1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes abort on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenDAGPatterns.h" 19 #include "CodeGenIntrinsics.h" 20 #include "CodeGenSchedule.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include <algorithm> 27 using namespace llvm; 28 29 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 30 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 31 32 static cl::opt<unsigned> 33 AsmParserNum("asmparsernum", cl::init(0), 34 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 35 cl::cat(AsmParserCat)); 36 37 static cl::opt<unsigned> 38 AsmWriterNum("asmwriternum", cl::init(0), 39 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 40 cl::cat(AsmWriterCat)); 41 42 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 43 /// record corresponds to. 44 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 45 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 46 } 47 48 StringRef llvm::getName(MVT::SimpleValueType T) { 49 switch (T) { 50 case MVT::Other: return "UNKNOWN"; 51 case MVT::iPTR: return "TLI.getPointerTy()"; 52 case MVT::iPTRAny: return "TLI.getPointerTy()"; 53 default: return getEnumName(T); 54 } 55 } 56 57 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 58 switch (T) { 59 case MVT::Other: return "MVT::Other"; 60 case MVT::i1: return "MVT::i1"; 61 case MVT::i8: return "MVT::i8"; 62 case MVT::i16: return "MVT::i16"; 63 case MVT::i32: return "MVT::i32"; 64 case MVT::i64: return "MVT::i64"; 65 case MVT::i128: return "MVT::i128"; 66 case MVT::Any: return "MVT::Any"; 67 case MVT::iAny: return "MVT::iAny"; 68 case MVT::fAny: return "MVT::fAny"; 69 case MVT::vAny: return "MVT::vAny"; 70 case MVT::f16: return "MVT::f16"; 71 case MVT::f32: return "MVT::f32"; 72 case MVT::f64: return "MVT::f64"; 73 case MVT::f80: return "MVT::f80"; 74 case MVT::f128: return "MVT::f128"; 75 case MVT::ppcf128: return "MVT::ppcf128"; 76 case MVT::x86mmx: return "MVT::x86mmx"; 77 case MVT::Glue: return "MVT::Glue"; 78 case MVT::isVoid: return "MVT::isVoid"; 79 case MVT::v1i1: return "MVT::v1i1"; 80 case MVT::v2i1: return "MVT::v2i1"; 81 case MVT::v4i1: return "MVT::v4i1"; 82 case MVT::v8i1: return "MVT::v8i1"; 83 case MVT::v16i1: return "MVT::v16i1"; 84 case MVT::v32i1: return "MVT::v32i1"; 85 case MVT::v64i1: return "MVT::v64i1"; 86 case MVT::v128i1: return "MVT::v128i1"; 87 case MVT::v512i1: return "MVT::v512i1"; 88 case MVT::v1024i1: return "MVT::v1024i1"; 89 case MVT::v1i8: return "MVT::v1i8"; 90 case MVT::v2i8: return "MVT::v2i8"; 91 case MVT::v4i8: return "MVT::v4i8"; 92 case MVT::v8i8: return "MVT::v8i8"; 93 case MVT::v16i8: return "MVT::v16i8"; 94 case MVT::v32i8: return "MVT::v32i8"; 95 case MVT::v64i8: return "MVT::v64i8"; 96 case MVT::v128i8: return "MVT::v128i8"; 97 case MVT::v256i8: return "MVT::v256i8"; 98 case MVT::v1i16: return "MVT::v1i16"; 99 case MVT::v2i16: return "MVT::v2i16"; 100 case MVT::v4i16: return "MVT::v4i16"; 101 case MVT::v8i16: return "MVT::v8i16"; 102 case MVT::v16i16: return "MVT::v16i16"; 103 case MVT::v32i16: return "MVT::v32i16"; 104 case MVT::v64i16: return "MVT::v64i16"; 105 case MVT::v128i16: return "MVT::v128i16"; 106 case MVT::v1i32: return "MVT::v1i32"; 107 case MVT::v2i32: return "MVT::v2i32"; 108 case MVT::v4i32: return "MVT::v4i32"; 109 case MVT::v8i32: return "MVT::v8i32"; 110 case MVT::v16i32: return "MVT::v16i32"; 111 case MVT::v32i32: return "MVT::v32i32"; 112 case MVT::v64i32: return "MVT::v64i32"; 113 case MVT::v1i64: return "MVT::v1i64"; 114 case MVT::v2i64: return "MVT::v2i64"; 115 case MVT::v4i64: return "MVT::v4i64"; 116 case MVT::v8i64: return "MVT::v8i64"; 117 case MVT::v16i64: return "MVT::v16i64"; 118 case MVT::v32i64: return "MVT::v32i64"; 119 case MVT::v1i128: return "MVT::v1i128"; 120 case MVT::v2f16: return "MVT::v2f16"; 121 case MVT::v4f16: return "MVT::v4f16"; 122 case MVT::v8f16: return "MVT::v8f16"; 123 case MVT::v1f32: return "MVT::v1f32"; 124 case MVT::v2f32: return "MVT::v2f32"; 125 case MVT::v4f32: return "MVT::v4f32"; 126 case MVT::v8f32: return "MVT::v8f32"; 127 case MVT::v16f32: return "MVT::v16f32"; 128 case MVT::v1f64: return "MVT::v1f64"; 129 case MVT::v2f64: return "MVT::v2f64"; 130 case MVT::v4f64: return "MVT::v4f64"; 131 case MVT::v8f64: return "MVT::v8f64"; 132 case MVT::nxv1i1: return "MVT::nxv1i1"; 133 case MVT::nxv2i1: return "MVT::nxv2i1"; 134 case MVT::nxv4i1: return "MVT::nxv4i1"; 135 case MVT::nxv8i1: return "MVT::nxv8i1"; 136 case MVT::nxv16i1: return "MVT::nxv16i1"; 137 case MVT::nxv32i1: return "MVT::nxv32i1"; 138 case MVT::nxv1i8: return "MVT::nxv1i8"; 139 case MVT::nxv2i8: return "MVT::nxv2i8"; 140 case MVT::nxv4i8: return "MVT::nxv4i8"; 141 case MVT::nxv8i8: return "MVT::nxv8i8"; 142 case MVT::nxv16i8: return "MVT::nxv16i8"; 143 case MVT::nxv32i8: return "MVT::nxv32i8"; 144 case MVT::nxv1i16: return "MVT::nxv1i16"; 145 case MVT::nxv2i16: return "MVT::nxv2i16"; 146 case MVT::nxv4i16: return "MVT::nxv4i16"; 147 case MVT::nxv8i16: return "MVT::nxv8i16"; 148 case MVT::nxv16i16: return "MVT::nxv16i16"; 149 case MVT::nxv32i16: return "MVT::nxv32i16"; 150 case MVT::nxv1i32: return "MVT::nxv1i32"; 151 case MVT::nxv2i32: return "MVT::nxv2i32"; 152 case MVT::nxv4i32: return "MVT::nxv4i32"; 153 case MVT::nxv8i32: return "MVT::nxv8i32"; 154 case MVT::nxv16i32: return "MVT::nxv16i32"; 155 case MVT::nxv1i64: return "MVT::nxv1i64"; 156 case MVT::nxv2i64: return "MVT::nxv2i64"; 157 case MVT::nxv4i64: return "MVT::nxv4i64"; 158 case MVT::nxv8i64: return "MVT::nxv8i64"; 159 case MVT::nxv16i64: return "MVT::nxv16i64"; 160 case MVT::nxv2f16: return "MVT::nxv2f16"; 161 case MVT::nxv4f16: return "MVT::nxv4f16"; 162 case MVT::nxv8f16: return "MVT::nxv8f16"; 163 case MVT::nxv1f32: return "MVT::nxv1f32"; 164 case MVT::nxv2f32: return "MVT::nxv2f32"; 165 case MVT::nxv4f32: return "MVT::nxv4f32"; 166 case MVT::nxv8f32: return "MVT::nxv8f32"; 167 case MVT::nxv16f32: return "MVT::nxv16f32"; 168 case MVT::nxv1f64: return "MVT::nxv1f64"; 169 case MVT::nxv2f64: return "MVT::nxv2f64"; 170 case MVT::nxv4f64: return "MVT::nxv4f64"; 171 case MVT::nxv8f64: return "MVT::nxv8f64"; 172 case MVT::token: return "MVT::token"; 173 case MVT::Metadata: return "MVT::Metadata"; 174 case MVT::iPTR: return "MVT::iPTR"; 175 case MVT::iPTRAny: return "MVT::iPTRAny"; 176 case MVT::Untyped: return "MVT::Untyped"; 177 case MVT::ExceptRef: return "MVT::ExceptRef"; 178 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 179 } 180 } 181 182 /// getQualifiedName - Return the name of the specified record, with a 183 /// namespace qualifier if the record contains one. 184 /// 185 std::string llvm::getQualifiedName(const Record *R) { 186 std::string Namespace; 187 if (R->getValue("Namespace")) 188 Namespace = R->getValueAsString("Namespace"); 189 if (Namespace.empty()) return R->getName(); 190 return Namespace + "::" + R->getName().str(); 191 } 192 193 194 /// getTarget - Return the current instance of the Target class. 195 /// 196 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 197 : Records(records), CGH(records) { 198 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 199 if (Targets.size() == 0) 200 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 201 if (Targets.size() != 1) 202 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 203 TargetRec = Targets[0]; 204 } 205 206 CodeGenTarget::~CodeGenTarget() { 207 } 208 209 const StringRef CodeGenTarget::getName() const { 210 return TargetRec->getName(); 211 } 212 213 StringRef CodeGenTarget::getInstNamespace() const { 214 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 215 // Make sure not to pick up "TargetOpcode" by accidentally getting 216 // the namespace off the PHI instruction or something. 217 if (Inst->Namespace != "TargetOpcode") 218 return Inst->Namespace; 219 } 220 221 return ""; 222 } 223 224 Record *CodeGenTarget::getInstructionSet() const { 225 return TargetRec->getValueAsDef("InstructionSet"); 226 } 227 228 bool CodeGenTarget::getAllowRegisterRenaming() const { 229 return TargetRec->getValueAsInt("AllowRegisterRenaming"); 230 } 231 232 /// getAsmParser - Return the AssemblyParser definition for this target. 233 /// 234 Record *CodeGenTarget::getAsmParser() const { 235 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 236 if (AsmParserNum >= LI.size()) 237 PrintFatalError("Target does not have an AsmParser #" + 238 Twine(AsmParserNum) + "!"); 239 return LI[AsmParserNum]; 240 } 241 242 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 243 /// this target. 244 /// 245 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 246 std::vector<Record*> LI = 247 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 248 if (i >= LI.size()) 249 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 250 "!"); 251 return LI[i]; 252 } 253 254 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 255 /// available for this target. 256 /// 257 unsigned CodeGenTarget::getAsmParserVariantCount() const { 258 std::vector<Record*> LI = 259 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 260 return LI.size(); 261 } 262 263 /// getAsmWriter - Return the AssemblyWriter definition for this target. 264 /// 265 Record *CodeGenTarget::getAsmWriter() const { 266 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 267 if (AsmWriterNum >= LI.size()) 268 PrintFatalError("Target does not have an AsmWriter #" + 269 Twine(AsmWriterNum) + "!"); 270 return LI[AsmWriterNum]; 271 } 272 273 CodeGenRegBank &CodeGenTarget::getRegBank() const { 274 if (!RegBank) 275 RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes()); 276 return *RegBank; 277 } 278 279 void CodeGenTarget::ReadRegAltNameIndices() const { 280 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 281 llvm::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 282 } 283 284 /// getRegisterByName - If there is a register with the specific AsmName, 285 /// return it. 286 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 287 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 288 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 289 if (I == Regs.end()) 290 return nullptr; 291 return I->second; 292 } 293 294 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R) 295 const { 296 const CodeGenRegister *Reg = getRegBank().getReg(R); 297 std::vector<ValueTypeByHwMode> Result; 298 for (const auto &RC : getRegBank().getRegClasses()) { 299 if (RC.contains(Reg)) { 300 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); 301 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 302 } 303 } 304 305 // Remove duplicates. 306 llvm::sort(Result.begin(), Result.end()); 307 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 308 return Result; 309 } 310 311 312 void CodeGenTarget::ReadLegalValueTypes() const { 313 for (const auto &RC : getRegBank().getRegClasses()) 314 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 315 316 // Remove duplicates. 317 llvm::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 318 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 319 LegalValueTypes.end()), 320 LegalValueTypes.end()); 321 } 322 323 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 324 if (!SchedModels) 325 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this); 326 return *SchedModels; 327 } 328 329 void CodeGenTarget::ReadInstructions() const { 330 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 331 if (Insts.size() <= 2) 332 PrintFatalError("No 'Instruction' subclasses defined!"); 333 334 // Parse the instructions defined in the .td file. 335 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 336 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]); 337 } 338 339 static const CodeGenInstruction * 340 GetInstByName(const char *Name, 341 const DenseMap<const Record*, 342 std::unique_ptr<CodeGenInstruction>> &Insts, 343 RecordKeeper &Records) { 344 const Record *Rec = Records.getDef(Name); 345 346 const auto I = Insts.find(Rec); 347 if (!Rec || I == Insts.end()) 348 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 349 return I->second.get(); 350 } 351 352 static const char *const FixedInstrs[] = { 353 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 354 #include "llvm/Support/TargetOpcodes.def" 355 nullptr}; 356 357 unsigned CodeGenTarget::getNumFixedInstructions() { 358 return array_lengthof(FixedInstrs) - 1; 359 } 360 361 /// Return all of the instructions defined by the target, ordered by 362 /// their enum value. 363 void CodeGenTarget::ComputeInstrsByEnum() const { 364 const auto &Insts = getInstructions(); 365 for (const char *const *p = FixedInstrs; *p; ++p) { 366 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 367 assert(Instr && "Missing target independent instruction"); 368 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 369 InstrsByEnum.push_back(Instr); 370 } 371 unsigned EndOfPredefines = InstrsByEnum.size(); 372 assert(EndOfPredefines == getNumFixedInstructions() && 373 "Missing generic opcode"); 374 375 for (const auto &I : Insts) { 376 const CodeGenInstruction *CGI = I.second.get(); 377 if (CGI->Namespace != "TargetOpcode") 378 InstrsByEnum.push_back(CGI); 379 } 380 381 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 382 383 // All of the instructions are now in random order based on the map iteration. 384 // Sort them by name. 385 llvm::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 386 [](const CodeGenInstruction *Rec1, 387 const CodeGenInstruction *Rec2) { 388 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 389 }); 390 } 391 392 393 /// isLittleEndianEncoding - Return whether this target encodes its instruction 394 /// in little-endian format, i.e. bits laid out in the order [0..n] 395 /// 396 bool CodeGenTarget::isLittleEndianEncoding() const { 397 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 398 } 399 400 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 401 /// encodings, reverse the bit order of all instructions. 402 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 403 if (!isLittleEndianEncoding()) 404 return; 405 406 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 407 for (Record *R : Insts) { 408 if (R->getValueAsString("Namespace") == "TargetOpcode" || 409 R->getValueAsBit("isPseudo")) 410 continue; 411 412 BitsInit *BI = R->getValueAsBitsInit("Inst"); 413 414 unsigned numBits = BI->getNumBits(); 415 416 SmallVector<Init *, 16> NewBits(numBits); 417 418 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 419 unsigned bitSwapIdx = numBits - bit - 1; 420 Init *OrigBit = BI->getBit(bit); 421 Init *BitSwap = BI->getBit(bitSwapIdx); 422 NewBits[bit] = BitSwap; 423 NewBits[bitSwapIdx] = OrigBit; 424 } 425 if (numBits % 2) { 426 unsigned middle = (numBits + 1) / 2; 427 NewBits[middle] = BI->getBit(middle); 428 } 429 430 BitsInit *NewBI = BitsInit::get(NewBits); 431 432 // Update the bits in reversed order so that emitInstrOpBits will get the 433 // correct endianness. 434 R->getValue("Inst")->setValue(NewBI); 435 } 436 } 437 438 /// guessInstructionProperties - Return true if it's OK to guess instruction 439 /// properties instead of raising an error. 440 /// 441 /// This is configurable as a temporary migration aid. It will eventually be 442 /// permanently false. 443 bool CodeGenTarget::guessInstructionProperties() const { 444 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 445 } 446 447 //===----------------------------------------------------------------------===// 448 // ComplexPattern implementation 449 // 450 ComplexPattern::ComplexPattern(Record *R) { 451 Ty = ::getValueType(R->getValueAsDef("Ty")); 452 NumOperands = R->getValueAsInt("NumOperands"); 453 SelectFunc = R->getValueAsString("SelectFunc"); 454 RootNodes = R->getValueAsListOfDefs("RootNodes"); 455 456 // FIXME: This is a hack to statically increase the priority of patterns which 457 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 458 // possible pattern match we'll need to dynamically calculate the complexity 459 // of all patterns a dag can potentially map to. 460 int64_t RawComplexity = R->getValueAsInt("Complexity"); 461 if (RawComplexity == -1) 462 Complexity = NumOperands * 3; 463 else 464 Complexity = RawComplexity; 465 466 // FIXME: Why is this different from parseSDPatternOperatorProperties? 467 // Parse the properties. 468 Properties = 0; 469 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 470 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 471 if (PropList[i]->getName() == "SDNPHasChain") { 472 Properties |= 1 << SDNPHasChain; 473 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 474 Properties |= 1 << SDNPOptInGlue; 475 } else if (PropList[i]->getName() == "SDNPMayStore") { 476 Properties |= 1 << SDNPMayStore; 477 } else if (PropList[i]->getName() == "SDNPMayLoad") { 478 Properties |= 1 << SDNPMayLoad; 479 } else if (PropList[i]->getName() == "SDNPSideEffect") { 480 Properties |= 1 << SDNPSideEffect; 481 } else if (PropList[i]->getName() == "SDNPMemOperand") { 482 Properties |= 1 << SDNPMemOperand; 483 } else if (PropList[i]->getName() == "SDNPVariadic") { 484 Properties |= 1 << SDNPVariadic; 485 } else if (PropList[i]->getName() == "SDNPWantRoot") { 486 Properties |= 1 << SDNPWantRoot; 487 } else if (PropList[i]->getName() == "SDNPWantParent") { 488 Properties |= 1 << SDNPWantParent; 489 } else { 490 PrintFatalError("Unsupported SD Node property '" + 491 PropList[i]->getName() + "' on ComplexPattern '" + 492 R->getName() + "'!"); 493 } 494 } 495 496 //===----------------------------------------------------------------------===// 497 // CodeGenIntrinsic Implementation 498 //===----------------------------------------------------------------------===// 499 500 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC, 501 bool TargetOnly) { 502 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 503 504 Intrinsics.reserve(Defs.size()); 505 506 for (unsigned I = 0, e = Defs.size(); I != e; ++I) { 507 bool isTarget = Defs[I]->getValueAsBit("isTarget"); 508 if (isTarget == TargetOnly) 509 Intrinsics.push_back(CodeGenIntrinsic(Defs[I])); 510 } 511 llvm::sort(Intrinsics.begin(), Intrinsics.end(), 512 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 513 return std::tie(LHS.TargetPrefix, LHS.Name) < 514 std::tie(RHS.TargetPrefix, RHS.Name); 515 }); 516 Targets.push_back({"", 0, 0}); 517 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 518 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 519 Targets.back().Count = I - Targets.back().Offset; 520 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 521 } 522 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 523 } 524 525 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 526 TheDef = R; 527 std::string DefName = R->getName(); 528 ModRef = ReadWriteMem; 529 Properties = 0; 530 isOverloaded = false; 531 isCommutative = false; 532 canThrow = false; 533 isNoReturn = false; 534 isNoDuplicate = false; 535 isConvergent = false; 536 isSpeculatable = false; 537 hasSideEffects = false; 538 539 if (DefName.size() <= 4 || 540 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 541 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!"); 542 543 EnumName = std::string(DefName.begin()+4, DefName.end()); 544 545 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 546 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 547 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 548 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 549 550 TargetPrefix = R->getValueAsString("TargetPrefix"); 551 Name = R->getValueAsString("LLVMName"); 552 553 if (Name == "") { 554 // If an explicit name isn't specified, derive one from the DefName. 555 Name = "llvm."; 556 557 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 558 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 559 } else { 560 // Verify it starts with "llvm.". 561 if (Name.size() <= 5 || 562 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 563 PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); 564 } 565 566 // If TargetPrefix is specified, make sure that Name starts with 567 // "llvm.<targetprefix>.". 568 if (!TargetPrefix.empty()) { 569 if (Name.size() < 6+TargetPrefix.size() || 570 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 571 != (TargetPrefix + ".")) 572 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." + 573 TargetPrefix + ".'!"); 574 } 575 576 // Parse the list of return types. 577 std::vector<MVT::SimpleValueType> OverloadedVTs; 578 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 579 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 580 Record *TyEl = TypeList->getElementAsRecord(i); 581 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 582 MVT::SimpleValueType VT; 583 if (TyEl->isSubClassOf("LLVMMatchType")) { 584 unsigned MatchTy = TyEl->getValueAsInt("Number"); 585 assert(MatchTy < OverloadedVTs.size() && 586 "Invalid matching number!"); 587 VT = OverloadedVTs[MatchTy]; 588 // It only makes sense to use the extended and truncated vector element 589 // variants with iAny types; otherwise, if the intrinsic is not 590 // overloaded, all the types can be specified directly. 591 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 592 !TyEl->isSubClassOf("LLVMTruncatedType")) || 593 VT == MVT::iAny || VT == MVT::vAny) && 594 "Expected iAny or vAny type"); 595 } else { 596 VT = getValueType(TyEl->getValueAsDef("VT")); 597 } 598 if (MVT(VT).isOverloaded()) { 599 OverloadedVTs.push_back(VT); 600 isOverloaded = true; 601 } 602 603 // Reject invalid types. 604 if (VT == MVT::isVoid) 605 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 606 607 IS.RetVTs.push_back(VT); 608 IS.RetTypeDefs.push_back(TyEl); 609 } 610 611 // Parse the list of parameter types. 612 TypeList = R->getValueAsListInit("ParamTypes"); 613 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 614 Record *TyEl = TypeList->getElementAsRecord(i); 615 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 616 MVT::SimpleValueType VT; 617 if (TyEl->isSubClassOf("LLVMMatchType")) { 618 unsigned MatchTy = TyEl->getValueAsInt("Number"); 619 if (MatchTy >= OverloadedVTs.size()) { 620 PrintError(R->getLoc(), 621 "Parameter #" + Twine(i) + " has out of bounds matching " 622 "number " + Twine(MatchTy)); 623 PrintFatalError(Twine("ParamTypes is ") + TypeList->getAsString()); 624 } 625 VT = OverloadedVTs[MatchTy]; 626 // It only makes sense to use the extended and truncated vector element 627 // variants with iAny types; otherwise, if the intrinsic is not 628 // overloaded, all the types can be specified directly. 629 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 630 !TyEl->isSubClassOf("LLVMTruncatedType") && 631 !TyEl->isSubClassOf("LLVMVectorSameWidth")) || 632 VT == MVT::iAny || VT == MVT::vAny) && 633 "Expected iAny or vAny type"); 634 } else 635 VT = getValueType(TyEl->getValueAsDef("VT")); 636 637 if (MVT(VT).isOverloaded()) { 638 OverloadedVTs.push_back(VT); 639 isOverloaded = true; 640 } 641 642 // Reject invalid types. 643 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 644 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 645 646 IS.ParamVTs.push_back(VT); 647 IS.ParamTypeDefs.push_back(TyEl); 648 } 649 650 // Parse the intrinsic properties. 651 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 652 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 653 Record *Property = PropList->getElementAsRecord(i); 654 assert(Property->isSubClassOf("IntrinsicProperty") && 655 "Expected a property!"); 656 657 if (Property->getName() == "IntrNoMem") 658 ModRef = NoMem; 659 else if (Property->getName() == "IntrReadMem") 660 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 661 else if (Property->getName() == "IntrWriteMem") 662 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 663 else if (Property->getName() == "IntrArgMemOnly") 664 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 665 else if (Property->getName() == "IntrInaccessibleMemOnly") 666 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 667 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly") 668 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 669 MR_InaccessibleMem); 670 else if (Property->getName() == "Commutative") 671 isCommutative = true; 672 else if (Property->getName() == "Throws") 673 canThrow = true; 674 else if (Property->getName() == "IntrNoDuplicate") 675 isNoDuplicate = true; 676 else if (Property->getName() == "IntrConvergent") 677 isConvergent = true; 678 else if (Property->getName() == "IntrNoReturn") 679 isNoReturn = true; 680 else if (Property->getName() == "IntrSpeculatable") 681 isSpeculatable = true; 682 else if (Property->getName() == "IntrHasSideEffects") 683 hasSideEffects = true; 684 else if (Property->isSubClassOf("NoCapture")) { 685 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 686 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 687 } else if (Property->isSubClassOf("Returned")) { 688 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 689 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned)); 690 } else if (Property->isSubClassOf("ReadOnly")) { 691 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 692 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 693 } else if (Property->isSubClassOf("WriteOnly")) { 694 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 695 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly)); 696 } else if (Property->isSubClassOf("ReadNone")) { 697 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 698 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 699 } else 700 llvm_unreachable("Unknown property!"); 701 } 702 703 // Also record the SDPatternOperator Properties. 704 Properties = parseSDPatternOperatorProperties(R); 705 706 // Sort the argument attributes for later benefit. 707 llvm::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 708 } 709 710