1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class wraps target description classes used by the various code 10 // generation TableGen backends. This makes it easier to access the data and 11 // provides a single place that needs to check it for validity. All of these 12 // classes abort on error conditions. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CodeGenTarget.h" 17 #include "CodeGenDAGPatterns.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Timer.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <algorithm> 28 using namespace llvm; 29 30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 32 33 static cl::opt<unsigned> 34 AsmParserNum("asmparsernum", cl::init(0), 35 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 36 cl::cat(AsmParserCat)); 37 38 static cl::opt<unsigned> 39 AsmWriterNum("asmwriternum", cl::init(0), 40 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 41 cl::cat(AsmWriterCat)); 42 43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 44 /// record corresponds to. 45 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 46 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 47 } 48 49 StringRef llvm::getName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "UNKNOWN"; 52 case MVT::iPTR: return "TLI.getPointerTy()"; 53 case MVT::iPTRAny: return "TLI.getPointerTy()"; 54 default: return getEnumName(T); 55 } 56 } 57 58 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 59 switch (T) { 60 case MVT::Other: return "MVT::Other"; 61 case MVT::i1: return "MVT::i1"; 62 case MVT::i8: return "MVT::i8"; 63 case MVT::i16: return "MVT::i16"; 64 case MVT::i32: return "MVT::i32"; 65 case MVT::i64: return "MVT::i64"; 66 case MVT::i128: return "MVT::i128"; 67 case MVT::Any: return "MVT::Any"; 68 case MVT::iAny: return "MVT::iAny"; 69 case MVT::fAny: return "MVT::fAny"; 70 case MVT::vAny: return "MVT::vAny"; 71 case MVT::f16: return "MVT::f16"; 72 case MVT::f32: return "MVT::f32"; 73 case MVT::f64: return "MVT::f64"; 74 case MVT::f80: return "MVT::f80"; 75 case MVT::f128: return "MVT::f128"; 76 case MVT::ppcf128: return "MVT::ppcf128"; 77 case MVT::x86mmx: return "MVT::x86mmx"; 78 case MVT::Glue: return "MVT::Glue"; 79 case MVT::isVoid: return "MVT::isVoid"; 80 case MVT::v1i1: return "MVT::v1i1"; 81 case MVT::v2i1: return "MVT::v2i1"; 82 case MVT::v4i1: return "MVT::v4i1"; 83 case MVT::v8i1: return "MVT::v8i1"; 84 case MVT::v16i1: return "MVT::v16i1"; 85 case MVT::v32i1: return "MVT::v32i1"; 86 case MVT::v64i1: return "MVT::v64i1"; 87 case MVT::v128i1: return "MVT::v128i1"; 88 case MVT::v512i1: return "MVT::v512i1"; 89 case MVT::v1024i1: return "MVT::v1024i1"; 90 case MVT::v1i8: return "MVT::v1i8"; 91 case MVT::v2i8: return "MVT::v2i8"; 92 case MVT::v4i8: return "MVT::v4i8"; 93 case MVT::v8i8: return "MVT::v8i8"; 94 case MVT::v16i8: return "MVT::v16i8"; 95 case MVT::v32i8: return "MVT::v32i8"; 96 case MVT::v64i8: return "MVT::v64i8"; 97 case MVT::v128i8: return "MVT::v128i8"; 98 case MVT::v256i8: return "MVT::v256i8"; 99 case MVT::v1i16: return "MVT::v1i16"; 100 case MVT::v2i16: return "MVT::v2i16"; 101 case MVT::v4i16: return "MVT::v4i16"; 102 case MVT::v8i16: return "MVT::v8i16"; 103 case MVT::v16i16: return "MVT::v16i16"; 104 case MVT::v32i16: return "MVT::v32i16"; 105 case MVT::v64i16: return "MVT::v64i16"; 106 case MVT::v128i16: return "MVT::v128i16"; 107 case MVT::v1i32: return "MVT::v1i32"; 108 case MVT::v2i32: return "MVT::v2i32"; 109 case MVT::v3i32: return "MVT::v3i32"; 110 case MVT::v4i32: return "MVT::v4i32"; 111 case MVT::v5i32: return "MVT::v5i32"; 112 case MVT::v8i32: return "MVT::v8i32"; 113 case MVT::v16i32: return "MVT::v16i32"; 114 case MVT::v32i32: return "MVT::v32i32"; 115 case MVT::v64i32: return "MVT::v64i32"; 116 case MVT::v1i64: return "MVT::v1i64"; 117 case MVT::v2i64: return "MVT::v2i64"; 118 case MVT::v4i64: return "MVT::v4i64"; 119 case MVT::v8i64: return "MVT::v8i64"; 120 case MVT::v16i64: return "MVT::v16i64"; 121 case MVT::v32i64: return "MVT::v32i64"; 122 case MVT::v1i128: return "MVT::v1i128"; 123 case MVT::v2f16: return "MVT::v2f16"; 124 case MVT::v4f16: return "MVT::v4f16"; 125 case MVT::v8f16: return "MVT::v8f16"; 126 case MVT::v1f32: return "MVT::v1f32"; 127 case MVT::v2f32: return "MVT::v2f32"; 128 case MVT::v3f32: return "MVT::v3f32"; 129 case MVT::v4f32: return "MVT::v4f32"; 130 case MVT::v5f32: return "MVT::v5f32"; 131 case MVT::v8f32: return "MVT::v8f32"; 132 case MVT::v16f32: return "MVT::v16f32"; 133 case MVT::v1f64: return "MVT::v1f64"; 134 case MVT::v2f64: return "MVT::v2f64"; 135 case MVT::v4f64: return "MVT::v4f64"; 136 case MVT::v8f64: return "MVT::v8f64"; 137 case MVT::nxv1i1: return "MVT::nxv1i1"; 138 case MVT::nxv2i1: return "MVT::nxv2i1"; 139 case MVT::nxv4i1: return "MVT::nxv4i1"; 140 case MVT::nxv8i1: return "MVT::nxv8i1"; 141 case MVT::nxv16i1: return "MVT::nxv16i1"; 142 case MVT::nxv32i1: return "MVT::nxv32i1"; 143 case MVT::nxv1i8: return "MVT::nxv1i8"; 144 case MVT::nxv2i8: return "MVT::nxv2i8"; 145 case MVT::nxv4i8: return "MVT::nxv4i8"; 146 case MVT::nxv8i8: return "MVT::nxv8i8"; 147 case MVT::nxv16i8: return "MVT::nxv16i8"; 148 case MVT::nxv32i8: return "MVT::nxv32i8"; 149 case MVT::nxv1i16: return "MVT::nxv1i16"; 150 case MVT::nxv2i16: return "MVT::nxv2i16"; 151 case MVT::nxv4i16: return "MVT::nxv4i16"; 152 case MVT::nxv8i16: return "MVT::nxv8i16"; 153 case MVT::nxv16i16: return "MVT::nxv16i16"; 154 case MVT::nxv32i16: return "MVT::nxv32i16"; 155 case MVT::nxv1i32: return "MVT::nxv1i32"; 156 case MVT::nxv2i32: return "MVT::nxv2i32"; 157 case MVT::nxv4i32: return "MVT::nxv4i32"; 158 case MVT::nxv8i32: return "MVT::nxv8i32"; 159 case MVT::nxv16i32: return "MVT::nxv16i32"; 160 case MVT::nxv1i64: return "MVT::nxv1i64"; 161 case MVT::nxv2i64: return "MVT::nxv2i64"; 162 case MVT::nxv4i64: return "MVT::nxv4i64"; 163 case MVT::nxv8i64: return "MVT::nxv8i64"; 164 case MVT::nxv16i64: return "MVT::nxv16i64"; 165 case MVT::nxv2f16: return "MVT::nxv2f16"; 166 case MVT::nxv4f16: return "MVT::nxv4f16"; 167 case MVT::nxv8f16: return "MVT::nxv8f16"; 168 case MVT::nxv1f32: return "MVT::nxv1f32"; 169 case MVT::nxv2f32: return "MVT::nxv2f32"; 170 case MVT::nxv4f32: return "MVT::nxv4f32"; 171 case MVT::nxv8f32: return "MVT::nxv8f32"; 172 case MVT::nxv16f32: return "MVT::nxv16f32"; 173 case MVT::nxv1f64: return "MVT::nxv1f64"; 174 case MVT::nxv2f64: return "MVT::nxv2f64"; 175 case MVT::nxv4f64: return "MVT::nxv4f64"; 176 case MVT::nxv8f64: return "MVT::nxv8f64"; 177 case MVT::token: return "MVT::token"; 178 case MVT::Metadata: return "MVT::Metadata"; 179 case MVT::iPTR: return "MVT::iPTR"; 180 case MVT::iPTRAny: return "MVT::iPTRAny"; 181 case MVT::Untyped: return "MVT::Untyped"; 182 case MVT::ExceptRef: return "MVT::ExceptRef"; 183 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 184 } 185 } 186 187 /// getQualifiedName - Return the name of the specified record, with a 188 /// namespace qualifier if the record contains one. 189 /// 190 std::string llvm::getQualifiedName(const Record *R) { 191 std::string Namespace; 192 if (R->getValue("Namespace")) 193 Namespace = R->getValueAsString("Namespace"); 194 if (Namespace.empty()) return R->getName(); 195 return Namespace + "::" + R->getName().str(); 196 } 197 198 199 /// getTarget - Return the current instance of the Target class. 200 /// 201 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 202 : Records(records), CGH(records) { 203 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 204 if (Targets.size() == 0) 205 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 206 if (Targets.size() != 1) 207 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 208 TargetRec = Targets[0]; 209 } 210 211 CodeGenTarget::~CodeGenTarget() { 212 } 213 214 const StringRef CodeGenTarget::getName() const { 215 return TargetRec->getName(); 216 } 217 218 StringRef CodeGenTarget::getInstNamespace() const { 219 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 220 // Make sure not to pick up "TargetOpcode" by accidentally getting 221 // the namespace off the PHI instruction or something. 222 if (Inst->Namespace != "TargetOpcode") 223 return Inst->Namespace; 224 } 225 226 return ""; 227 } 228 229 Record *CodeGenTarget::getInstructionSet() const { 230 return TargetRec->getValueAsDef("InstructionSet"); 231 } 232 233 bool CodeGenTarget::getAllowRegisterRenaming() const { 234 return TargetRec->getValueAsInt("AllowRegisterRenaming"); 235 } 236 237 /// getAsmParser - Return the AssemblyParser definition for this target. 238 /// 239 Record *CodeGenTarget::getAsmParser() const { 240 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 241 if (AsmParserNum >= LI.size()) 242 PrintFatalError("Target does not have an AsmParser #" + 243 Twine(AsmParserNum) + "!"); 244 return LI[AsmParserNum]; 245 } 246 247 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 248 /// this target. 249 /// 250 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 251 std::vector<Record*> LI = 252 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 253 if (i >= LI.size()) 254 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 255 "!"); 256 return LI[i]; 257 } 258 259 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 260 /// available for this target. 261 /// 262 unsigned CodeGenTarget::getAsmParserVariantCount() const { 263 std::vector<Record*> LI = 264 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 265 return LI.size(); 266 } 267 268 /// getAsmWriter - Return the AssemblyWriter definition for this target. 269 /// 270 Record *CodeGenTarget::getAsmWriter() const { 271 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 272 if (AsmWriterNum >= LI.size()) 273 PrintFatalError("Target does not have an AsmWriter #" + 274 Twine(AsmWriterNum) + "!"); 275 return LI[AsmWriterNum]; 276 } 277 278 CodeGenRegBank &CodeGenTarget::getRegBank() const { 279 if (!RegBank) 280 RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes()); 281 return *RegBank; 282 } 283 284 void CodeGenTarget::ReadRegAltNameIndices() const { 285 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 286 llvm::sort(RegAltNameIndices, LessRecord()); 287 } 288 289 /// getRegisterByName - If there is a register with the specific AsmName, 290 /// return it. 291 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 292 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 293 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 294 if (I == Regs.end()) 295 return nullptr; 296 return I->second; 297 } 298 299 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R) 300 const { 301 const CodeGenRegister *Reg = getRegBank().getReg(R); 302 std::vector<ValueTypeByHwMode> Result; 303 for (const auto &RC : getRegBank().getRegClasses()) { 304 if (RC.contains(Reg)) { 305 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); 306 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 307 } 308 } 309 310 // Remove duplicates. 311 llvm::sort(Result); 312 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 313 return Result; 314 } 315 316 317 void CodeGenTarget::ReadLegalValueTypes() const { 318 for (const auto &RC : getRegBank().getRegClasses()) 319 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 320 321 // Remove duplicates. 322 llvm::sort(LegalValueTypes); 323 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 324 LegalValueTypes.end()), 325 LegalValueTypes.end()); 326 } 327 328 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 329 if (!SchedModels) 330 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this); 331 return *SchedModels; 332 } 333 334 void CodeGenTarget::ReadInstructions() const { 335 NamedRegionTimer T("Read Instructions", "Time spent reading instructions", 336 "CodeGenTarget", "CodeGenTarget", TimeRegions); 337 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 338 if (Insts.size() <= 2) 339 PrintFatalError("No 'Instruction' subclasses defined!"); 340 341 // Parse the instructions defined in the .td file. 342 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 343 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]); 344 } 345 346 static const CodeGenInstruction * 347 GetInstByName(const char *Name, 348 const DenseMap<const Record*, 349 std::unique_ptr<CodeGenInstruction>> &Insts, 350 RecordKeeper &Records) { 351 const Record *Rec = Records.getDef(Name); 352 353 const auto I = Insts.find(Rec); 354 if (!Rec || I == Insts.end()) 355 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 356 return I->second.get(); 357 } 358 359 static const char *const FixedInstrs[] = { 360 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 361 #include "llvm/Support/TargetOpcodes.def" 362 nullptr}; 363 364 unsigned CodeGenTarget::getNumFixedInstructions() { 365 return array_lengthof(FixedInstrs) - 1; 366 } 367 368 /// Return all of the instructions defined by the target, ordered by 369 /// their enum value. 370 void CodeGenTarget::ComputeInstrsByEnum() const { 371 const auto &Insts = getInstructions(); 372 for (const char *const *p = FixedInstrs; *p; ++p) { 373 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 374 assert(Instr && "Missing target independent instruction"); 375 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 376 InstrsByEnum.push_back(Instr); 377 } 378 unsigned EndOfPredefines = InstrsByEnum.size(); 379 assert(EndOfPredefines == getNumFixedInstructions() && 380 "Missing generic opcode"); 381 382 for (const auto &I : Insts) { 383 const CodeGenInstruction *CGI = I.second.get(); 384 if (CGI->Namespace != "TargetOpcode") { 385 InstrsByEnum.push_back(CGI); 386 if (CGI->TheDef->getValueAsBit("isPseudo")) 387 ++NumPseudoInstructions; 388 } 389 } 390 391 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 392 393 // All of the instructions are now in random order based on the map iteration. 394 llvm::sort( 395 InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 396 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 397 const auto &D1 = *Rec1->TheDef; 398 const auto &D2 = *Rec2->TheDef; 399 return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < 400 std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); 401 }); 402 } 403 404 405 /// isLittleEndianEncoding - Return whether this target encodes its instruction 406 /// in little-endian format, i.e. bits laid out in the order [0..n] 407 /// 408 bool CodeGenTarget::isLittleEndianEncoding() const { 409 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 410 } 411 412 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 413 /// encodings, reverse the bit order of all instructions. 414 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 415 if (!isLittleEndianEncoding()) 416 return; 417 418 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 419 for (Record *R : Insts) { 420 if (R->getValueAsString("Namespace") == "TargetOpcode" || 421 R->getValueAsBit("isPseudo")) 422 continue; 423 424 BitsInit *BI = R->getValueAsBitsInit("Inst"); 425 426 unsigned numBits = BI->getNumBits(); 427 428 SmallVector<Init *, 16> NewBits(numBits); 429 430 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 431 unsigned bitSwapIdx = numBits - bit - 1; 432 Init *OrigBit = BI->getBit(bit); 433 Init *BitSwap = BI->getBit(bitSwapIdx); 434 NewBits[bit] = BitSwap; 435 NewBits[bitSwapIdx] = OrigBit; 436 } 437 if (numBits % 2) { 438 unsigned middle = (numBits + 1) / 2; 439 NewBits[middle] = BI->getBit(middle); 440 } 441 442 BitsInit *NewBI = BitsInit::get(NewBits); 443 444 // Update the bits in reversed order so that emitInstrOpBits will get the 445 // correct endianness. 446 R->getValue("Inst")->setValue(NewBI); 447 } 448 } 449 450 /// guessInstructionProperties - Return true if it's OK to guess instruction 451 /// properties instead of raising an error. 452 /// 453 /// This is configurable as a temporary migration aid. It will eventually be 454 /// permanently false. 455 bool CodeGenTarget::guessInstructionProperties() const { 456 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 457 } 458 459 //===----------------------------------------------------------------------===// 460 // ComplexPattern implementation 461 // 462 ComplexPattern::ComplexPattern(Record *R) { 463 Ty = ::getValueType(R->getValueAsDef("Ty")); 464 NumOperands = R->getValueAsInt("NumOperands"); 465 SelectFunc = R->getValueAsString("SelectFunc"); 466 RootNodes = R->getValueAsListOfDefs("RootNodes"); 467 468 // FIXME: This is a hack to statically increase the priority of patterns which 469 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 470 // possible pattern match we'll need to dynamically calculate the complexity 471 // of all patterns a dag can potentially map to. 472 int64_t RawComplexity = R->getValueAsInt("Complexity"); 473 if (RawComplexity == -1) 474 Complexity = NumOperands * 3; 475 else 476 Complexity = RawComplexity; 477 478 // FIXME: Why is this different from parseSDPatternOperatorProperties? 479 // Parse the properties. 480 Properties = 0; 481 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 482 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 483 if (PropList[i]->getName() == "SDNPHasChain") { 484 Properties |= 1 << SDNPHasChain; 485 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 486 Properties |= 1 << SDNPOptInGlue; 487 } else if (PropList[i]->getName() == "SDNPMayStore") { 488 Properties |= 1 << SDNPMayStore; 489 } else if (PropList[i]->getName() == "SDNPMayLoad") { 490 Properties |= 1 << SDNPMayLoad; 491 } else if (PropList[i]->getName() == "SDNPSideEffect") { 492 Properties |= 1 << SDNPSideEffect; 493 } else if (PropList[i]->getName() == "SDNPMemOperand") { 494 Properties |= 1 << SDNPMemOperand; 495 } else if (PropList[i]->getName() == "SDNPVariadic") { 496 Properties |= 1 << SDNPVariadic; 497 } else if (PropList[i]->getName() == "SDNPWantRoot") { 498 Properties |= 1 << SDNPWantRoot; 499 } else if (PropList[i]->getName() == "SDNPWantParent") { 500 Properties |= 1 << SDNPWantParent; 501 } else { 502 PrintFatalError(R->getLoc(), "Unsupported SD Node property '" + 503 PropList[i]->getName() + 504 "' on ComplexPattern '" + R->getName() + 505 "'!"); 506 } 507 } 508 509 //===----------------------------------------------------------------------===// 510 // CodeGenIntrinsic Implementation 511 //===----------------------------------------------------------------------===// 512 513 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC, 514 bool TargetOnly) { 515 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 516 517 Intrinsics.reserve(Defs.size()); 518 519 for (unsigned I = 0, e = Defs.size(); I != e; ++I) { 520 bool isTarget = Defs[I]->getValueAsBit("isTarget"); 521 if (isTarget == TargetOnly) 522 Intrinsics.push_back(CodeGenIntrinsic(Defs[I])); 523 } 524 llvm::sort(Intrinsics, 525 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 526 return std::tie(LHS.TargetPrefix, LHS.Name) < 527 std::tie(RHS.TargetPrefix, RHS.Name); 528 }); 529 Targets.push_back({"", 0, 0}); 530 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 531 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 532 Targets.back().Count = I - Targets.back().Offset; 533 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 534 } 535 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 536 } 537 538 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 539 TheDef = R; 540 std::string DefName = R->getName(); 541 ArrayRef<SMLoc> DefLoc = R->getLoc(); 542 ModRef = ReadWriteMem; 543 Properties = 0; 544 isOverloaded = false; 545 isCommutative = false; 546 canThrow = false; 547 isNoReturn = false; 548 isCold = false; 549 isNoDuplicate = false; 550 isConvergent = false; 551 isSpeculatable = false; 552 hasSideEffects = false; 553 554 if (DefName.size() <= 4 || 555 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 556 PrintFatalError(DefLoc, 557 "Intrinsic '" + DefName + "' does not start with 'int_'!"); 558 559 EnumName = std::string(DefName.begin()+4, DefName.end()); 560 561 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 562 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 563 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 564 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 565 566 TargetPrefix = R->getValueAsString("TargetPrefix"); 567 Name = R->getValueAsString("LLVMName"); 568 569 if (Name == "") { 570 // If an explicit name isn't specified, derive one from the DefName. 571 Name = "llvm."; 572 573 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 574 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 575 } else { 576 // Verify it starts with "llvm.". 577 if (Name.size() <= 5 || 578 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 579 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 580 "'s name does not start with 'llvm.'!"); 581 } 582 583 // If TargetPrefix is specified, make sure that Name starts with 584 // "llvm.<targetprefix>.". 585 if (!TargetPrefix.empty()) { 586 if (Name.size() < 6+TargetPrefix.size() || 587 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 588 != (TargetPrefix + ".")) 589 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 590 "' does not start with 'llvm." + 591 TargetPrefix + ".'!"); 592 } 593 594 // Parse the list of return types. 595 std::vector<MVT::SimpleValueType> OverloadedVTs; 596 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 597 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 598 Record *TyEl = TypeList->getElementAsRecord(i); 599 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 600 MVT::SimpleValueType VT; 601 if (TyEl->isSubClassOf("LLVMMatchType")) { 602 unsigned MatchTy = TyEl->getValueAsInt("Number"); 603 assert(MatchTy < OverloadedVTs.size() && 604 "Invalid matching number!"); 605 VT = OverloadedVTs[MatchTy]; 606 // It only makes sense to use the extended and truncated vector element 607 // variants with iAny types; otherwise, if the intrinsic is not 608 // overloaded, all the types can be specified directly. 609 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 610 !TyEl->isSubClassOf("LLVMTruncatedType")) || 611 VT == MVT::iAny || VT == MVT::vAny) && 612 "Expected iAny or vAny type"); 613 } else { 614 VT = getValueType(TyEl->getValueAsDef("VT")); 615 } 616 if (MVT(VT).isOverloaded()) { 617 OverloadedVTs.push_back(VT); 618 isOverloaded = true; 619 } 620 621 // Reject invalid types. 622 if (VT == MVT::isVoid) 623 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 624 " has void in result type list!"); 625 626 IS.RetVTs.push_back(VT); 627 IS.RetTypeDefs.push_back(TyEl); 628 } 629 630 // Parse the list of parameter types. 631 TypeList = R->getValueAsListInit("ParamTypes"); 632 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 633 Record *TyEl = TypeList->getElementAsRecord(i); 634 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 635 MVT::SimpleValueType VT; 636 if (TyEl->isSubClassOf("LLVMMatchType")) { 637 unsigned MatchTy = TyEl->getValueAsInt("Number"); 638 if (MatchTy >= OverloadedVTs.size()) { 639 PrintError(R->getLoc(), 640 "Parameter #" + Twine(i) + " has out of bounds matching " 641 "number " + Twine(MatchTy)); 642 PrintFatalError(DefLoc, 643 Twine("ParamTypes is ") + TypeList->getAsString()); 644 } 645 VT = OverloadedVTs[MatchTy]; 646 // It only makes sense to use the extended and truncated vector element 647 // variants with iAny types; otherwise, if the intrinsic is not 648 // overloaded, all the types can be specified directly. 649 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 650 !TyEl->isSubClassOf("LLVMTruncatedType") && 651 !TyEl->isSubClassOf("LLVMScalarOrSameVectorWidth")) || 652 VT == MVT::iAny || VT == MVT::vAny) && 653 "Expected iAny or vAny type"); 654 } else 655 VT = getValueType(TyEl->getValueAsDef("VT")); 656 657 if (MVT(VT).isOverloaded()) { 658 OverloadedVTs.push_back(VT); 659 isOverloaded = true; 660 } 661 662 // Reject invalid types. 663 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 664 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 665 " has void in result type list!"); 666 667 IS.ParamVTs.push_back(VT); 668 IS.ParamTypeDefs.push_back(TyEl); 669 } 670 671 // Parse the intrinsic properties. 672 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 673 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 674 Record *Property = PropList->getElementAsRecord(i); 675 assert(Property->isSubClassOf("IntrinsicProperty") && 676 "Expected a property!"); 677 678 if (Property->getName() == "IntrNoMem") 679 ModRef = NoMem; 680 else if (Property->getName() == "IntrReadMem") 681 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 682 else if (Property->getName() == "IntrWriteMem") 683 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 684 else if (Property->getName() == "IntrArgMemOnly") 685 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 686 else if (Property->getName() == "IntrInaccessibleMemOnly") 687 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 688 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly") 689 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 690 MR_InaccessibleMem); 691 else if (Property->getName() == "Commutative") 692 isCommutative = true; 693 else if (Property->getName() == "Throws") 694 canThrow = true; 695 else if (Property->getName() == "IntrNoDuplicate") 696 isNoDuplicate = true; 697 else if (Property->getName() == "IntrConvergent") 698 isConvergent = true; 699 else if (Property->getName() == "IntrNoReturn") 700 isNoReturn = true; 701 else if (Property->getName() == "IntrCold") 702 isCold = true; 703 else if (Property->getName() == "IntrSpeculatable") 704 isSpeculatable = true; 705 else if (Property->getName() == "IntrHasSideEffects") 706 hasSideEffects = true; 707 else if (Property->isSubClassOf("NoCapture")) { 708 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 709 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 710 } else if (Property->isSubClassOf("Returned")) { 711 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 712 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned)); 713 } else if (Property->isSubClassOf("ReadOnly")) { 714 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 715 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 716 } else if (Property->isSubClassOf("WriteOnly")) { 717 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 718 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly)); 719 } else if (Property->isSubClassOf("ReadNone")) { 720 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 721 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 722 } else if (Property->isSubClassOf("ImmArg")) { 723 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 724 ArgumentAttributes.push_back(std::make_pair(ArgNo, ImmArg)); 725 } else 726 llvm_unreachable("Unknown property!"); 727 } 728 729 // Also record the SDPatternOperator Properties. 730 Properties = parseSDPatternOperatorProperties(R); 731 732 // Sort the argument attributes for later benefit. 733 llvm::sort(ArgumentAttributes); 734 } 735