1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends.  This makes it easier to access the data and
12 // provides a single place that needs to check it for validity.  All of these
13 // classes abort on error conditions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodeGenTarget.h"
18 #include "CodeGenDAGPatterns.h"
19 #include "CodeGenIntrinsics.h"
20 #include "CodeGenSchedule.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include <algorithm>
27 using namespace llvm;
28 
29 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
30 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
31 
32 static cl::opt<unsigned>
33     AsmParserNum("asmparsernum", cl::init(0),
34                  cl::desc("Make -gen-asm-parser emit assembly parser #N"),
35                  cl::cat(AsmParserCat));
36 
37 static cl::opt<unsigned>
38     AsmWriterNum("asmwriternum", cl::init(0),
39                  cl::desc("Make -gen-asm-writer emit assembly writer #N"),
40                  cl::cat(AsmWriterCat));
41 
42 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
43 /// record corresponds to.
44 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
45   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
46 }
47 
48 StringRef llvm::getName(MVT::SimpleValueType T) {
49   switch (T) {
50   case MVT::Other:   return "UNKNOWN";
51   case MVT::iPTR:    return "TLI.getPointerTy()";
52   case MVT::iPTRAny: return "TLI.getPointerTy()";
53   default: return getEnumName(T);
54   }
55 }
56 
57 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
58   switch (T) {
59   case MVT::Other:    return "MVT::Other";
60   case MVT::i1:       return "MVT::i1";
61   case MVT::i8:       return "MVT::i8";
62   case MVT::i16:      return "MVT::i16";
63   case MVT::i32:      return "MVT::i32";
64   case MVT::i64:      return "MVT::i64";
65   case MVT::i128:     return "MVT::i128";
66   case MVT::Any:      return "MVT::Any";
67   case MVT::iAny:     return "MVT::iAny";
68   case MVT::fAny:     return "MVT::fAny";
69   case MVT::vAny:     return "MVT::vAny";
70   case MVT::f16:      return "MVT::f16";
71   case MVT::f32:      return "MVT::f32";
72   case MVT::f64:      return "MVT::f64";
73   case MVT::f80:      return "MVT::f80";
74   case MVT::f128:     return "MVT::f128";
75   case MVT::ppcf128:  return "MVT::ppcf128";
76   case MVT::x86mmx:   return "MVT::x86mmx";
77   case MVT::Glue:     return "MVT::Glue";
78   case MVT::isVoid:   return "MVT::isVoid";
79   case MVT::v1i1:     return "MVT::v1i1";
80   case MVT::v2i1:     return "MVT::v2i1";
81   case MVT::v4i1:     return "MVT::v4i1";
82   case MVT::v8i1:     return "MVT::v8i1";
83   case MVT::v16i1:    return "MVT::v16i1";
84   case MVT::v32i1:    return "MVT::v32i1";
85   case MVT::v64i1:    return "MVT::v64i1";
86   case MVT::v128i1:   return "MVT::v128i1";
87   case MVT::v512i1:   return "MVT::v512i1";
88   case MVT::v1024i1:  return "MVT::v1024i1";
89   case MVT::v1i8:     return "MVT::v1i8";
90   case MVT::v2i8:     return "MVT::v2i8";
91   case MVT::v4i8:     return "MVT::v4i8";
92   case MVT::v8i8:     return "MVT::v8i8";
93   case MVT::v16i8:    return "MVT::v16i8";
94   case MVT::v32i8:    return "MVT::v32i8";
95   case MVT::v64i8:    return "MVT::v64i8";
96   case MVT::v128i8:   return "MVT::v128i8";
97   case MVT::v256i8:   return "MVT::v256i8";
98   case MVT::v1i16:    return "MVT::v1i16";
99   case MVT::v2i16:    return "MVT::v2i16";
100   case MVT::v4i16:    return "MVT::v4i16";
101   case MVT::v8i16:    return "MVT::v8i16";
102   case MVT::v16i16:   return "MVT::v16i16";
103   case MVT::v32i16:   return "MVT::v32i16";
104   case MVT::v64i16:   return "MVT::v64i16";
105   case MVT::v128i16:  return "MVT::v128i16";
106   case MVT::v1i32:    return "MVT::v1i32";
107   case MVT::v2i32:    return "MVT::v2i32";
108   case MVT::v4i32:    return "MVT::v4i32";
109   case MVT::v8i32:    return "MVT::v8i32";
110   case MVT::v16i32:   return "MVT::v16i32";
111   case MVT::v32i32:   return "MVT::v32i32";
112   case MVT::v64i32:   return "MVT::v64i32";
113   case MVT::v1i64:    return "MVT::v1i64";
114   case MVT::v2i64:    return "MVT::v2i64";
115   case MVT::v4i64:    return "MVT::v4i64";
116   case MVT::v8i64:    return "MVT::v8i64";
117   case MVT::v16i64:   return "MVT::v16i64";
118   case MVT::v32i64:   return "MVT::v32i64";
119   case MVT::v1i128:   return "MVT::v1i128";
120   case MVT::v2f16:    return "MVT::v2f16";
121   case MVT::v4f16:    return "MVT::v4f16";
122   case MVT::v8f16:    return "MVT::v8f16";
123   case MVT::v1f32:    return "MVT::v1f32";
124   case MVT::v2f32:    return "MVT::v2f32";
125   case MVT::v4f32:    return "MVT::v4f32";
126   case MVT::v8f32:    return "MVT::v8f32";
127   case MVT::v16f32:   return "MVT::v16f32";
128   case MVT::v1f64:    return "MVT::v1f64";
129   case MVT::v2f64:    return "MVT::v2f64";
130   case MVT::v4f64:    return "MVT::v4f64";
131   case MVT::v8f64:    return "MVT::v8f64";
132   case MVT::nxv1i1:   return "MVT::nxv1i1";
133   case MVT::nxv2i1:   return "MVT::nxv2i1";
134   case MVT::nxv4i1:   return "MVT::nxv4i1";
135   case MVT::nxv8i1:   return "MVT::nxv8i1";
136   case MVT::nxv16i1:  return "MVT::nxv16i1";
137   case MVT::nxv32i1:  return "MVT::nxv32i1";
138   case MVT::nxv1i8:   return "MVT::nxv1i8";
139   case MVT::nxv2i8:   return "MVT::nxv2i8";
140   case MVT::nxv4i8:   return "MVT::nxv4i8";
141   case MVT::nxv8i8:   return "MVT::nxv8i8";
142   case MVT::nxv16i8:  return "MVT::nxv16i8";
143   case MVT::nxv32i8:  return "MVT::nxv32i8";
144   case MVT::nxv1i16:  return "MVT::nxv1i16";
145   case MVT::nxv2i16:  return "MVT::nxv2i16";
146   case MVT::nxv4i16:  return "MVT::nxv4i16";
147   case MVT::nxv8i16:  return "MVT::nxv8i16";
148   case MVT::nxv16i16: return "MVT::nxv16i16";
149   case MVT::nxv32i16: return "MVT::nxv32i16";
150   case MVT::nxv1i32:  return "MVT::nxv1i32";
151   case MVT::nxv2i32:  return "MVT::nxv2i32";
152   case MVT::nxv4i32:  return "MVT::nxv4i32";
153   case MVT::nxv8i32:  return "MVT::nxv8i32";
154   case MVT::nxv16i32: return "MVT::nxv16i32";
155   case MVT::nxv1i64:  return "MVT::nxv1i64";
156   case MVT::nxv2i64:  return "MVT::nxv2i64";
157   case MVT::nxv4i64:  return "MVT::nxv4i64";
158   case MVT::nxv8i64:  return "MVT::nxv8i64";
159   case MVT::nxv16i64: return "MVT::nxv16i64";
160   case MVT::nxv2f16:  return "MVT::nxv2f16";
161   case MVT::nxv4f16:  return "MVT::nxv4f16";
162   case MVT::nxv8f16:  return "MVT::nxv8f16";
163   case MVT::nxv1f32:  return "MVT::nxv1f32";
164   case MVT::nxv2f32:  return "MVT::nxv2f32";
165   case MVT::nxv4f32:  return "MVT::nxv4f32";
166   case MVT::nxv8f32:  return "MVT::nxv8f32";
167   case MVT::nxv16f32: return "MVT::nxv16f32";
168   case MVT::nxv1f64:  return "MVT::nxv1f64";
169   case MVT::nxv2f64:  return "MVT::nxv2f64";
170   case MVT::nxv4f64:  return "MVT::nxv4f64";
171   case MVT::nxv8f64:  return "MVT::nxv8f64";
172   case MVT::token:    return "MVT::token";
173   case MVT::Metadata: return "MVT::Metadata";
174   case MVT::iPTR:     return "MVT::iPTR";
175   case MVT::iPTRAny:  return "MVT::iPTRAny";
176   case MVT::Untyped:  return "MVT::Untyped";
177   case MVT::ExceptRef: return "MVT::ExceptRef";
178   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
179   }
180 }
181 
182 /// getQualifiedName - Return the name of the specified record, with a
183 /// namespace qualifier if the record contains one.
184 ///
185 std::string llvm::getQualifiedName(const Record *R) {
186   std::string Namespace;
187   if (R->getValue("Namespace"))
188      Namespace = R->getValueAsString("Namespace");
189   if (Namespace.empty()) return R->getName();
190   return Namespace + "::" + R->getName().str();
191 }
192 
193 
194 /// getTarget - Return the current instance of the Target class.
195 ///
196 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
197   : Records(records), CGH(records) {
198   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
199   if (Targets.size() == 0)
200     PrintFatalError("ERROR: No 'Target' subclasses defined!");
201   if (Targets.size() != 1)
202     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
203   TargetRec = Targets[0];
204 }
205 
206 CodeGenTarget::~CodeGenTarget() {
207 }
208 
209 const StringRef CodeGenTarget::getName() const {
210   return TargetRec->getName();
211 }
212 
213 StringRef CodeGenTarget::getInstNamespace() const {
214   for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
215     // Make sure not to pick up "TargetOpcode" by accidentally getting
216     // the namespace off the PHI instruction or something.
217     if (Inst->Namespace != "TargetOpcode")
218       return Inst->Namespace;
219   }
220 
221   return "";
222 }
223 
224 Record *CodeGenTarget::getInstructionSet() const {
225   return TargetRec->getValueAsDef("InstructionSet");
226 }
227 
228 bool CodeGenTarget::getAllowRegisterRenaming() const {
229   return TargetRec->getValueAsInt("AllowRegisterRenaming");
230 }
231 
232 /// getAsmParser - Return the AssemblyParser definition for this target.
233 ///
234 Record *CodeGenTarget::getAsmParser() const {
235   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
236   if (AsmParserNum >= LI.size())
237     PrintFatalError("Target does not have an AsmParser #" +
238                     Twine(AsmParserNum) + "!");
239   return LI[AsmParserNum];
240 }
241 
242 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
243 /// this target.
244 ///
245 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
246   std::vector<Record*> LI =
247     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
248   if (i >= LI.size())
249     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
250                     "!");
251   return LI[i];
252 }
253 
254 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
255 /// available for this target.
256 ///
257 unsigned CodeGenTarget::getAsmParserVariantCount() const {
258   std::vector<Record*> LI =
259     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
260   return LI.size();
261 }
262 
263 /// getAsmWriter - Return the AssemblyWriter definition for this target.
264 ///
265 Record *CodeGenTarget::getAsmWriter() const {
266   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
267   if (AsmWriterNum >= LI.size())
268     PrintFatalError("Target does not have an AsmWriter #" +
269                     Twine(AsmWriterNum) + "!");
270   return LI[AsmWriterNum];
271 }
272 
273 CodeGenRegBank &CodeGenTarget::getRegBank() const {
274   if (!RegBank)
275     RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes());
276   return *RegBank;
277 }
278 
279 void CodeGenTarget::ReadRegAltNameIndices() const {
280   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
281   llvm::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
282 }
283 
284 /// getRegisterByName - If there is a register with the specific AsmName,
285 /// return it.
286 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
287   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
288   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
289   if (I == Regs.end())
290     return nullptr;
291   return I->second;
292 }
293 
294 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
295       const {
296   const CodeGenRegister *Reg = getRegBank().getReg(R);
297   std::vector<ValueTypeByHwMode> Result;
298   for (const auto &RC : getRegBank().getRegClasses()) {
299     if (RC.contains(Reg)) {
300       ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
301       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
302     }
303   }
304 
305   // Remove duplicates.
306   llvm::sort(Result.begin(), Result.end());
307   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
308   return Result;
309 }
310 
311 
312 void CodeGenTarget::ReadLegalValueTypes() const {
313   for (const auto &RC : getRegBank().getRegClasses())
314     LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
315 
316   // Remove duplicates.
317   llvm::sort(LegalValueTypes.begin(), LegalValueTypes.end());
318   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
319                                     LegalValueTypes.end()),
320                         LegalValueTypes.end());
321 }
322 
323 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
324   if (!SchedModels)
325     SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
326   return *SchedModels;
327 }
328 
329 void CodeGenTarget::ReadInstructions() const {
330   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
331   if (Insts.size() <= 2)
332     PrintFatalError("No 'Instruction' subclasses defined!");
333 
334   // Parse the instructions defined in the .td file.
335   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
336     Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
337 }
338 
339 static const CodeGenInstruction *
340 GetInstByName(const char *Name,
341               const DenseMap<const Record*,
342                              std::unique_ptr<CodeGenInstruction>> &Insts,
343               RecordKeeper &Records) {
344   const Record *Rec = Records.getDef(Name);
345 
346   const auto I = Insts.find(Rec);
347   if (!Rec || I == Insts.end())
348     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
349   return I->second.get();
350 }
351 
352 static const char *const FixedInstrs[] = {
353 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
354 #include "llvm/Support/TargetOpcodes.def"
355     nullptr};
356 
357 unsigned CodeGenTarget::getNumFixedInstructions() {
358   return array_lengthof(FixedInstrs) - 1;
359 }
360 
361 /// Return all of the instructions defined by the target, ordered by
362 /// their enum value.
363 void CodeGenTarget::ComputeInstrsByEnum() const {
364   const auto &Insts = getInstructions();
365   for (const char *const *p = FixedInstrs; *p; ++p) {
366     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
367     assert(Instr && "Missing target independent instruction");
368     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
369     InstrsByEnum.push_back(Instr);
370   }
371   unsigned EndOfPredefines = InstrsByEnum.size();
372   assert(EndOfPredefines == getNumFixedInstructions() &&
373          "Missing generic opcode");
374 
375   for (const auto &I : Insts) {
376     const CodeGenInstruction *CGI = I.second.get();
377     if (CGI->Namespace != "TargetOpcode")
378       InstrsByEnum.push_back(CGI);
379   }
380 
381   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
382 
383   // All of the instructions are now in random order based on the map iteration.
384   // Sort them by name.
385   llvm::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
386              [](const CodeGenInstruction *Rec1,
387                 const CodeGenInstruction *Rec2) {
388     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
389   });
390 }
391 
392 
393 /// isLittleEndianEncoding - Return whether this target encodes its instruction
394 /// in little-endian format, i.e. bits laid out in the order [0..n]
395 ///
396 bool CodeGenTarget::isLittleEndianEncoding() const {
397   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
398 }
399 
400 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
401 /// encodings, reverse the bit order of all instructions.
402 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
403   if (!isLittleEndianEncoding())
404     return;
405 
406   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
407   for (Record *R : Insts) {
408     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
409         R->getValueAsBit("isPseudo"))
410       continue;
411 
412     BitsInit *BI = R->getValueAsBitsInit("Inst");
413 
414     unsigned numBits = BI->getNumBits();
415 
416     SmallVector<Init *, 16> NewBits(numBits);
417 
418     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
419       unsigned bitSwapIdx = numBits - bit - 1;
420       Init *OrigBit = BI->getBit(bit);
421       Init *BitSwap = BI->getBit(bitSwapIdx);
422       NewBits[bit]        = BitSwap;
423       NewBits[bitSwapIdx] = OrigBit;
424     }
425     if (numBits % 2) {
426       unsigned middle = (numBits + 1) / 2;
427       NewBits[middle] = BI->getBit(middle);
428     }
429 
430     BitsInit *NewBI = BitsInit::get(NewBits);
431 
432     // Update the bits in reversed order so that emitInstrOpBits will get the
433     // correct endianness.
434     R->getValue("Inst")->setValue(NewBI);
435   }
436 }
437 
438 /// guessInstructionProperties - Return true if it's OK to guess instruction
439 /// properties instead of raising an error.
440 ///
441 /// This is configurable as a temporary migration aid. It will eventually be
442 /// permanently false.
443 bool CodeGenTarget::guessInstructionProperties() const {
444   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
445 }
446 
447 //===----------------------------------------------------------------------===//
448 // ComplexPattern implementation
449 //
450 ComplexPattern::ComplexPattern(Record *R) {
451   Ty          = ::getValueType(R->getValueAsDef("Ty"));
452   NumOperands = R->getValueAsInt("NumOperands");
453   SelectFunc  = R->getValueAsString("SelectFunc");
454   RootNodes   = R->getValueAsListOfDefs("RootNodes");
455 
456   // FIXME: This is a hack to statically increase the priority of patterns which
457   // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
458   // possible pattern match we'll need to dynamically calculate the complexity
459   // of all patterns a dag can potentially map to.
460   int64_t RawComplexity = R->getValueAsInt("Complexity");
461   if (RawComplexity == -1)
462     Complexity = NumOperands * 3;
463   else
464     Complexity = RawComplexity;
465 
466   // FIXME: Why is this different from parseSDPatternOperatorProperties?
467   // Parse the properties.
468   Properties = 0;
469   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
470   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
471     if (PropList[i]->getName() == "SDNPHasChain") {
472       Properties |= 1 << SDNPHasChain;
473     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
474       Properties |= 1 << SDNPOptInGlue;
475     } else if (PropList[i]->getName() == "SDNPMayStore") {
476       Properties |= 1 << SDNPMayStore;
477     } else if (PropList[i]->getName() == "SDNPMayLoad") {
478       Properties |= 1 << SDNPMayLoad;
479     } else if (PropList[i]->getName() == "SDNPSideEffect") {
480       Properties |= 1 << SDNPSideEffect;
481     } else if (PropList[i]->getName() == "SDNPMemOperand") {
482       Properties |= 1 << SDNPMemOperand;
483     } else if (PropList[i]->getName() == "SDNPVariadic") {
484       Properties |= 1 << SDNPVariadic;
485     } else if (PropList[i]->getName() == "SDNPWantRoot") {
486       Properties |= 1 << SDNPWantRoot;
487     } else if (PropList[i]->getName() == "SDNPWantParent") {
488       Properties |= 1 << SDNPWantParent;
489     } else {
490       PrintFatalError("Unsupported SD Node property '" +
491                       PropList[i]->getName() + "' on ComplexPattern '" +
492                       R->getName() + "'!");
493     }
494 }
495 
496 //===----------------------------------------------------------------------===//
497 // CodeGenIntrinsic Implementation
498 //===----------------------------------------------------------------------===//
499 
500 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC,
501                                              bool TargetOnly) {
502   std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic");
503 
504   Intrinsics.reserve(Defs.size());
505 
506   for (unsigned I = 0, e = Defs.size(); I != e; ++I) {
507     bool isTarget = Defs[I]->getValueAsBit("isTarget");
508     if (isTarget == TargetOnly)
509       Intrinsics.push_back(CodeGenIntrinsic(Defs[I]));
510   }
511   llvm::sort(Intrinsics.begin(), Intrinsics.end(),
512              [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
513                return std::tie(LHS.TargetPrefix, LHS.Name) <
514                       std::tie(RHS.TargetPrefix, RHS.Name);
515              });
516   Targets.push_back({"", 0, 0});
517   for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
518     if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
519       Targets.back().Count = I - Targets.back().Offset;
520       Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
521     }
522   Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
523 }
524 
525 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
526   TheDef = R;
527   std::string DefName = R->getName();
528   ModRef = ReadWriteMem;
529   Properties = 0;
530   isOverloaded = false;
531   isCommutative = false;
532   canThrow = false;
533   isNoReturn = false;
534   isNoDuplicate = false;
535   isConvergent = false;
536   isSpeculatable = false;
537   hasSideEffects = false;
538 
539   if (DefName.size() <= 4 ||
540       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
541     PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
542 
543   EnumName = std::string(DefName.begin()+4, DefName.end());
544 
545   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
546     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
547   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
548     MSBuiltinName = R->getValueAsString("MSBuiltinName");
549 
550   TargetPrefix = R->getValueAsString("TargetPrefix");
551   Name = R->getValueAsString("LLVMName");
552 
553   if (Name == "") {
554     // If an explicit name isn't specified, derive one from the DefName.
555     Name = "llvm.";
556 
557     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
558       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
559   } else {
560     // Verify it starts with "llvm.".
561     if (Name.size() <= 5 ||
562         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
563       PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
564   }
565 
566   // If TargetPrefix is specified, make sure that Name starts with
567   // "llvm.<targetprefix>.".
568   if (!TargetPrefix.empty()) {
569     if (Name.size() < 6+TargetPrefix.size() ||
570         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
571         != (TargetPrefix + "."))
572       PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
573         TargetPrefix + ".'!");
574   }
575 
576   // Parse the list of return types.
577   std::vector<MVT::SimpleValueType> OverloadedVTs;
578   ListInit *TypeList = R->getValueAsListInit("RetTypes");
579   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
580     Record *TyEl = TypeList->getElementAsRecord(i);
581     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
582     MVT::SimpleValueType VT;
583     if (TyEl->isSubClassOf("LLVMMatchType")) {
584       unsigned MatchTy = TyEl->getValueAsInt("Number");
585       assert(MatchTy < OverloadedVTs.size() &&
586              "Invalid matching number!");
587       VT = OverloadedVTs[MatchTy];
588       // It only makes sense to use the extended and truncated vector element
589       // variants with iAny types; otherwise, if the intrinsic is not
590       // overloaded, all the types can be specified directly.
591       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
592                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
593               VT == MVT::iAny || VT == MVT::vAny) &&
594              "Expected iAny or vAny type");
595     } else {
596       VT = getValueType(TyEl->getValueAsDef("VT"));
597     }
598     if (MVT(VT).isOverloaded()) {
599       OverloadedVTs.push_back(VT);
600       isOverloaded = true;
601     }
602 
603     // Reject invalid types.
604     if (VT == MVT::isVoid)
605       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
606 
607     IS.RetVTs.push_back(VT);
608     IS.RetTypeDefs.push_back(TyEl);
609   }
610 
611   // Parse the list of parameter types.
612   TypeList = R->getValueAsListInit("ParamTypes");
613   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
614     Record *TyEl = TypeList->getElementAsRecord(i);
615     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
616     MVT::SimpleValueType VT;
617     if (TyEl->isSubClassOf("LLVMMatchType")) {
618       unsigned MatchTy = TyEl->getValueAsInt("Number");
619       if (MatchTy >= OverloadedVTs.size()) {
620         PrintError(R->getLoc(),
621                    "Parameter #" + Twine(i) + " has out of bounds matching "
622                    "number " + Twine(MatchTy));
623         PrintFatalError(Twine("ParamTypes is ") + TypeList->getAsString());
624       }
625       VT = OverloadedVTs[MatchTy];
626       // It only makes sense to use the extended and truncated vector element
627       // variants with iAny types; otherwise, if the intrinsic is not
628       // overloaded, all the types can be specified directly.
629       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
630                !TyEl->isSubClassOf("LLVMTruncatedType") &&
631                !TyEl->isSubClassOf("LLVMVectorSameWidth")) ||
632               VT == MVT::iAny || VT == MVT::vAny) &&
633              "Expected iAny or vAny type");
634     } else
635       VT = getValueType(TyEl->getValueAsDef("VT"));
636 
637     if (MVT(VT).isOverloaded()) {
638       OverloadedVTs.push_back(VT);
639       isOverloaded = true;
640     }
641 
642     // Reject invalid types.
643     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
644       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
645 
646     IS.ParamVTs.push_back(VT);
647     IS.ParamTypeDefs.push_back(TyEl);
648   }
649 
650   // Parse the intrinsic properties.
651   ListInit *PropList = R->getValueAsListInit("IntrProperties");
652   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
653     Record *Property = PropList->getElementAsRecord(i);
654     assert(Property->isSubClassOf("IntrinsicProperty") &&
655            "Expected a property!");
656 
657     if (Property->getName() == "IntrNoMem")
658       ModRef = NoMem;
659     else if (Property->getName() == "IntrReadMem")
660       ModRef = ModRefBehavior(ModRef & ~MR_Mod);
661     else if (Property->getName() == "IntrWriteMem")
662       ModRef = ModRefBehavior(ModRef & ~MR_Ref);
663     else if (Property->getName() == "IntrArgMemOnly")
664       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
665     else if (Property->getName() == "IntrInaccessibleMemOnly")
666       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
667     else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly")
668       ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
669                               MR_InaccessibleMem);
670     else if (Property->getName() == "Commutative")
671       isCommutative = true;
672     else if (Property->getName() == "Throws")
673       canThrow = true;
674     else if (Property->getName() == "IntrNoDuplicate")
675       isNoDuplicate = true;
676     else if (Property->getName() == "IntrConvergent")
677       isConvergent = true;
678     else if (Property->getName() == "IntrNoReturn")
679       isNoReturn = true;
680     else if (Property->getName() == "IntrSpeculatable")
681       isSpeculatable = true;
682     else if (Property->getName() == "IntrHasSideEffects")
683       hasSideEffects = true;
684     else if (Property->isSubClassOf("NoCapture")) {
685       unsigned ArgNo = Property->getValueAsInt("ArgNo");
686       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
687     } else if (Property->isSubClassOf("Returned")) {
688       unsigned ArgNo = Property->getValueAsInt("ArgNo");
689       ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned));
690     } else if (Property->isSubClassOf("ReadOnly")) {
691       unsigned ArgNo = Property->getValueAsInt("ArgNo");
692       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
693     } else if (Property->isSubClassOf("WriteOnly")) {
694       unsigned ArgNo = Property->getValueAsInt("ArgNo");
695       ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly));
696     } else if (Property->isSubClassOf("ReadNone")) {
697       unsigned ArgNo = Property->getValueAsInt("ArgNo");
698       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
699     } else
700       llvm_unreachable("Unknown property!");
701   }
702 
703   // Also record the SDPatternOperator Properties.
704   Properties = parseSDPatternOperatorProperties(R);
705 
706   // Sort the argument attributes for later benefit.
707   llvm::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
708 }
709 
710