1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes throw exceptions on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "Record.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include <algorithm> 24 using namespace llvm; 25 26 static cl::opt<unsigned> 27 AsmParserNum("asmparsernum", cl::init(0), 28 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 29 30 static cl::opt<unsigned> 31 AsmWriterNum("asmwriternum", cl::init(0), 32 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 33 34 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 35 /// record corresponds to. 36 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 37 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 38 } 39 40 std::string llvm::getName(MVT::SimpleValueType T) { 41 switch (T) { 42 case MVT::Other: return "UNKNOWN"; 43 case MVT::iPTR: return "TLI.getPointerTy()"; 44 case MVT::iPTRAny: return "TLI.getPointerTy()"; 45 default: return getEnumName(T); 46 } 47 } 48 49 std::string llvm::getEnumName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "MVT::Other"; 52 case MVT::i1: return "MVT::i1"; 53 case MVT::i8: return "MVT::i8"; 54 case MVT::i16: return "MVT::i16"; 55 case MVT::i32: return "MVT::i32"; 56 case MVT::i64: return "MVT::i64"; 57 case MVT::i128: return "MVT::i128"; 58 case MVT::iAny: return "MVT::iAny"; 59 case MVT::fAny: return "MVT::fAny"; 60 case MVT::vAny: return "MVT::vAny"; 61 case MVT::f32: return "MVT::f32"; 62 case MVT::f64: return "MVT::f64"; 63 case MVT::f80: return "MVT::f80"; 64 case MVT::f128: return "MVT::f128"; 65 case MVT::ppcf128: return "MVT::ppcf128"; 66 case MVT::x86mmx: return "MVT::x86mmx"; 67 case MVT::Glue: return "MVT::Glue"; 68 case MVT::isVoid: return "MVT::isVoid"; 69 case MVT::v2i8: return "MVT::v2i8"; 70 case MVT::v4i8: return "MVT::v4i8"; 71 case MVT::v8i8: return "MVT::v8i8"; 72 case MVT::v16i8: return "MVT::v16i8"; 73 case MVT::v32i8: return "MVT::v32i8"; 74 case MVT::v2i16: return "MVT::v2i16"; 75 case MVT::v4i16: return "MVT::v4i16"; 76 case MVT::v8i16: return "MVT::v8i16"; 77 case MVT::v16i16: return "MVT::v16i16"; 78 case MVT::v2i32: return "MVT::v2i32"; 79 case MVT::v4i32: return "MVT::v4i32"; 80 case MVT::v8i32: return "MVT::v8i32"; 81 case MVT::v1i64: return "MVT::v1i64"; 82 case MVT::v2i64: return "MVT::v2i64"; 83 case MVT::v4i64: return "MVT::v4i64"; 84 case MVT::v8i64: return "MVT::v8i64"; 85 case MVT::v2f32: return "MVT::v2f32"; 86 case MVT::v4f32: return "MVT::v4f32"; 87 case MVT::v8f32: return "MVT::v8f32"; 88 case MVT::v2f64: return "MVT::v2f64"; 89 case MVT::v4f64: return "MVT::v4f64"; 90 case MVT::Metadata: return "MVT::Metadata"; 91 case MVT::iPTR: return "MVT::iPTR"; 92 case MVT::iPTRAny: return "MVT::iPTRAny"; 93 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 94 } 95 } 96 97 /// getQualifiedName - Return the name of the specified record, with a 98 /// namespace qualifier if the record contains one. 99 /// 100 std::string llvm::getQualifiedName(const Record *R) { 101 std::string Namespace; 102 if (R->getValue("Namespace")) 103 Namespace = R->getValueAsString("Namespace"); 104 if (Namespace.empty()) return R->getName(); 105 return Namespace + "::" + R->getName(); 106 } 107 108 109 /// getTarget - Return the current instance of the Target class. 110 /// 111 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 112 : Records(records), RegBank(0) { 113 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 114 if (Targets.size() == 0) 115 throw std::string("ERROR: No 'Target' subclasses defined!"); 116 if (Targets.size() != 1) 117 throw std::string("ERROR: Multiple subclasses of Target defined!"); 118 TargetRec = Targets[0]; 119 } 120 121 122 const std::string &CodeGenTarget::getName() const { 123 return TargetRec->getName(); 124 } 125 126 std::string CodeGenTarget::getInstNamespace() const { 127 for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { 128 // Make sure not to pick up "TargetOpcode" by accidentally getting 129 // the namespace off the PHI instruction or something. 130 if ((*i)->Namespace != "TargetOpcode") 131 return (*i)->Namespace; 132 } 133 134 return ""; 135 } 136 137 Record *CodeGenTarget::getInstructionSet() const { 138 return TargetRec->getValueAsDef("InstructionSet"); 139 } 140 141 142 /// getAsmParser - Return the AssemblyParser definition for this target. 143 /// 144 Record *CodeGenTarget::getAsmParser() const { 145 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 146 if (AsmParserNum >= LI.size()) 147 throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!"; 148 return LI[AsmParserNum]; 149 } 150 151 /// getAsmWriter - Return the AssemblyWriter definition for this target. 152 /// 153 Record *CodeGenTarget::getAsmWriter() const { 154 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 155 if (AsmWriterNum >= LI.size()) 156 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; 157 return LI[AsmWriterNum]; 158 } 159 160 CodeGenRegBank &CodeGenTarget::getRegBank() const { 161 if (!RegBank) 162 RegBank = new CodeGenRegBank(Records); 163 return *RegBank; 164 } 165 166 void CodeGenTarget::ReadRegisters() const { 167 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 168 if (Regs.empty()) 169 throw std::string("No 'Register' subclasses defined!"); 170 std::sort(Regs.begin(), Regs.end(), LessRecord()); 171 172 Registers.reserve(Regs.size()); 173 Registers.assign(Regs.begin(), Regs.end()); 174 // Assign the enumeration values. 175 for (unsigned i = 0, e = Registers.size(); i != e; ++i) 176 Registers[i].EnumValue = i + 1; 177 } 178 179 void CodeGenTarget::ReadRegisterClasses() const { 180 std::vector<Record*> RegClasses = 181 Records.getAllDerivedDefinitions("RegisterClass"); 182 if (RegClasses.empty()) 183 throw std::string("No 'RegisterClass' subclasses defined!"); 184 185 RegisterClasses.reserve(RegClasses.size()); 186 RegisterClasses.assign(RegClasses.begin(), RegClasses.end()); 187 } 188 189 /// getRegisterByName - If there is a register with the specific AsmName, 190 /// return it. 191 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 192 const std::vector<CodeGenRegister> &Regs = getRegisters(); 193 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 194 const CodeGenRegister &Reg = Regs[i]; 195 if (Reg.TheDef->getValueAsString("AsmName") == Name) 196 return &Reg; 197 } 198 199 return 0; 200 } 201 202 std::vector<MVT::SimpleValueType> CodeGenTarget:: 203 getRegisterVTs(Record *R) const { 204 std::vector<MVT::SimpleValueType> Result; 205 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 206 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 207 const CodeGenRegisterClass &RC = RegisterClasses[i]; 208 for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) { 209 if (R == RC.Elements[ei]) { 210 const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes(); 211 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 212 } 213 } 214 } 215 216 // Remove duplicates. 217 array_pod_sort(Result.begin(), Result.end()); 218 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 219 return Result; 220 } 221 222 223 void CodeGenTarget::ReadLegalValueTypes() const { 224 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 225 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 226 for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri) 227 LegalValueTypes.push_back(RCs[i].VTs[ri]); 228 229 // Remove duplicates. 230 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 231 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 232 LegalValueTypes.end()), 233 LegalValueTypes.end()); 234 } 235 236 237 void CodeGenTarget::ReadInstructions() const { 238 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 239 if (Insts.size() <= 2) 240 throw std::string("No 'Instruction' subclasses defined!"); 241 242 // Parse the instructions defined in the .td file. 243 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 244 Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]); 245 } 246 247 static const CodeGenInstruction * 248 GetInstByName(const char *Name, 249 const DenseMap<const Record*, CodeGenInstruction*> &Insts, 250 RecordKeeper &Records) { 251 const Record *Rec = Records.getDef(Name); 252 253 DenseMap<const Record*, CodeGenInstruction*>::const_iterator 254 I = Insts.find(Rec); 255 if (Rec == 0 || I == Insts.end()) 256 throw std::string("Could not find '") + Name + "' instruction!"; 257 return I->second; 258 } 259 260 namespace { 261 /// SortInstByName - Sorting predicate to sort instructions by name. 262 /// 263 struct SortInstByName { 264 bool operator()(const CodeGenInstruction *Rec1, 265 const CodeGenInstruction *Rec2) const { 266 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 267 } 268 }; 269 } 270 271 /// getInstructionsByEnumValue - Return all of the instructions defined by the 272 /// target, ordered by their enum value. 273 void CodeGenTarget::ComputeInstrsByEnum() const { 274 // The ordering here must match the ordering in TargetOpcodes.h. 275 const char *const FixedInstrs[] = { 276 "PHI", 277 "INLINEASM", 278 "PROLOG_LABEL", 279 "EH_LABEL", 280 "GC_LABEL", 281 "KILL", 282 "EXTRACT_SUBREG", 283 "INSERT_SUBREG", 284 "IMPLICIT_DEF", 285 "SUBREG_TO_REG", 286 "COPY_TO_REGCLASS", 287 "DBG_VALUE", 288 "REG_SEQUENCE", 289 "COPY", 290 0 291 }; 292 const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions(); 293 for (const char *const *p = FixedInstrs; *p; ++p) { 294 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 295 assert(Instr && "Missing target independent instruction"); 296 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 297 InstrsByEnum.push_back(Instr); 298 } 299 unsigned EndOfPredefines = InstrsByEnum.size(); 300 301 for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator 302 I = Insts.begin(), E = Insts.end(); I != E; ++I) { 303 const CodeGenInstruction *CGI = I->second; 304 if (CGI->Namespace != "TargetOpcode") 305 InstrsByEnum.push_back(CGI); 306 } 307 308 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 309 310 // All of the instructions are now in random order based on the map iteration. 311 // Sort them by name. 312 std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(), 313 SortInstByName()); 314 } 315 316 317 /// isLittleEndianEncoding - Return whether this target encodes its instruction 318 /// in little-endian format, i.e. bits laid out in the order [0..n] 319 /// 320 bool CodeGenTarget::isLittleEndianEncoding() const { 321 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 322 } 323 324 //===----------------------------------------------------------------------===// 325 // ComplexPattern implementation 326 // 327 ComplexPattern::ComplexPattern(Record *R) { 328 Ty = ::getValueType(R->getValueAsDef("Ty")); 329 NumOperands = R->getValueAsInt("NumOperands"); 330 SelectFunc = R->getValueAsString("SelectFunc"); 331 RootNodes = R->getValueAsListOfDefs("RootNodes"); 332 333 // Parse the properties. 334 Properties = 0; 335 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 336 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 337 if (PropList[i]->getName() == "SDNPHasChain") { 338 Properties |= 1 << SDNPHasChain; 339 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 340 Properties |= 1 << SDNPOptInGlue; 341 } else if (PropList[i]->getName() == "SDNPMayStore") { 342 Properties |= 1 << SDNPMayStore; 343 } else if (PropList[i]->getName() == "SDNPMayLoad") { 344 Properties |= 1 << SDNPMayLoad; 345 } else if (PropList[i]->getName() == "SDNPSideEffect") { 346 Properties |= 1 << SDNPSideEffect; 347 } else if (PropList[i]->getName() == "SDNPMemOperand") { 348 Properties |= 1 << SDNPMemOperand; 349 } else if (PropList[i]->getName() == "SDNPVariadic") { 350 Properties |= 1 << SDNPVariadic; 351 } else if (PropList[i]->getName() == "SDNPWantRoot") { 352 Properties |= 1 << SDNPWantRoot; 353 } else if (PropList[i]->getName() == "SDNPWantParent") { 354 Properties |= 1 << SDNPWantParent; 355 } else { 356 errs() << "Unsupported SD Node property '" << PropList[i]->getName() 357 << "' on ComplexPattern '" << R->getName() << "'!\n"; 358 exit(1); 359 } 360 } 361 362 //===----------------------------------------------------------------------===// 363 // CodeGenIntrinsic Implementation 364 //===----------------------------------------------------------------------===// 365 366 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 367 bool TargetOnly) { 368 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 369 370 std::vector<CodeGenIntrinsic> Result; 371 372 for (unsigned i = 0, e = I.size(); i != e; ++i) { 373 bool isTarget = I[i]->getValueAsBit("isTarget"); 374 if (isTarget == TargetOnly) 375 Result.push_back(CodeGenIntrinsic(I[i])); 376 } 377 return Result; 378 } 379 380 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 381 TheDef = R; 382 std::string DefName = R->getName(); 383 ModRef = ReadWriteMem; 384 isOverloaded = false; 385 isCommutative = false; 386 canThrow = false; 387 388 if (DefName.size() <= 4 || 389 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 390 throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; 391 392 EnumName = std::string(DefName.begin()+4, DefName.end()); 393 394 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 395 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 396 397 TargetPrefix = R->getValueAsString("TargetPrefix"); 398 Name = R->getValueAsString("LLVMName"); 399 400 if (Name == "") { 401 // If an explicit name isn't specified, derive one from the DefName. 402 Name = "llvm."; 403 404 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 405 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 406 } else { 407 // Verify it starts with "llvm.". 408 if (Name.size() <= 5 || 409 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 410 throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; 411 } 412 413 // If TargetPrefix is specified, make sure that Name starts with 414 // "llvm.<targetprefix>.". 415 if (!TargetPrefix.empty()) { 416 if (Name.size() < 6+TargetPrefix.size() || 417 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 418 != (TargetPrefix + ".")) 419 throw "Intrinsic '" + DefName + "' does not start with 'llvm." + 420 TargetPrefix + ".'!"; 421 } 422 423 // Parse the list of return types. 424 std::vector<MVT::SimpleValueType> OverloadedVTs; 425 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 426 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 427 Record *TyEl = TypeList->getElementAsRecord(i); 428 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 429 MVT::SimpleValueType VT; 430 if (TyEl->isSubClassOf("LLVMMatchType")) { 431 unsigned MatchTy = TyEl->getValueAsInt("Number"); 432 assert(MatchTy < OverloadedVTs.size() && 433 "Invalid matching number!"); 434 VT = OverloadedVTs[MatchTy]; 435 // It only makes sense to use the extended and truncated vector element 436 // variants with iAny types; otherwise, if the intrinsic is not 437 // overloaded, all the types can be specified directly. 438 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 439 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 440 VT == MVT::iAny || VT == MVT::vAny) && 441 "Expected iAny or vAny type"); 442 } else { 443 VT = getValueType(TyEl->getValueAsDef("VT")); 444 } 445 if (EVT(VT).isOverloaded()) { 446 OverloadedVTs.push_back(VT); 447 isOverloaded = true; 448 } 449 450 // Reject invalid types. 451 if (VT == MVT::isVoid) 452 throw "Intrinsic '" + DefName + " has void in result type list!"; 453 454 IS.RetVTs.push_back(VT); 455 IS.RetTypeDefs.push_back(TyEl); 456 } 457 458 // Parse the list of parameter types. 459 TypeList = R->getValueAsListInit("ParamTypes"); 460 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 461 Record *TyEl = TypeList->getElementAsRecord(i); 462 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 463 MVT::SimpleValueType VT; 464 if (TyEl->isSubClassOf("LLVMMatchType")) { 465 unsigned MatchTy = TyEl->getValueAsInt("Number"); 466 assert(MatchTy < OverloadedVTs.size() && 467 "Invalid matching number!"); 468 VT = OverloadedVTs[MatchTy]; 469 // It only makes sense to use the extended and truncated vector element 470 // variants with iAny types; otherwise, if the intrinsic is not 471 // overloaded, all the types can be specified directly. 472 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 473 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 474 VT == MVT::iAny || VT == MVT::vAny) && 475 "Expected iAny or vAny type"); 476 } else 477 VT = getValueType(TyEl->getValueAsDef("VT")); 478 479 if (EVT(VT).isOverloaded()) { 480 OverloadedVTs.push_back(VT); 481 isOverloaded = true; 482 } 483 484 // Reject invalid types. 485 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 486 throw "Intrinsic '" + DefName + " has void in result type list!"; 487 488 IS.ParamVTs.push_back(VT); 489 IS.ParamTypeDefs.push_back(TyEl); 490 } 491 492 // Parse the intrinsic properties. 493 ListInit *PropList = R->getValueAsListInit("Properties"); 494 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 495 Record *Property = PropList->getElementAsRecord(i); 496 assert(Property->isSubClassOf("IntrinsicProperty") && 497 "Expected a property!"); 498 499 if (Property->getName() == "IntrNoMem") 500 ModRef = NoMem; 501 else if (Property->getName() == "IntrReadArgMem") 502 ModRef = ReadArgMem; 503 else if (Property->getName() == "IntrReadMem") 504 ModRef = ReadMem; 505 else if (Property->getName() == "IntrReadWriteArgMem") 506 ModRef = ReadWriteArgMem; 507 else if (Property->getName() == "Commutative") 508 isCommutative = true; 509 else if (Property->getName() == "Throws") 510 canThrow = true; 511 else if (Property->isSubClassOf("NoCapture")) { 512 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 513 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 514 } else 515 assert(0 && "Unknown property!"); 516 } 517 518 // Sort the argument attributes for later benefit. 519 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 520 } 521