1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class wraps target description classes used by the various code 10 // generation TableGen backends. This makes it easier to access the data and 11 // provides a single place that needs to check it for validity. All of these 12 // classes abort on error conditions. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CodeGenTarget.h" 17 #include "CodeGenDAGPatterns.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Timer.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <algorithm> 28 using namespace llvm; 29 30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 32 33 static cl::opt<unsigned> 34 AsmParserNum("asmparsernum", cl::init(0), 35 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 36 cl::cat(AsmParserCat)); 37 38 static cl::opt<unsigned> 39 AsmWriterNum("asmwriternum", cl::init(0), 40 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 41 cl::cat(AsmWriterCat)); 42 43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 44 /// record corresponds to. 45 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 46 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 47 } 48 49 StringRef llvm::getName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "UNKNOWN"; 52 case MVT::iPTR: return "TLI.getPointerTy()"; 53 case MVT::iPTRAny: return "TLI.getPointerTy()"; 54 default: return getEnumName(T); 55 } 56 } 57 58 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 59 switch (T) { 60 case MVT::Other: return "MVT::Other"; 61 case MVT::i1: return "MVT::i1"; 62 case MVT::i8: return "MVT::i8"; 63 case MVT::i16: return "MVT::i16"; 64 case MVT::i32: return "MVT::i32"; 65 case MVT::i64: return "MVT::i64"; 66 case MVT::i128: return "MVT::i128"; 67 case MVT::Any: return "MVT::Any"; 68 case MVT::iAny: return "MVT::iAny"; 69 case MVT::fAny: return "MVT::fAny"; 70 case MVT::vAny: return "MVT::vAny"; 71 case MVT::f16: return "MVT::f16"; 72 case MVT::f32: return "MVT::f32"; 73 case MVT::f64: return "MVT::f64"; 74 case MVT::f80: return "MVT::f80"; 75 case MVT::f128: return "MVT::f128"; 76 case MVT::ppcf128: return "MVT::ppcf128"; 77 case MVT::x86mmx: return "MVT::x86mmx"; 78 case MVT::Glue: return "MVT::Glue"; 79 case MVT::isVoid: return "MVT::isVoid"; 80 case MVT::v1i1: return "MVT::v1i1"; 81 case MVT::v2i1: return "MVT::v2i1"; 82 case MVT::v4i1: return "MVT::v4i1"; 83 case MVT::v8i1: return "MVT::v8i1"; 84 case MVT::v16i1: return "MVT::v16i1"; 85 case MVT::v32i1: return "MVT::v32i1"; 86 case MVT::v64i1: return "MVT::v64i1"; 87 case MVT::v128i1: return "MVT::v128i1"; 88 case MVT::v512i1: return "MVT::v512i1"; 89 case MVT::v1024i1: return "MVT::v1024i1"; 90 case MVT::v1i8: return "MVT::v1i8"; 91 case MVT::v2i8: return "MVT::v2i8"; 92 case MVT::v4i8: return "MVT::v4i8"; 93 case MVT::v8i8: return "MVT::v8i8"; 94 case MVT::v16i8: return "MVT::v16i8"; 95 case MVT::v32i8: return "MVT::v32i8"; 96 case MVT::v64i8: return "MVT::v64i8"; 97 case MVT::v128i8: return "MVT::v128i8"; 98 case MVT::v256i8: return "MVT::v256i8"; 99 case MVT::v1i16: return "MVT::v1i16"; 100 case MVT::v2i16: return "MVT::v2i16"; 101 case MVT::v3i16: return "MVT::v3i16"; 102 case MVT::v4i16: return "MVT::v4i16"; 103 case MVT::v8i16: return "MVT::v8i16"; 104 case MVT::v16i16: return "MVT::v16i16"; 105 case MVT::v32i16: return "MVT::v32i16"; 106 case MVT::v64i16: return "MVT::v64i16"; 107 case MVT::v128i16: return "MVT::v128i16"; 108 case MVT::v1i32: return "MVT::v1i32"; 109 case MVT::v2i32: return "MVT::v2i32"; 110 case MVT::v3i32: return "MVT::v3i32"; 111 case MVT::v4i32: return "MVT::v4i32"; 112 case MVT::v5i32: return "MVT::v5i32"; 113 case MVT::v8i32: return "MVT::v8i32"; 114 case MVT::v16i32: return "MVT::v16i32"; 115 case MVT::v32i32: return "MVT::v32i32"; 116 case MVT::v64i32: return "MVT::v64i32"; 117 case MVT::v128i32: return "MVT::v128i32"; 118 case MVT::v256i32: return "MVT::v256i32"; 119 case MVT::v512i32: return "MVT::v512i32"; 120 case MVT::v1024i32: return "MVT::v1024i32"; 121 case MVT::v2048i32: return "MVT::v2048i32"; 122 case MVT::v1i64: return "MVT::v1i64"; 123 case MVT::v2i64: return "MVT::v2i64"; 124 case MVT::v4i64: return "MVT::v4i64"; 125 case MVT::v8i64: return "MVT::v8i64"; 126 case MVT::v16i64: return "MVT::v16i64"; 127 case MVT::v32i64: return "MVT::v32i64"; 128 case MVT::v1i128: return "MVT::v1i128"; 129 case MVT::v2f16: return "MVT::v2f16"; 130 case MVT::v3f16: return "MVT::v3f16"; 131 case MVT::v4f16: return "MVT::v4f16"; 132 case MVT::v8f16: return "MVT::v8f16"; 133 case MVT::v1f32: return "MVT::v1f32"; 134 case MVT::v2f32: return "MVT::v2f32"; 135 case MVT::v3f32: return "MVT::v3f32"; 136 case MVT::v4f32: return "MVT::v4f32"; 137 case MVT::v5f32: return "MVT::v5f32"; 138 case MVT::v8f32: return "MVT::v8f32"; 139 case MVT::v16f32: return "MVT::v16f32"; 140 case MVT::v32f32: return "MVT::v32f32"; 141 case MVT::v64f32: return "MVT::v64f32"; 142 case MVT::v128f32: return "MVT::v128f32"; 143 case MVT::v256f32: return "MVT::v256f32"; 144 case MVT::v512f32: return "MVT::v512f32"; 145 case MVT::v1024f32: return "MVT::v1024f32"; 146 case MVT::v2048f32: return "MVT::v2048f32"; 147 case MVT::v1f64: return "MVT::v1f64"; 148 case MVT::v2f64: return "MVT::v2f64"; 149 case MVT::v4f64: return "MVT::v4f64"; 150 case MVT::v8f64: return "MVT::v8f64"; 151 case MVT::nxv1i1: return "MVT::nxv1i1"; 152 case MVT::nxv2i1: return "MVT::nxv2i1"; 153 case MVT::nxv4i1: return "MVT::nxv4i1"; 154 case MVT::nxv8i1: return "MVT::nxv8i1"; 155 case MVT::nxv16i1: return "MVT::nxv16i1"; 156 case MVT::nxv32i1: return "MVT::nxv32i1"; 157 case MVT::nxv1i8: return "MVT::nxv1i8"; 158 case MVT::nxv2i8: return "MVT::nxv2i8"; 159 case MVT::nxv4i8: return "MVT::nxv4i8"; 160 case MVT::nxv8i8: return "MVT::nxv8i8"; 161 case MVT::nxv16i8: return "MVT::nxv16i8"; 162 case MVT::nxv32i8: return "MVT::nxv32i8"; 163 case MVT::nxv1i16: return "MVT::nxv1i16"; 164 case MVT::nxv2i16: return "MVT::nxv2i16"; 165 case MVT::nxv4i16: return "MVT::nxv4i16"; 166 case MVT::nxv8i16: return "MVT::nxv8i16"; 167 case MVT::nxv16i16: return "MVT::nxv16i16"; 168 case MVT::nxv32i16: return "MVT::nxv32i16"; 169 case MVT::nxv1i32: return "MVT::nxv1i32"; 170 case MVT::nxv2i32: return "MVT::nxv2i32"; 171 case MVT::nxv4i32: return "MVT::nxv4i32"; 172 case MVT::nxv8i32: return "MVT::nxv8i32"; 173 case MVT::nxv16i32: return "MVT::nxv16i32"; 174 case MVT::nxv1i64: return "MVT::nxv1i64"; 175 case MVT::nxv2i64: return "MVT::nxv2i64"; 176 case MVT::nxv4i64: return "MVT::nxv4i64"; 177 case MVT::nxv8i64: return "MVT::nxv8i64"; 178 case MVT::nxv16i64: return "MVT::nxv16i64"; 179 case MVT::nxv2f16: return "MVT::nxv2f16"; 180 case MVT::nxv4f16: return "MVT::nxv4f16"; 181 case MVT::nxv8f16: return "MVT::nxv8f16"; 182 case MVT::nxv1f32: return "MVT::nxv1f32"; 183 case MVT::nxv2f32: return "MVT::nxv2f32"; 184 case MVT::nxv4f32: return "MVT::nxv4f32"; 185 case MVT::nxv8f32: return "MVT::nxv8f32"; 186 case MVT::nxv16f32: return "MVT::nxv16f32"; 187 case MVT::nxv1f64: return "MVT::nxv1f64"; 188 case MVT::nxv2f64: return "MVT::nxv2f64"; 189 case MVT::nxv4f64: return "MVT::nxv4f64"; 190 case MVT::nxv8f64: return "MVT::nxv8f64"; 191 case MVT::token: return "MVT::token"; 192 case MVT::Metadata: return "MVT::Metadata"; 193 case MVT::iPTR: return "MVT::iPTR"; 194 case MVT::iPTRAny: return "MVT::iPTRAny"; 195 case MVT::Untyped: return "MVT::Untyped"; 196 case MVT::exnref: return "MVT::exnref"; 197 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 198 } 199 } 200 201 /// getQualifiedName - Return the name of the specified record, with a 202 /// namespace qualifier if the record contains one. 203 /// 204 std::string llvm::getQualifiedName(const Record *R) { 205 std::string Namespace; 206 if (R->getValue("Namespace")) 207 Namespace = R->getValueAsString("Namespace"); 208 if (Namespace.empty()) return R->getName(); 209 return Namespace + "::" + R->getName().str(); 210 } 211 212 213 /// getTarget - Return the current instance of the Target class. 214 /// 215 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 216 : Records(records), CGH(records) { 217 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 218 if (Targets.size() == 0) 219 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 220 if (Targets.size() != 1) 221 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 222 TargetRec = Targets[0]; 223 } 224 225 CodeGenTarget::~CodeGenTarget() { 226 } 227 228 const StringRef CodeGenTarget::getName() const { 229 return TargetRec->getName(); 230 } 231 232 StringRef CodeGenTarget::getInstNamespace() const { 233 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 234 // Make sure not to pick up "TargetOpcode" by accidentally getting 235 // the namespace off the PHI instruction or something. 236 if (Inst->Namespace != "TargetOpcode") 237 return Inst->Namespace; 238 } 239 240 return ""; 241 } 242 243 Record *CodeGenTarget::getInstructionSet() const { 244 return TargetRec->getValueAsDef("InstructionSet"); 245 } 246 247 bool CodeGenTarget::getAllowRegisterRenaming() const { 248 return TargetRec->getValueAsInt("AllowRegisterRenaming"); 249 } 250 251 /// getAsmParser - Return the AssemblyParser definition for this target. 252 /// 253 Record *CodeGenTarget::getAsmParser() const { 254 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 255 if (AsmParserNum >= LI.size()) 256 PrintFatalError("Target does not have an AsmParser #" + 257 Twine(AsmParserNum) + "!"); 258 return LI[AsmParserNum]; 259 } 260 261 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 262 /// this target. 263 /// 264 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 265 std::vector<Record*> LI = 266 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 267 if (i >= LI.size()) 268 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 269 "!"); 270 return LI[i]; 271 } 272 273 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 274 /// available for this target. 275 /// 276 unsigned CodeGenTarget::getAsmParserVariantCount() const { 277 std::vector<Record*> LI = 278 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 279 return LI.size(); 280 } 281 282 /// getAsmWriter - Return the AssemblyWriter definition for this target. 283 /// 284 Record *CodeGenTarget::getAsmWriter() const { 285 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 286 if (AsmWriterNum >= LI.size()) 287 PrintFatalError("Target does not have an AsmWriter #" + 288 Twine(AsmWriterNum) + "!"); 289 return LI[AsmWriterNum]; 290 } 291 292 CodeGenRegBank &CodeGenTarget::getRegBank() const { 293 if (!RegBank) 294 RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes()); 295 return *RegBank; 296 } 297 298 Optional<CodeGenRegisterClass *> 299 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy, 300 CodeGenRegBank &RegBank, 301 const CodeGenSubRegIndex *SubIdx) const { 302 std::vector<CodeGenRegisterClass *> Candidates; 303 auto &RegClasses = RegBank.getRegClasses(); 304 305 // Try to find a register class which supports ValueTy, and also contains 306 // SubIdx. 307 for (CodeGenRegisterClass &RC : RegClasses) { 308 // Is there a subclass of this class which contains this subregister index? 309 CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx); 310 if (!SubClassWithSubReg) 311 continue; 312 313 // We have a class. Check if it supports this value type. 314 if (llvm::none_of(SubClassWithSubReg->VTs, 315 [&ValueTy](const ValueTypeByHwMode &ClassVT) { 316 return ClassVT == ValueTy; 317 })) 318 continue; 319 320 // We have a register class which supports both the value type and 321 // subregister index. Remember it. 322 Candidates.push_back(SubClassWithSubReg); 323 } 324 325 // If we didn't find anything, we're done. 326 if (Candidates.empty()) 327 return None; 328 329 // Find and return the largest of our candidate classes. 330 llvm::sort(Candidates, 331 [&](const CodeGenRegisterClass *A, const CodeGenRegisterClass *B) { 332 return A->getMembers().size() > B->getMembers().size(); 333 }); 334 335 return Candidates[0]; 336 } 337 338 void CodeGenTarget::ReadRegAltNameIndices() const { 339 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 340 llvm::sort(RegAltNameIndices, LessRecord()); 341 } 342 343 /// getRegisterByName - If there is a register with the specific AsmName, 344 /// return it. 345 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 346 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 347 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 348 if (I == Regs.end()) 349 return nullptr; 350 return I->second; 351 } 352 353 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R) 354 const { 355 const CodeGenRegister *Reg = getRegBank().getReg(R); 356 std::vector<ValueTypeByHwMode> Result; 357 for (const auto &RC : getRegBank().getRegClasses()) { 358 if (RC.contains(Reg)) { 359 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); 360 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 361 } 362 } 363 364 // Remove duplicates. 365 llvm::sort(Result); 366 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 367 return Result; 368 } 369 370 371 void CodeGenTarget::ReadLegalValueTypes() const { 372 for (const auto &RC : getRegBank().getRegClasses()) 373 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 374 375 // Remove duplicates. 376 llvm::sort(LegalValueTypes); 377 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 378 LegalValueTypes.end()), 379 LegalValueTypes.end()); 380 } 381 382 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 383 if (!SchedModels) 384 SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this); 385 return *SchedModels; 386 } 387 388 void CodeGenTarget::ReadInstructions() const { 389 NamedRegionTimer T("Read Instructions", "Time spent reading instructions", 390 "CodeGenTarget", "CodeGenTarget", TimeRegions); 391 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 392 if (Insts.size() <= 2) 393 PrintFatalError("No 'Instruction' subclasses defined!"); 394 395 // Parse the instructions defined in the .td file. 396 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 397 Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]); 398 } 399 400 static const CodeGenInstruction * 401 GetInstByName(const char *Name, 402 const DenseMap<const Record*, 403 std::unique_ptr<CodeGenInstruction>> &Insts, 404 RecordKeeper &Records) { 405 const Record *Rec = Records.getDef(Name); 406 407 const auto I = Insts.find(Rec); 408 if (!Rec || I == Insts.end()) 409 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 410 return I->second.get(); 411 } 412 413 static const char *const FixedInstrs[] = { 414 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 415 #include "llvm/Support/TargetOpcodes.def" 416 nullptr}; 417 418 unsigned CodeGenTarget::getNumFixedInstructions() { 419 return array_lengthof(FixedInstrs) - 1; 420 } 421 422 /// Return all of the instructions defined by the target, ordered by 423 /// their enum value. 424 void CodeGenTarget::ComputeInstrsByEnum() const { 425 const auto &Insts = getInstructions(); 426 for (const char *const *p = FixedInstrs; *p; ++p) { 427 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 428 assert(Instr && "Missing target independent instruction"); 429 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 430 InstrsByEnum.push_back(Instr); 431 } 432 unsigned EndOfPredefines = InstrsByEnum.size(); 433 assert(EndOfPredefines == getNumFixedInstructions() && 434 "Missing generic opcode"); 435 436 for (const auto &I : Insts) { 437 const CodeGenInstruction *CGI = I.second.get(); 438 if (CGI->Namespace != "TargetOpcode") { 439 InstrsByEnum.push_back(CGI); 440 if (CGI->TheDef->getValueAsBit("isPseudo")) 441 ++NumPseudoInstructions; 442 } 443 } 444 445 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 446 447 // All of the instructions are now in random order based on the map iteration. 448 llvm::sort( 449 InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 450 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 451 const auto &D1 = *Rec1->TheDef; 452 const auto &D2 = *Rec2->TheDef; 453 return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < 454 std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); 455 }); 456 } 457 458 459 /// isLittleEndianEncoding - Return whether this target encodes its instruction 460 /// in little-endian format, i.e. bits laid out in the order [0..n] 461 /// 462 bool CodeGenTarget::isLittleEndianEncoding() const { 463 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 464 } 465 466 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 467 /// encodings, reverse the bit order of all instructions. 468 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 469 if (!isLittleEndianEncoding()) 470 return; 471 472 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 473 for (Record *R : Insts) { 474 if (R->getValueAsString("Namespace") == "TargetOpcode" || 475 R->getValueAsBit("isPseudo")) 476 continue; 477 478 BitsInit *BI = R->getValueAsBitsInit("Inst"); 479 480 unsigned numBits = BI->getNumBits(); 481 482 SmallVector<Init *, 16> NewBits(numBits); 483 484 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 485 unsigned bitSwapIdx = numBits - bit - 1; 486 Init *OrigBit = BI->getBit(bit); 487 Init *BitSwap = BI->getBit(bitSwapIdx); 488 NewBits[bit] = BitSwap; 489 NewBits[bitSwapIdx] = OrigBit; 490 } 491 if (numBits % 2) { 492 unsigned middle = (numBits + 1) / 2; 493 NewBits[middle] = BI->getBit(middle); 494 } 495 496 BitsInit *NewBI = BitsInit::get(NewBits); 497 498 // Update the bits in reversed order so that emitInstrOpBits will get the 499 // correct endianness. 500 R->getValue("Inst")->setValue(NewBI); 501 } 502 } 503 504 /// guessInstructionProperties - Return true if it's OK to guess instruction 505 /// properties instead of raising an error. 506 /// 507 /// This is configurable as a temporary migration aid. It will eventually be 508 /// permanently false. 509 bool CodeGenTarget::guessInstructionProperties() const { 510 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 511 } 512 513 //===----------------------------------------------------------------------===// 514 // ComplexPattern implementation 515 // 516 ComplexPattern::ComplexPattern(Record *R) { 517 Ty = ::getValueType(R->getValueAsDef("Ty")); 518 NumOperands = R->getValueAsInt("NumOperands"); 519 SelectFunc = R->getValueAsString("SelectFunc"); 520 RootNodes = R->getValueAsListOfDefs("RootNodes"); 521 522 // FIXME: This is a hack to statically increase the priority of patterns which 523 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 524 // possible pattern match we'll need to dynamically calculate the complexity 525 // of all patterns a dag can potentially map to. 526 int64_t RawComplexity = R->getValueAsInt("Complexity"); 527 if (RawComplexity == -1) 528 Complexity = NumOperands * 3; 529 else 530 Complexity = RawComplexity; 531 532 // FIXME: Why is this different from parseSDPatternOperatorProperties? 533 // Parse the properties. 534 Properties = 0; 535 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 536 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 537 if (PropList[i]->getName() == "SDNPHasChain") { 538 Properties |= 1 << SDNPHasChain; 539 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 540 Properties |= 1 << SDNPOptInGlue; 541 } else if (PropList[i]->getName() == "SDNPMayStore") { 542 Properties |= 1 << SDNPMayStore; 543 } else if (PropList[i]->getName() == "SDNPMayLoad") { 544 Properties |= 1 << SDNPMayLoad; 545 } else if (PropList[i]->getName() == "SDNPSideEffect") { 546 Properties |= 1 << SDNPSideEffect; 547 } else if (PropList[i]->getName() == "SDNPMemOperand") { 548 Properties |= 1 << SDNPMemOperand; 549 } else if (PropList[i]->getName() == "SDNPVariadic") { 550 Properties |= 1 << SDNPVariadic; 551 } else if (PropList[i]->getName() == "SDNPWantRoot") { 552 Properties |= 1 << SDNPWantRoot; 553 } else if (PropList[i]->getName() == "SDNPWantParent") { 554 Properties |= 1 << SDNPWantParent; 555 } else { 556 PrintFatalError(R->getLoc(), "Unsupported SD Node property '" + 557 PropList[i]->getName() + 558 "' on ComplexPattern '" + R->getName() + 559 "'!"); 560 } 561 } 562 563 //===----------------------------------------------------------------------===// 564 // CodeGenIntrinsic Implementation 565 //===----------------------------------------------------------------------===// 566 567 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC, 568 bool TargetOnly) { 569 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 570 571 Intrinsics.reserve(Defs.size()); 572 573 for (unsigned I = 0, e = Defs.size(); I != e; ++I) { 574 bool isTarget = Defs[I]->getValueAsBit("isTarget"); 575 if (isTarget == TargetOnly) 576 Intrinsics.push_back(CodeGenIntrinsic(Defs[I])); 577 } 578 llvm::sort(Intrinsics, 579 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 580 return std::tie(LHS.TargetPrefix, LHS.Name) < 581 std::tie(RHS.TargetPrefix, RHS.Name); 582 }); 583 Targets.push_back({"", 0, 0}); 584 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 585 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 586 Targets.back().Count = I - Targets.back().Offset; 587 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 588 } 589 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 590 } 591 592 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 593 TheDef = R; 594 std::string DefName = R->getName(); 595 ArrayRef<SMLoc> DefLoc = R->getLoc(); 596 ModRef = ReadWriteMem; 597 Properties = 0; 598 isOverloaded = false; 599 isCommutative = false; 600 canThrow = false; 601 isNoReturn = false; 602 isWillReturn = false; 603 isCold = false; 604 isNoDuplicate = false; 605 isConvergent = false; 606 isSpeculatable = false; 607 hasSideEffects = false; 608 609 if (DefName.size() <= 4 || 610 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 611 PrintFatalError(DefLoc, 612 "Intrinsic '" + DefName + "' does not start with 'int_'!"); 613 614 EnumName = std::string(DefName.begin()+4, DefName.end()); 615 616 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 617 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 618 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 619 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 620 621 TargetPrefix = R->getValueAsString("TargetPrefix"); 622 Name = R->getValueAsString("LLVMName"); 623 624 if (Name == "") { 625 // If an explicit name isn't specified, derive one from the DefName. 626 Name = "llvm."; 627 628 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 629 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 630 } else { 631 // Verify it starts with "llvm.". 632 if (Name.size() <= 5 || 633 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 634 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 635 "'s name does not start with 'llvm.'!"); 636 } 637 638 // If TargetPrefix is specified, make sure that Name starts with 639 // "llvm.<targetprefix>.". 640 if (!TargetPrefix.empty()) { 641 if (Name.size() < 6+TargetPrefix.size() || 642 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 643 != (TargetPrefix + ".")) 644 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 645 "' does not start with 'llvm." + 646 TargetPrefix + ".'!"); 647 } 648 649 ListInit *RetTypes = R->getValueAsListInit("RetTypes"); 650 ListInit *ParamTypes = R->getValueAsListInit("ParamTypes"); 651 652 // First collate a list of overloaded types. 653 std::vector<MVT::SimpleValueType> OverloadedVTs; 654 for (ListInit *TypeList : {RetTypes, ParamTypes}) { 655 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 656 Record *TyEl = TypeList->getElementAsRecord(i); 657 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 658 659 if (TyEl->isSubClassOf("LLVMMatchType")) 660 continue; 661 662 MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT")); 663 if (MVT(VT).isOverloaded()) { 664 OverloadedVTs.push_back(VT); 665 isOverloaded = true; 666 } 667 } 668 } 669 670 // Parse the list of return types. 671 ListInit *TypeList = RetTypes; 672 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 673 Record *TyEl = TypeList->getElementAsRecord(i); 674 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 675 MVT::SimpleValueType VT; 676 if (TyEl->isSubClassOf("LLVMMatchType")) { 677 unsigned MatchTy = TyEl->getValueAsInt("Number"); 678 assert(MatchTy < OverloadedVTs.size() && 679 "Invalid matching number!"); 680 VT = OverloadedVTs[MatchTy]; 681 // It only makes sense to use the extended and truncated vector element 682 // variants with iAny types; otherwise, if the intrinsic is not 683 // overloaded, all the types can be specified directly. 684 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 685 !TyEl->isSubClassOf("LLVMTruncatedType")) || 686 VT == MVT::iAny || VT == MVT::vAny) && 687 "Expected iAny or vAny type"); 688 } else { 689 VT = getValueType(TyEl->getValueAsDef("VT")); 690 } 691 692 // Reject invalid types. 693 if (VT == MVT::isVoid) 694 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 695 " has void in result type list!"); 696 697 IS.RetVTs.push_back(VT); 698 IS.RetTypeDefs.push_back(TyEl); 699 } 700 701 // Parse the list of parameter types. 702 TypeList = ParamTypes; 703 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 704 Record *TyEl = TypeList->getElementAsRecord(i); 705 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 706 MVT::SimpleValueType VT; 707 if (TyEl->isSubClassOf("LLVMMatchType")) { 708 unsigned MatchTy = TyEl->getValueAsInt("Number"); 709 if (MatchTy >= OverloadedVTs.size()) { 710 PrintError(R->getLoc(), 711 "Parameter #" + Twine(i) + " has out of bounds matching " 712 "number " + Twine(MatchTy)); 713 PrintFatalError(DefLoc, 714 Twine("ParamTypes is ") + TypeList->getAsString()); 715 } 716 VT = OverloadedVTs[MatchTy]; 717 // It only makes sense to use the extended and truncated vector element 718 // variants with iAny types; otherwise, if the intrinsic is not 719 // overloaded, all the types can be specified directly. 720 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 721 !TyEl->isSubClassOf("LLVMTruncatedType") && 722 !TyEl->isSubClassOf("LLVMScalarOrSameVectorWidth")) || 723 VT == MVT::iAny || VT == MVT::vAny) && 724 "Expected iAny or vAny type"); 725 } else 726 VT = getValueType(TyEl->getValueAsDef("VT")); 727 728 // Reject invalid types. 729 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 730 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 731 " has void in result type list!"); 732 733 IS.ParamVTs.push_back(VT); 734 IS.ParamTypeDefs.push_back(TyEl); 735 } 736 737 // Parse the intrinsic properties. 738 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 739 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 740 Record *Property = PropList->getElementAsRecord(i); 741 assert(Property->isSubClassOf("IntrinsicProperty") && 742 "Expected a property!"); 743 744 if (Property->getName() == "IntrNoMem") 745 ModRef = NoMem; 746 else if (Property->getName() == "IntrReadMem") 747 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 748 else if (Property->getName() == "IntrWriteMem") 749 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 750 else if (Property->getName() == "IntrArgMemOnly") 751 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 752 else if (Property->getName() == "IntrInaccessibleMemOnly") 753 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 754 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly") 755 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 756 MR_InaccessibleMem); 757 else if (Property->getName() == "Commutative") 758 isCommutative = true; 759 else if (Property->getName() == "Throws") 760 canThrow = true; 761 else if (Property->getName() == "IntrNoDuplicate") 762 isNoDuplicate = true; 763 else if (Property->getName() == "IntrConvergent") 764 isConvergent = true; 765 else if (Property->getName() == "IntrNoReturn") 766 isNoReturn = true; 767 else if (Property->getName() == "IntrWillReturn") 768 isWillReturn = true; 769 else if (Property->getName() == "IntrCold") 770 isCold = true; 771 else if (Property->getName() == "IntrSpeculatable") 772 isSpeculatable = true; 773 else if (Property->getName() == "IntrHasSideEffects") 774 hasSideEffects = true; 775 else if (Property->isSubClassOf("NoCapture")) { 776 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 777 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 778 } else if (Property->isSubClassOf("NoAlias")) { 779 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 780 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoAlias)); 781 } else if (Property->isSubClassOf("Returned")) { 782 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 783 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned)); 784 } else if (Property->isSubClassOf("ReadOnly")) { 785 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 786 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 787 } else if (Property->isSubClassOf("WriteOnly")) { 788 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 789 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly)); 790 } else if (Property->isSubClassOf("ReadNone")) { 791 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 792 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 793 } else if (Property->isSubClassOf("ImmArg")) { 794 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 795 ArgumentAttributes.push_back(std::make_pair(ArgNo, ImmArg)); 796 } else 797 llvm_unreachable("Unknown property!"); 798 } 799 800 // Also record the SDPatternOperator Properties. 801 Properties = parseSDPatternOperatorProperties(R); 802 803 // Sort the argument attributes for later benefit. 804 llvm::sort(ArgumentAttributes); 805 } 806 807 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const { 808 if (ParamIdx >= IS.ParamVTs.size()) 809 return false; 810 MVT ParamType = MVT(IS.ParamVTs[ParamIdx]); 811 return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny; 812 } 813