1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends.  This makes it easier to access the data and
11 // provides a single place that needs to check it for validity.  All of these
12 // classes abort on error conditions.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CodeGenTarget.h"
17 #include "CodeGenDAGPatterns.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Timer.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 #include <algorithm>
28 using namespace llvm;
29 
30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
32 
33 static cl::opt<unsigned>
34     AsmParserNum("asmparsernum", cl::init(0),
35                  cl::desc("Make -gen-asm-parser emit assembly parser #N"),
36                  cl::cat(AsmParserCat));
37 
38 static cl::opt<unsigned>
39     AsmWriterNum("asmwriternum", cl::init(0),
40                  cl::desc("Make -gen-asm-writer emit assembly writer #N"),
41                  cl::cat(AsmWriterCat));
42 
43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
44 /// record corresponds to.
45 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
46   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
47 }
48 
49 StringRef llvm::getName(MVT::SimpleValueType T) {
50   switch (T) {
51   case MVT::Other:   return "UNKNOWN";
52   case MVT::iPTR:    return "TLI.getPointerTy()";
53   case MVT::iPTRAny: return "TLI.getPointerTy()";
54   default: return getEnumName(T);
55   }
56 }
57 
58 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
59   switch (T) {
60   case MVT::Other:    return "MVT::Other";
61   case MVT::i1:       return "MVT::i1";
62   case MVT::i8:       return "MVT::i8";
63   case MVT::i16:      return "MVT::i16";
64   case MVT::i32:      return "MVT::i32";
65   case MVT::i64:      return "MVT::i64";
66   case MVT::i128:     return "MVT::i128";
67   case MVT::Any:      return "MVT::Any";
68   case MVT::iAny:     return "MVT::iAny";
69   case MVT::fAny:     return "MVT::fAny";
70   case MVT::vAny:     return "MVT::vAny";
71   case MVT::f16:      return "MVT::f16";
72   case MVT::bf16:     return "MVT::bf16";
73   case MVT::f32:      return "MVT::f32";
74   case MVT::f64:      return "MVT::f64";
75   case MVT::f80:      return "MVT::f80";
76   case MVT::f128:     return "MVT::f128";
77   case MVT::ppcf128:  return "MVT::ppcf128";
78   case MVT::x86mmx:   return "MVT::x86mmx";
79   case MVT::x86amx:   return "MVT::x86amx";
80   case MVT::Glue:     return "MVT::Glue";
81   case MVT::isVoid:   return "MVT::isVoid";
82   case MVT::v1i1:     return "MVT::v1i1";
83   case MVT::v2i1:     return "MVT::v2i1";
84   case MVT::v4i1:     return "MVT::v4i1";
85   case MVT::v8i1:     return "MVT::v8i1";
86   case MVT::v16i1:    return "MVT::v16i1";
87   case MVT::v32i1:    return "MVT::v32i1";
88   case MVT::v64i1:    return "MVT::v64i1";
89   case MVT::v128i1:   return "MVT::v128i1";
90   case MVT::v256i1:   return "MVT::v256i1";
91   case MVT::v512i1:   return "MVT::v512i1";
92   case MVT::v1024i1:  return "MVT::v1024i1";
93   case MVT::v1i8:     return "MVT::v1i8";
94   case MVT::v2i8:     return "MVT::v2i8";
95   case MVT::v4i8:     return "MVT::v4i8";
96   case MVT::v8i8:     return "MVT::v8i8";
97   case MVT::v16i8:    return "MVT::v16i8";
98   case MVT::v32i8:    return "MVT::v32i8";
99   case MVT::v64i8:    return "MVT::v64i8";
100   case MVT::v128i8:   return "MVT::v128i8";
101   case MVT::v256i8:   return "MVT::v256i8";
102   case MVT::v1i16:    return "MVT::v1i16";
103   case MVT::v2i16:    return "MVT::v2i16";
104   case MVT::v3i16:    return "MVT::v3i16";
105   case MVT::v4i16:    return "MVT::v4i16";
106   case MVT::v8i16:    return "MVT::v8i16";
107   case MVT::v16i16:   return "MVT::v16i16";
108   case MVT::v32i16:   return "MVT::v32i16";
109   case MVT::v64i16:   return "MVT::v64i16";
110   case MVT::v128i16:  return "MVT::v128i16";
111   case MVT::v1i32:    return "MVT::v1i32";
112   case MVT::v2i32:    return "MVT::v2i32";
113   case MVT::v3i32:    return "MVT::v3i32";
114   case MVT::v4i32:    return "MVT::v4i32";
115   case MVT::v5i32:    return "MVT::v5i32";
116   case MVT::v8i32:    return "MVT::v8i32";
117   case MVT::v16i32:   return "MVT::v16i32";
118   case MVT::v32i32:   return "MVT::v32i32";
119   case MVT::v64i32:   return "MVT::v64i32";
120   case MVT::v128i32:  return "MVT::v128i32";
121   case MVT::v256i32:  return "MVT::v256i32";
122   case MVT::v512i32:  return "MVT::v512i32";
123   case MVT::v1024i32: return "MVT::v1024i32";
124   case MVT::v2048i32: return "MVT::v2048i32";
125   case MVT::v1i64:    return "MVT::v1i64";
126   case MVT::v2i64:    return "MVT::v2i64";
127   case MVT::v4i64:    return "MVT::v4i64";
128   case MVT::v8i64:    return "MVT::v8i64";
129   case MVT::v16i64:   return "MVT::v16i64";
130   case MVT::v32i64:   return "MVT::v32i64";
131   case MVT::v64i64:   return "MVT::v64i64";
132   case MVT::v128i64:  return "MVT::v128i64";
133   case MVT::v256i64:  return "MVT::v256i64";
134   case MVT::v1i128:   return "MVT::v1i128";
135   case MVT::v2f16:    return "MVT::v2f16";
136   case MVT::v3f16:    return "MVT::v3f16";
137   case MVT::v4f16:    return "MVT::v4f16";
138   case MVT::v8f16:    return "MVT::v8f16";
139   case MVT::v16f16:   return "MVT::v16f16";
140   case MVT::v32f16:   return "MVT::v32f16";
141   case MVT::v64f16:   return "MVT::v64f16";
142   case MVT::v128f16:  return "MVT::v128f16";
143   case MVT::v2bf16:   return "MVT::v2bf16";
144   case MVT::v3bf16:   return "MVT::v3bf16";
145   case MVT::v4bf16:   return "MVT::v4bf16";
146   case MVT::v8bf16:   return "MVT::v8bf16";
147   case MVT::v16bf16:  return "MVT::v16bf16";
148   case MVT::v32bf16:  return "MVT::v32bf16";
149   case MVT::v64bf16:  return "MVT::v64bf16";
150   case MVT::v128bf16: return "MVT::v128bf16";
151   case MVT::v1f32:    return "MVT::v1f32";
152   case MVT::v2f32:    return "MVT::v2f32";
153   case MVT::v3f32:    return "MVT::v3f32";
154   case MVT::v4f32:    return "MVT::v4f32";
155   case MVT::v5f32:    return "MVT::v5f32";
156   case MVT::v8f32:    return "MVT::v8f32";
157   case MVT::v16f32:   return "MVT::v16f32";
158   case MVT::v32f32:   return "MVT::v32f32";
159   case MVT::v64f32:   return "MVT::v64f32";
160   case MVT::v128f32:  return "MVT::v128f32";
161   case MVT::v256f32:  return "MVT::v256f32";
162   case MVT::v512f32:  return "MVT::v512f32";
163   case MVT::v1024f32: return "MVT::v1024f32";
164   case MVT::v2048f32: return "MVT::v2048f32";
165   case MVT::v1f64:    return "MVT::v1f64";
166   case MVT::v2f64:    return "MVT::v2f64";
167   case MVT::v4f64:    return "MVT::v4f64";
168   case MVT::v8f64:    return "MVT::v8f64";
169   case MVT::v16f64:   return "MVT::v16f64";
170   case MVT::v32f64:   return "MVT::v32f64";
171   case MVT::v64f64:   return "MVT::v64f64";
172   case MVT::v128f64:  return "MVT::v128f64";
173   case MVT::v256f64:  return "MVT::v256f64";
174   case MVT::nxv1i1:   return "MVT::nxv1i1";
175   case MVT::nxv2i1:   return "MVT::nxv2i1";
176   case MVT::nxv4i1:   return "MVT::nxv4i1";
177   case MVT::nxv8i1:   return "MVT::nxv8i1";
178   case MVT::nxv16i1:  return "MVT::nxv16i1";
179   case MVT::nxv32i1:  return "MVT::nxv32i1";
180   case MVT::nxv64i1:  return "MVT::nxv64i1";
181   case MVT::nxv1i8:   return "MVT::nxv1i8";
182   case MVT::nxv2i8:   return "MVT::nxv2i8";
183   case MVT::nxv4i8:   return "MVT::nxv4i8";
184   case MVT::nxv8i8:   return "MVT::nxv8i8";
185   case MVT::nxv16i8:  return "MVT::nxv16i8";
186   case MVT::nxv32i8:  return "MVT::nxv32i8";
187   case MVT::nxv64i8:  return "MVT::nxv64i8";
188   case MVT::nxv1i16:  return "MVT::nxv1i16";
189   case MVT::nxv2i16:  return "MVT::nxv2i16";
190   case MVT::nxv4i16:  return "MVT::nxv4i16";
191   case MVT::nxv8i16:  return "MVT::nxv8i16";
192   case MVT::nxv16i16: return "MVT::nxv16i16";
193   case MVT::nxv32i16: return "MVT::nxv32i16";
194   case MVT::nxv1i32:  return "MVT::nxv1i32";
195   case MVT::nxv2i32:  return "MVT::nxv2i32";
196   case MVT::nxv4i32:  return "MVT::nxv4i32";
197   case MVT::nxv8i32:  return "MVT::nxv8i32";
198   case MVT::nxv16i32: return "MVT::nxv16i32";
199   case MVT::nxv32i32: return "MVT::nxv32i32";
200   case MVT::nxv1i64:  return "MVT::nxv1i64";
201   case MVT::nxv2i64:  return "MVT::nxv2i64";
202   case MVT::nxv4i64:  return "MVT::nxv4i64";
203   case MVT::nxv8i64:  return "MVT::nxv8i64";
204   case MVT::nxv16i64: return "MVT::nxv16i64";
205   case MVT::nxv32i64: return "MVT::nxv32i64";
206   case MVT::nxv1f16:  return "MVT::nxv1f16";
207   case MVT::nxv2f16:  return "MVT::nxv2f16";
208   case MVT::nxv4f16:  return "MVT::nxv4f16";
209   case MVT::nxv8f16:  return "MVT::nxv8f16";
210   case MVT::nxv16f16: return "MVT::nxv16f16";
211   case MVT::nxv32f16: return "MVT::nxv32f16";
212   case MVT::nxv2bf16:  return "MVT::nxv2bf16";
213   case MVT::nxv4bf16:  return "MVT::nxv4bf16";
214   case MVT::nxv8bf16:  return "MVT::nxv8bf16";
215   case MVT::nxv1f32:   return "MVT::nxv1f32";
216   case MVT::nxv2f32:   return "MVT::nxv2f32";
217   case MVT::nxv4f32:   return "MVT::nxv4f32";
218   case MVT::nxv8f32:   return "MVT::nxv8f32";
219   case MVT::nxv16f32:  return "MVT::nxv16f32";
220   case MVT::nxv1f64:   return "MVT::nxv1f64";
221   case MVT::nxv2f64:   return "MVT::nxv2f64";
222   case MVT::nxv4f64:   return "MVT::nxv4f64";
223   case MVT::nxv8f64:   return "MVT::nxv8f64";
224   case MVT::token:     return "MVT::token";
225   case MVT::Metadata:  return "MVT::Metadata";
226   case MVT::iPTR:      return "MVT::iPTR";
227   case MVT::iPTRAny:   return "MVT::iPTRAny";
228   case MVT::Untyped:   return "MVT::Untyped";
229   case MVT::funcref:   return "MVT::funcref";
230   case MVT::externref: return "MVT::externref";
231   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
232   }
233 }
234 
235 /// getQualifiedName - Return the name of the specified record, with a
236 /// namespace qualifier if the record contains one.
237 ///
238 std::string llvm::getQualifiedName(const Record *R) {
239   std::string Namespace;
240   if (R->getValue("Namespace"))
241     Namespace = std::string(R->getValueAsString("Namespace"));
242   if (Namespace.empty())
243     return std::string(R->getName());
244   return Namespace + "::" + R->getName().str();
245 }
246 
247 
248 /// getTarget - Return the current instance of the Target class.
249 ///
250 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
251   : Records(records), CGH(records) {
252   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
253   if (Targets.size() == 0)
254     PrintFatalError("ERROR: No 'Target' subclasses defined!");
255   if (Targets.size() != 1)
256     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
257   TargetRec = Targets[0];
258 }
259 
260 CodeGenTarget::~CodeGenTarget() {
261 }
262 
263 const StringRef CodeGenTarget::getName() const {
264   return TargetRec->getName();
265 }
266 
267 /// getInstNamespace - Find and return the target machine's instruction
268 /// namespace. The namespace is cached because it is requested multiple times.
269 StringRef CodeGenTarget::getInstNamespace() const {
270   if (InstNamespace.empty()) {
271     for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
272       // We are not interested in the "TargetOpcode" namespace.
273       if (Inst->Namespace != "TargetOpcode") {
274         InstNamespace = Inst->Namespace;
275         break;
276       }
277     }
278   }
279 
280   return InstNamespace;
281 }
282 
283 StringRef CodeGenTarget::getRegNamespace() const {
284   auto &RegClasses = RegBank->getRegClasses();
285   return RegClasses.size() > 0 ? RegClasses.front().Namespace : "";
286 }
287 
288 Record *CodeGenTarget::getInstructionSet() const {
289   return TargetRec->getValueAsDef("InstructionSet");
290 }
291 
292 bool CodeGenTarget::getAllowRegisterRenaming() const {
293   return TargetRec->getValueAsInt("AllowRegisterRenaming");
294 }
295 
296 /// getAsmParser - Return the AssemblyParser definition for this target.
297 ///
298 Record *CodeGenTarget::getAsmParser() const {
299   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
300   if (AsmParserNum >= LI.size())
301     PrintFatalError("Target does not have an AsmParser #" +
302                     Twine(AsmParserNum) + "!");
303   return LI[AsmParserNum];
304 }
305 
306 /// getAsmParserVariant - Return the AssemblyParserVariant definition for
307 /// this target.
308 ///
309 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
310   std::vector<Record*> LI =
311     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
312   if (i >= LI.size())
313     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
314                     "!");
315   return LI[i];
316 }
317 
318 /// getAsmParserVariantCount - Return the AssemblyParserVariant definition
319 /// available for this target.
320 ///
321 unsigned CodeGenTarget::getAsmParserVariantCount() const {
322   std::vector<Record*> LI =
323     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
324   return LI.size();
325 }
326 
327 /// getAsmWriter - Return the AssemblyWriter definition for this target.
328 ///
329 Record *CodeGenTarget::getAsmWriter() const {
330   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
331   if (AsmWriterNum >= LI.size())
332     PrintFatalError("Target does not have an AsmWriter #" +
333                     Twine(AsmWriterNum) + "!");
334   return LI[AsmWriterNum];
335 }
336 
337 CodeGenRegBank &CodeGenTarget::getRegBank() const {
338   if (!RegBank)
339     RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
340   return *RegBank;
341 }
342 
343 Optional<CodeGenRegisterClass *>
344 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy,
345                                     CodeGenRegBank &RegBank,
346                                     const CodeGenSubRegIndex *SubIdx,
347                                     bool MustBeAllocatable) const {
348   std::vector<CodeGenRegisterClass *> Candidates;
349   auto &RegClasses = RegBank.getRegClasses();
350 
351   // Try to find a register class which supports ValueTy, and also contains
352   // SubIdx.
353   for (CodeGenRegisterClass &RC : RegClasses) {
354     // Is there a subclass of this class which contains this subregister index?
355     CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
356     if (!SubClassWithSubReg)
357       continue;
358 
359     // We have a class. Check if it supports this value type.
360     if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy))
361       continue;
362 
363     // If necessary, check that it is allocatable.
364     if (MustBeAllocatable && !SubClassWithSubReg->Allocatable)
365       continue;
366 
367     // We have a register class which supports both the value type and
368     // subregister index. Remember it.
369     Candidates.push_back(SubClassWithSubReg);
370   }
371 
372   // If we didn't find anything, we're done.
373   if (Candidates.empty())
374     return None;
375 
376   // Find and return the largest of our candidate classes.
377   llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
378                                     const CodeGenRegisterClass *B) {
379     if (A->getMembers().size() > B->getMembers().size())
380       return true;
381 
382     if (A->getMembers().size() < B->getMembers().size())
383       return false;
384 
385     // Order by name as a tie-breaker.
386     return StringRef(A->getName()) < B->getName();
387   });
388 
389   return Candidates[0];
390 }
391 
392 void CodeGenTarget::ReadRegAltNameIndices() const {
393   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
394   llvm::sort(RegAltNameIndices, LessRecord());
395 }
396 
397 /// getRegisterByName - If there is a register with the specific AsmName,
398 /// return it.
399 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
400   return getRegBank().getRegistersByName().lookup(Name);
401 }
402 
403 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
404       const {
405   const CodeGenRegister *Reg = getRegBank().getReg(R);
406   std::vector<ValueTypeByHwMode> Result;
407   for (const auto &RC : getRegBank().getRegClasses()) {
408     if (RC.contains(Reg)) {
409       ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
410       llvm::append_range(Result, InVTs);
411     }
412   }
413 
414   // Remove duplicates.
415   llvm::sort(Result);
416   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
417   return Result;
418 }
419 
420 
421 void CodeGenTarget::ReadLegalValueTypes() const {
422   for (const auto &RC : getRegBank().getRegClasses())
423     llvm::append_range(LegalValueTypes, RC.VTs);
424 
425   // Remove duplicates.
426   llvm::sort(LegalValueTypes);
427   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
428                                     LegalValueTypes.end()),
429                         LegalValueTypes.end());
430 }
431 
432 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
433   if (!SchedModels)
434     SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
435   return *SchedModels;
436 }
437 
438 void CodeGenTarget::ReadInstructions() const {
439   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
440   if (Insts.size() <= 2)
441     PrintFatalError("No 'Instruction' subclasses defined!");
442 
443   // Parse the instructions defined in the .td file.
444   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
445     Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
446 }
447 
448 static const CodeGenInstruction *
449 GetInstByName(const char *Name,
450               const DenseMap<const Record*,
451                              std::unique_ptr<CodeGenInstruction>> &Insts,
452               RecordKeeper &Records) {
453   const Record *Rec = Records.getDef(Name);
454 
455   const auto I = Insts.find(Rec);
456   if (!Rec || I == Insts.end())
457     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
458   return I->second.get();
459 }
460 
461 static const char *const FixedInstrs[] = {
462 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
463 #include "llvm/Support/TargetOpcodes.def"
464     nullptr};
465 
466 unsigned CodeGenTarget::getNumFixedInstructions() {
467   return array_lengthof(FixedInstrs) - 1;
468 }
469 
470 /// Return all of the instructions defined by the target, ordered by
471 /// their enum value.
472 void CodeGenTarget::ComputeInstrsByEnum() const {
473   const auto &Insts = getInstructions();
474   for (const char *const *p = FixedInstrs; *p; ++p) {
475     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
476     assert(Instr && "Missing target independent instruction");
477     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
478     InstrsByEnum.push_back(Instr);
479   }
480   unsigned EndOfPredefines = InstrsByEnum.size();
481   assert(EndOfPredefines == getNumFixedInstructions() &&
482          "Missing generic opcode");
483 
484   for (const auto &I : Insts) {
485     const CodeGenInstruction *CGI = I.second.get();
486     if (CGI->Namespace != "TargetOpcode") {
487       InstrsByEnum.push_back(CGI);
488       if (CGI->TheDef->getValueAsBit("isPseudo"))
489         ++NumPseudoInstructions;
490     }
491   }
492 
493   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
494 
495   // All of the instructions are now in random order based on the map iteration.
496   llvm::sort(
497       InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
498       [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
499         const auto &D1 = *Rec1->TheDef;
500         const auto &D2 = *Rec2->TheDef;
501         return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
502                std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
503       });
504 }
505 
506 
507 /// isLittleEndianEncoding - Return whether this target encodes its instruction
508 /// in little-endian format, i.e. bits laid out in the order [0..n]
509 ///
510 bool CodeGenTarget::isLittleEndianEncoding() const {
511   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
512 }
513 
514 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
515 /// encodings, reverse the bit order of all instructions.
516 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
517   if (!isLittleEndianEncoding())
518     return;
519 
520   std::vector<Record *> Insts =
521       Records.getAllDerivedDefinitions("InstructionEncoding");
522   for (Record *R : Insts) {
523     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
524         R->getValueAsBit("isPseudo"))
525       continue;
526 
527     BitsInit *BI = R->getValueAsBitsInit("Inst");
528 
529     unsigned numBits = BI->getNumBits();
530 
531     SmallVector<Init *, 16> NewBits(numBits);
532 
533     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
534       unsigned bitSwapIdx = numBits - bit - 1;
535       Init *OrigBit = BI->getBit(bit);
536       Init *BitSwap = BI->getBit(bitSwapIdx);
537       NewBits[bit]        = BitSwap;
538       NewBits[bitSwapIdx] = OrigBit;
539     }
540     if (numBits % 2) {
541       unsigned middle = (numBits + 1) / 2;
542       NewBits[middle] = BI->getBit(middle);
543     }
544 
545     BitsInit *NewBI = BitsInit::get(NewBits);
546 
547     // Update the bits in reversed order so that emitInstrOpBits will get the
548     // correct endianness.
549     R->getValue("Inst")->setValue(NewBI);
550   }
551 }
552 
553 /// guessInstructionProperties - Return true if it's OK to guess instruction
554 /// properties instead of raising an error.
555 ///
556 /// This is configurable as a temporary migration aid. It will eventually be
557 /// permanently false.
558 bool CodeGenTarget::guessInstructionProperties() const {
559   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
560 }
561 
562 //===----------------------------------------------------------------------===//
563 // ComplexPattern implementation
564 //
565 ComplexPattern::ComplexPattern(Record *R) {
566   Ty          = ::getValueType(R->getValueAsDef("Ty"));
567   NumOperands = R->getValueAsInt("NumOperands");
568   SelectFunc = std::string(R->getValueAsString("SelectFunc"));
569   RootNodes   = R->getValueAsListOfDefs("RootNodes");
570 
571   // FIXME: This is a hack to statically increase the priority of patterns which
572   // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
573   // possible pattern match we'll need to dynamically calculate the complexity
574   // of all patterns a dag can potentially map to.
575   int64_t RawComplexity = R->getValueAsInt("Complexity");
576   if (RawComplexity == -1)
577     Complexity = NumOperands * 3;
578   else
579     Complexity = RawComplexity;
580 
581   // FIXME: Why is this different from parseSDPatternOperatorProperties?
582   // Parse the properties.
583   Properties = 0;
584   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
585   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
586     if (PropList[i]->getName() == "SDNPHasChain") {
587       Properties |= 1 << SDNPHasChain;
588     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
589       Properties |= 1 << SDNPOptInGlue;
590     } else if (PropList[i]->getName() == "SDNPMayStore") {
591       Properties |= 1 << SDNPMayStore;
592     } else if (PropList[i]->getName() == "SDNPMayLoad") {
593       Properties |= 1 << SDNPMayLoad;
594     } else if (PropList[i]->getName() == "SDNPSideEffect") {
595       Properties |= 1 << SDNPSideEffect;
596     } else if (PropList[i]->getName() == "SDNPMemOperand") {
597       Properties |= 1 << SDNPMemOperand;
598     } else if (PropList[i]->getName() == "SDNPVariadic") {
599       Properties |= 1 << SDNPVariadic;
600     } else if (PropList[i]->getName() == "SDNPWantRoot") {
601       Properties |= 1 << SDNPWantRoot;
602     } else if (PropList[i]->getName() == "SDNPWantParent") {
603       Properties |= 1 << SDNPWantParent;
604     } else {
605       PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
606                                        PropList[i]->getName() +
607                                        "' on ComplexPattern '" + R->getName() +
608                                        "'!");
609     }
610 }
611 
612 //===----------------------------------------------------------------------===//
613 // CodeGenIntrinsic Implementation
614 //===----------------------------------------------------------------------===//
615 
616 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
617   std::vector<Record *> IntrProperties =
618       RC.getAllDerivedDefinitions("IntrinsicProperty");
619 
620   std::vector<Record *> DefaultProperties;
621   for (Record *Rec : IntrProperties)
622     if (Rec->getValueAsBit("IsDefault"))
623       DefaultProperties.push_back(Rec);
624 
625   std::vector<Record *> Defs = RC.getAllDerivedDefinitions("Intrinsic");
626   Intrinsics.reserve(Defs.size());
627 
628   for (unsigned I = 0, e = Defs.size(); I != e; ++I)
629     Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties));
630 
631   llvm::sort(Intrinsics,
632              [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
633                return std::tie(LHS.TargetPrefix, LHS.Name) <
634                       std::tie(RHS.TargetPrefix, RHS.Name);
635              });
636   Targets.push_back({"", 0, 0});
637   for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
638     if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
639       Targets.back().Count = I - Targets.back().Offset;
640       Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
641     }
642   Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
643 }
644 
645 CodeGenIntrinsic::CodeGenIntrinsic(Record *R,
646                                    std::vector<Record *> DefaultProperties) {
647   TheDef = R;
648   std::string DefName = std::string(R->getName());
649   ArrayRef<SMLoc> DefLoc = R->getLoc();
650   ModRef = ReadWriteMem;
651   Properties = 0;
652   isOverloaded = false;
653   isCommutative = false;
654   canThrow = false;
655   isNoReturn = false;
656   isNoSync = false;
657   isNoFree = false;
658   isWillReturn = false;
659   isCold = false;
660   isNoDuplicate = false;
661   isConvergent = false;
662   isSpeculatable = false;
663   hasSideEffects = false;
664 
665   if (DefName.size() <= 4 ||
666       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
667     PrintFatalError(DefLoc,
668                     "Intrinsic '" + DefName + "' does not start with 'int_'!");
669 
670   EnumName = std::string(DefName.begin()+4, DefName.end());
671 
672   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
673     GCCBuiltinName = std::string(R->getValueAsString("GCCBuiltinName"));
674   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
675     MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName"));
676 
677   TargetPrefix = std::string(R->getValueAsString("TargetPrefix"));
678   Name = std::string(R->getValueAsString("LLVMName"));
679 
680   if (Name == "") {
681     // If an explicit name isn't specified, derive one from the DefName.
682     Name = "llvm.";
683 
684     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
685       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
686   } else {
687     // Verify it starts with "llvm.".
688     if (Name.size() <= 5 ||
689         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
690       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
691                                   "'s name does not start with 'llvm.'!");
692   }
693 
694   // If TargetPrefix is specified, make sure that Name starts with
695   // "llvm.<targetprefix>.".
696   if (!TargetPrefix.empty()) {
697     if (Name.size() < 6+TargetPrefix.size() ||
698         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
699         != (TargetPrefix + "."))
700       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
701                                   "' does not start with 'llvm." +
702                                   TargetPrefix + ".'!");
703   }
704 
705   ListInit *RetTypes = R->getValueAsListInit("RetTypes");
706   ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
707 
708   // First collate a list of overloaded types.
709   std::vector<MVT::SimpleValueType> OverloadedVTs;
710   for (ListInit *TypeList : {RetTypes, ParamTypes}) {
711     for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
712       Record *TyEl = TypeList->getElementAsRecord(i);
713       assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
714 
715       if (TyEl->isSubClassOf("LLVMMatchType"))
716         continue;
717 
718       MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
719       if (MVT(VT).isOverloaded()) {
720         OverloadedVTs.push_back(VT);
721         isOverloaded = true;
722       }
723     }
724   }
725 
726   // Parse the list of return types.
727   ListInit *TypeList = RetTypes;
728   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
729     Record *TyEl = TypeList->getElementAsRecord(i);
730     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
731     MVT::SimpleValueType VT;
732     if (TyEl->isSubClassOf("LLVMMatchType")) {
733       unsigned MatchTy = TyEl->getValueAsInt("Number");
734       assert(MatchTy < OverloadedVTs.size() &&
735              "Invalid matching number!");
736       VT = OverloadedVTs[MatchTy];
737       // It only makes sense to use the extended and truncated vector element
738       // variants with iAny types; otherwise, if the intrinsic is not
739       // overloaded, all the types can be specified directly.
740       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
741                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
742               VT == MVT::iAny || VT == MVT::vAny) &&
743              "Expected iAny or vAny type");
744     } else {
745       VT = getValueType(TyEl->getValueAsDef("VT"));
746     }
747 
748     // Reject invalid types.
749     if (VT == MVT::isVoid)
750       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
751                                   " has void in result type list!");
752 
753     IS.RetVTs.push_back(VT);
754     IS.RetTypeDefs.push_back(TyEl);
755   }
756 
757   // Parse the list of parameter types.
758   TypeList = ParamTypes;
759   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
760     Record *TyEl = TypeList->getElementAsRecord(i);
761     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
762     MVT::SimpleValueType VT;
763     if (TyEl->isSubClassOf("LLVMMatchType")) {
764       unsigned MatchTy = TyEl->getValueAsInt("Number");
765       if (MatchTy >= OverloadedVTs.size()) {
766         PrintError(R->getLoc(),
767                    "Parameter #" + Twine(i) + " has out of bounds matching "
768                    "number " + Twine(MatchTy));
769         PrintFatalError(DefLoc,
770                         Twine("ParamTypes is ") + TypeList->getAsString());
771       }
772       VT = OverloadedVTs[MatchTy];
773       // It only makes sense to use the extended and truncated vector element
774       // variants with iAny types; otherwise, if the intrinsic is not
775       // overloaded, all the types can be specified directly.
776       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
777                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
778               VT == MVT::iAny || VT == MVT::vAny) &&
779              "Expected iAny or vAny type");
780     } else
781       VT = getValueType(TyEl->getValueAsDef("VT"));
782 
783     // Reject invalid types.
784     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
785       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
786                                   " has void in result type list!");
787 
788     IS.ParamVTs.push_back(VT);
789     IS.ParamTypeDefs.push_back(TyEl);
790   }
791 
792   // Parse the intrinsic properties.
793   ListInit *PropList = R->getValueAsListInit("IntrProperties");
794   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
795     Record *Property = PropList->getElementAsRecord(i);
796     assert(Property->isSubClassOf("IntrinsicProperty") &&
797            "Expected a property!");
798 
799     setProperty(Property);
800   }
801 
802   // Set default properties to true.
803   setDefaultProperties(R, DefaultProperties);
804 
805   // Also record the SDPatternOperator Properties.
806   Properties = parseSDPatternOperatorProperties(R);
807 
808   // Sort the argument attributes for later benefit.
809   llvm::sort(ArgumentAttributes);
810 }
811 
812 void CodeGenIntrinsic::setDefaultProperties(
813     Record *R, std::vector<Record *> DefaultProperties) {
814   // opt-out of using default attributes.
815   if (R->getValueAsBit("DisableDefaultAttributes"))
816     return;
817 
818   for (Record *Rec : DefaultProperties)
819     setProperty(Rec);
820 }
821 
822 void CodeGenIntrinsic::setProperty(Record *R) {
823   if (R->getName() == "IntrNoMem")
824     ModRef = NoMem;
825   else if (R->getName() == "IntrReadMem") {
826     if (!(ModRef & MR_Ref))
827       PrintFatalError(TheDef->getLoc(),
828                       Twine("IntrReadMem cannot be used after IntrNoMem or "
829                             "IntrWriteMem. Default is ReadWrite"));
830     ModRef = ModRefBehavior(ModRef & ~MR_Mod);
831   } else if (R->getName() == "IntrWriteMem") {
832     if (!(ModRef & MR_Mod))
833       PrintFatalError(TheDef->getLoc(),
834                       Twine("IntrWriteMem cannot be used after IntrNoMem or "
835                             "IntrReadMem. Default is ReadWrite"));
836     ModRef = ModRefBehavior(ModRef & ~MR_Ref);
837   } else if (R->getName() == "IntrArgMemOnly")
838     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
839   else if (R->getName() == "IntrInaccessibleMemOnly")
840     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
841   else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly")
842     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
843                             MR_InaccessibleMem);
844   else if (R->getName() == "Commutative")
845     isCommutative = true;
846   else if (R->getName() == "Throws")
847     canThrow = true;
848   else if (R->getName() == "IntrNoDuplicate")
849     isNoDuplicate = true;
850   else if (R->getName() == "IntrConvergent")
851     isConvergent = true;
852   else if (R->getName() == "IntrNoReturn")
853     isNoReturn = true;
854   else if (R->getName() == "IntrNoSync")
855     isNoSync = true;
856   else if (R->getName() == "IntrNoFree")
857     isNoFree = true;
858   else if (R->getName() == "IntrWillReturn")
859     isWillReturn = !isNoReturn;
860   else if (R->getName() == "IntrCold")
861     isCold = true;
862   else if (R->getName() == "IntrSpeculatable")
863     isSpeculatable = true;
864   else if (R->getName() == "IntrHasSideEffects")
865     hasSideEffects = true;
866   else if (R->isSubClassOf("NoCapture")) {
867     unsigned ArgNo = R->getValueAsInt("ArgNo");
868     ArgumentAttributes.emplace_back(ArgNo, NoCapture, 0);
869   } else if (R->isSubClassOf("NoAlias")) {
870     unsigned ArgNo = R->getValueAsInt("ArgNo");
871     ArgumentAttributes.emplace_back(ArgNo, NoAlias, 0);
872   } else if (R->isSubClassOf("NoUndef")) {
873     unsigned ArgNo = R->getValueAsInt("ArgNo");
874     ArgumentAttributes.emplace_back(ArgNo, NoUndef, 0);
875   } else if (R->isSubClassOf("Returned")) {
876     unsigned ArgNo = R->getValueAsInt("ArgNo");
877     ArgumentAttributes.emplace_back(ArgNo, Returned, 0);
878   } else if (R->isSubClassOf("ReadOnly")) {
879     unsigned ArgNo = R->getValueAsInt("ArgNo");
880     ArgumentAttributes.emplace_back(ArgNo, ReadOnly, 0);
881   } else if (R->isSubClassOf("WriteOnly")) {
882     unsigned ArgNo = R->getValueAsInt("ArgNo");
883     ArgumentAttributes.emplace_back(ArgNo, WriteOnly, 0);
884   } else if (R->isSubClassOf("ReadNone")) {
885     unsigned ArgNo = R->getValueAsInt("ArgNo");
886     ArgumentAttributes.emplace_back(ArgNo, ReadNone, 0);
887   } else if (R->isSubClassOf("ImmArg")) {
888     unsigned ArgNo = R->getValueAsInt("ArgNo");
889     ArgumentAttributes.emplace_back(ArgNo, ImmArg, 0);
890   } else if (R->isSubClassOf("Align")) {
891     unsigned ArgNo = R->getValueAsInt("ArgNo");
892     uint64_t Align = R->getValueAsInt("Align");
893     ArgumentAttributes.emplace_back(ArgNo, Alignment, Align);
894   } else
895     llvm_unreachable("Unknown property!");
896 }
897 
898 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
899   if (ParamIdx >= IS.ParamVTs.size())
900     return false;
901   MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
902   return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
903 }
904 
905 bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
906   // Convert argument index to attribute index starting from `FirstArgIndex`.
907   ArgAttribute Val{ParamIdx + 1, ImmArg, 0};
908   return std::binary_search(ArgumentAttributes.begin(),
909                             ArgumentAttributes.end(), Val);
910 }
911