
201     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
202   TargetRec = Targets[0];
203 }
204 
205 CodeGenTarget::~CodeGenTarget() {
206 }
207 
208 const StringRef CodeGenTarget::getName() const {
209   return TargetRec->getName();
210 }
211 
212 StringRef CodeGenTarget::getInstNamespace() const {
213   for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
214     // Make sure not to pick up "TargetOpcode" by accidentally getting
215     // the namespace off the PHI instruction or something.
216     if (Inst->Namespace != "TargetOpcode")
217       return Inst->Namespace;
218   }
219 
220   return "";
221 }
222 
223 Record *CodeGenTarget::getInstructionSet() const {
224   return TargetRec->getValueAsDef("InstructionSet");
225 }
226 
227 
228 /// getAsmParser - Return the AssemblyParser definition for this target.
229 ///
230 Record *CodeGenTarget::getAsmParser() const {
231   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
232   if (AsmParserNum >= LI.size())
233     PrintFatalError("Target does not have an AsmParser #" +
234                     Twine(AsmParserNum) + "!");
235   return LI[AsmParserNum];
236 }
237 
238 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
239 /// this target.
240 ///
241 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
242   std::vector<Record*> LI =
243     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
244   if (i >= LI.size())
245     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
246                     "!");
247   return LI[i];
248 }
249 
250 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
251 /// available for this target.
252 ///
253 unsigned CodeGenTarget::getAsmParserVariantCount() const {
254   std::vector<Record*> LI =
255     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
256   return LI.size();
257 }
258 
259 /// getAsmWriter - Return the AssemblyWriter definition for this target.
260 ///
261 Record *CodeGenTarget::getAsmWriter() const {
262   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
263   if (AsmWriterNum >= LI.size())
264     PrintFatalError("Target does not have an AsmWriter #" +
265                     Twine(AsmWriterNum) + "!");
266   return LI[AsmWriterNum];
267 }
268 
269 CodeGenRegBank &CodeGenTarget::getRegBank() const {
270   if (!RegBank)
271     RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes());
272   return *RegBank;
273 }
274 
275 void CodeGenTarget::ReadRegAltNameIndices() const {
276   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
277   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
278 }
279 
280 /// getRegisterByName - If there is a register with the specific AsmName,
281 /// return it.
282 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
283   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
284   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
285   if (I == Regs.end())
286     return nullptr;
287   return I->second;
288 }
289 
290 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
291       const {
292   const CodeGenRegister *Reg = getRegBank().getReg(R);
293   std::vector<ValueTypeByHwMode> Result;
294   for (const auto &RC : getRegBank().getRegClasses()) {
295     if (RC.contains(Reg)) {
296       ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
297       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
298     }
299   }
300 
301   // Remove duplicates.
302   std::sort(Result.begin(), Result.end());
303   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
304   return Result;
305 }
306 
307 
308 void CodeGenTarget::ReadLegalValueTypes() const {
309   for (const auto &RC : getRegBank().getRegClasses())
310     LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
311 
312   // Remove duplicates.
313   std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
314   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
315                                     LegalValueTypes.end()),
316                         LegalValueTypes.end());
317 }
318 
319 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
320   if (!SchedModels)
321     SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
322   return *SchedModels;
323 }
324 
325 void CodeGenTarget::ReadInstructions() const {
326   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
327   if (Insts.size() <= 2)
328     PrintFatalError("No 'Instruction' subclasses defined!");
329 
330   // Parse the instructions defined in the .td file.
331   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
332     Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
333 }
334 
335 static const CodeGenInstruction *
336 GetInstByName(const char *Name,
337               const DenseMap<const Record*,
338                              std::unique_ptr<CodeGenInstruction>> &Insts,
339               RecordKeeper &Records) {
340   const Record *Rec = Records.getDef(Name);
341 
342   const auto I = Insts.find(Rec);
343   if (!Rec || I == Insts.end())
344     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
345   return I->second.get();
346 }
347 
348 static const char *const FixedInstrs[] = {
349 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
350 #include "llvm/CodeGen/TargetOpcodes.def"
351     nullptr};
352 
353 unsigned CodeGenTarget::getNumFixedInstructions() {
354   return array_lengthof(FixedInstrs) - 1;
355 }
356 
357 /// \brief Return all of the instructions defined by the target, ordered by
358 /// their enum value.
359 void CodeGenTarget::ComputeInstrsByEnum() const {
360   const auto &Insts = getInstructions();
361   for (const char *const *p = FixedInstrs; *p; ++p) {
362     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
363     assert(Instr && "Missing target independent instruction");
364     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
365     InstrsByEnum.push_back(Instr);
366   }
367   unsigned EndOfPredefines = InstrsByEnum.size();
368   assert(EndOfPredefines == getNumFixedInstructions() &&
369          "Missing generic opcode");
370 
371   for (const auto &I : Insts) {
372     const CodeGenInstruction *CGI = I.second.get();
373     if (CGI->Namespace != "TargetOpcode")
374       InstrsByEnum.push_back(CGI);
375   }
376 
377   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
378 
379   // All of the instructions are now in random order based on the map iteration.
380   // Sort them by name.
381   std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
382             [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
383     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
384   });
385 }
386 
387 
388 /// isLittleEndianEncoding - Return whether this target encodes its instruction
389 /// in little-endian format, i.e. bits laid out in the order [0..n]
390 ///
391 bool CodeGenTarget::isLittleEndianEncoding() const {
392   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
393 }
394 
395 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
396 /// encodings, reverse the bit order of all instructions.
397 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
398   if (!isLittleEndianEncoding())
399     return;
400 
401   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
402   for (Record *R : Insts) {
403     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
404         R->getValueAsBit("isPseudo"))
405       continue;
406 
407     BitsInit *BI = R->getValueAsBitsInit("Inst");
408 
409     unsigned numBits = BI->getNumBits();
410 
411     SmallVector<Init *, 16> NewBits(numBits);
412 
413     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
414       unsigned bitSwapIdx = numBits - bit - 1;
415       Init *OrigBit = BI->getBit(bit);
416       Init *BitSwap = BI->getBit(bitSwapIdx);
417       NewBits[bit]        = BitSwap;
418       NewBits[bitSwapIdx] = OrigBit;
419     }
420     if (numBits % 2) {
421       unsigned middle = (numBits + 1) / 2;
422       NewBits[middle] = BI->getBit(middle);
423     }
424 
425     BitsInit *NewBI = BitsInit::get(NewBits);
426 
427     // Update the bits in reversed order so that emitInstrOpBits will get the
428     // correct endianness.
429     R->getValue("Inst")->setValue(NewBI);
430   }
431 }
432 
433 /// guessInstructionProperties - Return true if it's OK to guess instruction
434 /// properties instead of raising an error.
435 ///
436 /// This is configurable as a temporary migration aid. It will eventually be
437 /// permanently false.
438 bool CodeGenTarget::guessInstructionProperties() const {
439   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
440 }
441 
442 //===----------------------------------------------------------------------===//
443 // ComplexPattern implementation
444 //
445 ComplexPattern::ComplexPattern(Record *R) {
446   Ty          = ::getValueType(R->getValueAsDef("Ty"));
447   NumOperands = R->getValueAsInt("NumOperands");
448   SelectFunc  = R->getValueAsString("SelectFunc");
449   RootNodes   = R->getValueAsListOfDefs("RootNodes");
450 
451   // FIXME: This is a hack to statically increase the priority of patterns which
452   // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
453   // possible pattern match we'll need to dynamically calculate the complexity
454   // of all patterns a dag can potentially map to.
455   int64_t RawComplexity = R->getValueAsInt("Complexity");
456   if (RawComplexity == -1)
457     Complexity = NumOperands * 3;
458   else
459     Complexity = RawComplexity;
460 
461   // FIXME: Why is this different from parseSDPatternOperatorProperties?
462   // Parse the properties.
463   Properties = 0;
464   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
465   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
466     if (PropList[i]->getName() == "SDNPHasChain") {
467       Properties |= 1 << SDNPHasChain;
468     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
469       Properties |= 1 << SDNPOptInGlue;
470     } else if (PropList[i]->getName() == "SDNPMayStore") {
471       Properties |= 1 << SDNPMayStore;
472     } else if (PropList[i]->getName() == "SDNPMayLoad") {
473       Properties |= 1 << SDNPMayLoad;
474     } else if (PropList[i]->getName() == "SDNPSideEffect") {
475       Properties |= 1 << SDNPSideEffect;
476     } else if (PropList[i]->getName() == "SDNPMemOperand") {
477       Properties |= 1 << SDNPMemOperand;
478     } else if (PropList[i]->getName() == "SDNPVariadic") {
479       Properties |= 1 << SDNPVariadic;
480     } else if (PropList[i]->getName() == "SDNPWantRoot") {
481       Properties |= 1 << SDNPWantRoot;
482     } else if (PropList[i]->getName() == "SDNPWantParent") {
483       Properties |= 1 << SDNPWantParent;
484     } else {
485       PrintFatalError("Unsupported SD Node property '" +
486                       PropList[i]->getName() + "' on ComplexPattern '" +
487                       R->getName() + "'!");
488     }
489 }
490 
491 //===----------------------------------------------------------------------===//
492 // CodeGenIntrinsic Implementation
493 //===----------------------------------------------------------------------===//
494 
495 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC,
496                                              bool TargetOnly) {
497   std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic");
498 
499   Intrinsics.reserve(Defs.size());
500 
501   for (unsigned I = 0, e = Defs.size(); I != e; ++I) {
502     bool isTarget = Defs[I]->getValueAsBit("isTarget");
503     if (isTarget == TargetOnly)
504       Intrinsics.push_back(CodeGenIntrinsic(Defs[I]));
505   }
506   std::sort(Intrinsics.begin(), Intrinsics.end(),
507             [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
508               return std::tie(LHS.TargetPrefix, LHS.Name) <
509                      std::tie(RHS.TargetPrefix, RHS.Name);
510             });
511   Targets.push_back({"", 0, 0});
512   for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
513     if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
514       Targets.back().Count = I - Targets.back().Offset;
515       Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
516     }
517   Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
518 }
519 
520 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
521   TheDef = R;
522   std::string DefName = R->getName();
523   ModRef = ReadWriteMem;
524   Properties = 0;
525   isOverloaded = false;
526   isCommutative = false;
527   canThrow = false;
528   isNoReturn = false;
529   isNoDuplicate = false;
530   isConvergent = false;
531   isSpeculatable = false;
532   hasSideEffects = false;
533 
534   if (DefName.size() <= 4 ||
535       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
536     PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
537 
538   EnumName = std::string(DefName.begin()+4, DefName.end());
539 
540   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
541     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
542   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
543     MSBuiltinName = R->getValueAsString("MSBuiltinName");
544 
545   TargetPrefix = R->getValueAsString("TargetPrefix");
546   Name = R->getValueAsString("LLVMName");
547 
548   if (Name == "") {
549     // If an explicit name isn't specified, derive one from the DefName.
550     Name = "llvm.";
551 
552     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
553       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
554   } else {
555     // Verify it starts with "llvm.".
556     if (Name.size() <= 5 ||
557         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
558       PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
559   }
560 
561   // If TargetPrefix is specified, make sure that Name starts with
562   // "llvm.<targetprefix>.".
563   if (!TargetPrefix.empty()) {
564     if (Name.size() < 6+TargetPrefix.size() ||
565         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
566         != (TargetPrefix + "."))
567       PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
568         TargetPrefix + ".'!");
569   }
570 
571   // Parse the list of return types.
572   std::vector<MVT::SimpleValueType> OverloadedVTs;
573   ListInit *TypeList = R->getValueAsListInit("RetTypes");
574   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
575     Record *TyEl = TypeList->getElementAsRecord(i);
576     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
577     MVT::SimpleValueType VT;
578     if (TyEl->isSubClassOf("LLVMMatchType")) {
579       unsigned MatchTy = TyEl->getValueAsInt("Number");
580       assert(MatchTy < OverloadedVTs.size() &&
581              "Invalid matching number!");
582       VT = OverloadedVTs[MatchTy];
583       // It only makes sense to use the extended and truncated vector element
584       // variants with iAny types; otherwise, if the intrinsic is not
585       // overloaded, all the types can be specified directly.
586       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
587                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
588               VT == MVT::iAny || VT == MVT::vAny) &&
589              "Expected iAny or vAny type");
590     } else {
591       VT = getValueType(TyEl->getValueAsDef("VT"));
592     }
593     if (MVT(VT).isOverloaded()) {
594       OverloadedVTs.push_back(VT);
595       isOverloaded = true;
596     }
597 
598     // Reject invalid types.
599     if (VT == MVT::isVoid)
600       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
601 
602     IS.RetVTs.push_back(VT);
603     IS.RetTypeDefs.push_back(TyEl);
604   }
605 
606   // Parse the list of parameter types.
607   TypeList = R->getValueAsListInit("ParamTypes");
608   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
609     Record *TyEl = TypeList->getElementAsRecord(i);
610     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
611     MVT::SimpleValueType VT;
612     if (TyEl->isSubClassOf("LLVMMatchType")) {
613       unsigned MatchTy = TyEl->getValueAsInt("Number");
614       assert(MatchTy < OverloadedVTs.size() &&
615              "Invalid matching number!");
616       VT = OverloadedVTs[MatchTy];
617       // It only makes sense to use the extended and truncated vector element
618       // variants with iAny types; otherwise, if the intrinsic is not
619       // overloaded, all the types can be specified directly.
620       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
621                !TyEl->isSubClassOf("LLVMTruncatedType") &&
622                !TyEl->isSubClassOf("LLVMVectorSameWidth")) ||
623               VT == MVT::iAny || VT == MVT::vAny) &&
624              "Expected iAny or vAny type");
625     } else
626       VT = getValueType(TyEl->getValueAsDef("VT"));
627 
628     if (MVT(VT).isOverloaded()) {
629       OverloadedVTs.push_back(VT);
630       isOverloaded = true;
631     }
632 
633     // Reject invalid types.
634     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
635       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
636 
637     IS.ParamVTs.push_back(VT);
638     IS.ParamTypeDefs.push_back(TyEl);
639   }
640 
641   // Parse the intrinsic properties.
642   ListInit *PropList = R->getValueAsListInit("IntrProperties");
643   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
644     Record *Property = PropList->getElementAsRecord(i);
645     assert(Property->isSubClassOf("IntrinsicProperty") &&
646            "Expected a property!");
647 
648     if (Property->getName() == "IntrNoMem")
649       ModRef = NoMem;
650     else if (Property->getName() == "IntrReadMem")
651       ModRef = ModRefBehavior(ModRef & ~MR_Mod);
652     else if (Property->getName() == "IntrWriteMem")
653       ModRef = ModRefBehavior(ModRef & ~MR_Ref);
654     else if (Property->getName() == "IntrArgMemOnly")
655       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
656     else if (Property->getName() == "IntrInaccessibleMemOnly")
657       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
658     else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly")
659       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
660                               MR_InaccessibleMem);
661     else if (Property->getName() == "Commutative")
662       isCommutative = true;
663     else if (Property->getName() == "Throws")
664       canThrow = true;
665     else if (Property->getName() == "IntrNoDuplicate")
666       isNoDuplicate = true;
667     else if (Property->getName() == "IntrConvergent")
668       isConvergent = true;
669     else if (Property->getName() == "IntrNoReturn")
670       isNoReturn = true;
671     else if (Property->getName() == "IntrSpeculatable")
672       isSpeculatable = true;
673     else if (Property->getName() == "IntrHasSideEffects")
674       hasSideEffects = true;
675     else if (Property->isSubClassOf("NoCapture")) {
676       unsigned ArgNo = Property->getValueAsInt("ArgNo");
677       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
678     } else if (Property->isSubClassOf("Returned")) {
679       unsigned ArgNo = Property->getValueAsInt("ArgNo");
680       ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned));
681     } else if (Property->isSubClassOf("ReadOnly")) {
682       unsigned ArgNo = Property->getValueAsInt("ArgNo");
683       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
684     } else if (Property->isSubClassOf("WriteOnly")) {
685       unsigned ArgNo = Property->getValueAsInt("ArgNo");
686       ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly));
687     } else if (Property->isSubClassOf("ReadNone")) {
688       unsigned ArgNo = Property->getValueAsInt("ArgNo");
689       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
690     } else
691       llvm_unreachable("Unknown property!");
692   }
693 
694   // Also record the SDPatternOperator Properties.
695   Properties = parseSDPatternOperatorProperties(R);
696 
697   // Sort the argument attributes for later benefit.
698   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
699 }
700 
701