1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes abort on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/TableGen/Error.h" 24 #include "llvm/TableGen/Record.h" 25 #include <algorithm> 26 using namespace llvm; 27 28 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 29 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 30 31 static cl::opt<unsigned> 32 AsmParserNum("asmparsernum", cl::init(0), 33 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 34 cl::cat(AsmParserCat)); 35 36 static cl::opt<unsigned> 37 AsmWriterNum("asmwriternum", cl::init(0), 38 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 39 cl::cat(AsmWriterCat)); 40 41 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 42 /// record corresponds to. 43 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 44 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 45 } 46 47 StringRef llvm::getName(MVT::SimpleValueType T) { 48 switch (T) { 49 case MVT::Other: return "UNKNOWN"; 50 case MVT::iPTR: return "TLI.getPointerTy()"; 51 case MVT::iPTRAny: return "TLI.getPointerTy()"; 52 default: return getEnumName(T); 53 } 54 } 55 56 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 57 switch (T) { 58 case MVT::Other: return "MVT::Other"; 59 case MVT::i1: return "MVT::i1"; 60 case MVT::i8: return "MVT::i8"; 61 case MVT::i16: return "MVT::i16"; 62 case MVT::i32: return "MVT::i32"; 63 case MVT::i64: return "MVT::i64"; 64 case MVT::i128: return "MVT::i128"; 65 case MVT::Any: return "MVT::Any"; 66 case MVT::iAny: return "MVT::iAny"; 67 case MVT::fAny: return "MVT::fAny"; 68 case MVT::vAny: return "MVT::vAny"; 69 case MVT::f16: return "MVT::f16"; 70 case MVT::f32: return "MVT::f32"; 71 case MVT::f64: return "MVT::f64"; 72 case MVT::f80: return "MVT::f80"; 73 case MVT::f128: return "MVT::f128"; 74 case MVT::ppcf128: return "MVT::ppcf128"; 75 case MVT::x86mmx: return "MVT::x86mmx"; 76 case MVT::Glue: return "MVT::Glue"; 77 case MVT::isVoid: return "MVT::isVoid"; 78 case MVT::v2i1: return "MVT::v2i1"; 79 case MVT::v4i1: return "MVT::v4i1"; 80 case MVT::v8i1: return "MVT::v8i1"; 81 case MVT::v16i1: return "MVT::v16i1"; 82 case MVT::v32i1: return "MVT::v32i1"; 83 case MVT::v64i1: return "MVT::v64i1"; 84 case MVT::v512i1: return "MVT::v512i1"; 85 case MVT::v1024i1: return "MVT::v1024i1"; 86 case MVT::v1i8: return "MVT::v1i8"; 87 case MVT::v2i8: return "MVT::v2i8"; 88 case MVT::v4i8: return "MVT::v4i8"; 89 case MVT::v8i8: return "MVT::v8i8"; 90 case MVT::v16i8: return "MVT::v16i8"; 91 case MVT::v32i8: return "MVT::v32i8"; 92 case MVT::v64i8: return "MVT::v64i8"; 93 case MVT::v128i8: return "MVT::v128i8"; 94 case MVT::v256i8: return "MVT::v256i8"; 95 case MVT::v1i16: return "MVT::v1i16"; 96 case MVT::v2i16: return "MVT::v2i16"; 97 case MVT::v4i16: return "MVT::v4i16"; 98 case MVT::v8i16: return "MVT::v8i16"; 99 case MVT::v16i16: return "MVT::v16i16"; 100 case MVT::v32i16: return "MVT::v32i16"; 101 case MVT::v64i16: return "MVT::v64i16"; 102 case MVT::v128i16: return "MVT::v128i16"; 103 case MVT::v1i32: return "MVT::v1i32"; 104 case MVT::v2i32: return "MVT::v2i32"; 105 case MVT::v4i32: return "MVT::v4i32"; 106 case MVT::v8i32: return "MVT::v8i32"; 107 case MVT::v16i32: return "MVT::v16i32"; 108 case MVT::v32i32: return "MVT::v32i32"; 109 case MVT::v64i32: return "MVT::v64i32"; 110 case MVT::v1i64: return "MVT::v1i64"; 111 case MVT::v2i64: return "MVT::v2i64"; 112 case MVT::v4i64: return "MVT::v4i64"; 113 case MVT::v8i64: return "MVT::v8i64"; 114 case MVT::v16i64: return "MVT::v16i64"; 115 case MVT::v32i64: return "MVT::v32i64"; 116 case MVT::v1i128: return "MVT::v1i128"; 117 case MVT::v2f16: return "MVT::v2f16"; 118 case MVT::v4f16: return "MVT::v4f16"; 119 case MVT::v8f16: return "MVT::v8f16"; 120 case MVT::v1f32: return "MVT::v1f32"; 121 case MVT::v2f32: return "MVT::v2f32"; 122 case MVT::v4f32: return "MVT::v4f32"; 123 case MVT::v8f32: return "MVT::v8f32"; 124 case MVT::v16f32: return "MVT::v16f32"; 125 case MVT::v1f64: return "MVT::v1f64"; 126 case MVT::v2f64: return "MVT::v2f64"; 127 case MVT::v4f64: return "MVT::v4f64"; 128 case MVT::v8f64: return "MVT::v8f64"; 129 case MVT::token: return "MVT::token"; 130 case MVT::Metadata: return "MVT::Metadata"; 131 case MVT::iPTR: return "MVT::iPTR"; 132 case MVT::iPTRAny: return "MVT::iPTRAny"; 133 case MVT::Untyped: return "MVT::Untyped"; 134 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 135 } 136 } 137 138 /// getQualifiedName - Return the name of the specified record, with a 139 /// namespace qualifier if the record contains one. 140 /// 141 std::string llvm::getQualifiedName(const Record *R) { 142 std::string Namespace; 143 if (R->getValue("Namespace")) 144 Namespace = R->getValueAsString("Namespace"); 145 if (Namespace.empty()) return R->getName(); 146 return Namespace + "::" + R->getName().str(); 147 } 148 149 150 /// getTarget - Return the current instance of the Target class. 151 /// 152 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 153 : Records(records) { 154 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 155 if (Targets.size() == 0) 156 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 157 if (Targets.size() != 1) 158 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 159 TargetRec = Targets[0]; 160 } 161 162 CodeGenTarget::~CodeGenTarget() { 163 } 164 165 const StringRef CodeGenTarget::getName() const { 166 return TargetRec->getName(); 167 } 168 169 std::string CodeGenTarget::getInstNamespace() const { 170 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 171 // Make sure not to pick up "TargetOpcode" by accidentally getting 172 // the namespace off the PHI instruction or something. 173 if (Inst->Namespace != "TargetOpcode") 174 return Inst->Namespace; 175 } 176 177 return ""; 178 } 179 180 Record *CodeGenTarget::getInstructionSet() const { 181 return TargetRec->getValueAsDef("InstructionSet"); 182 } 183 184 185 /// getAsmParser - Return the AssemblyParser definition for this target. 186 /// 187 Record *CodeGenTarget::getAsmParser() const { 188 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 189 if (AsmParserNum >= LI.size()) 190 PrintFatalError("Target does not have an AsmParser #" + 191 Twine(AsmParserNum) + "!"); 192 return LI[AsmParserNum]; 193 } 194 195 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 196 /// this target. 197 /// 198 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 199 std::vector<Record*> LI = 200 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 201 if (i >= LI.size()) 202 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 203 "!"); 204 return LI[i]; 205 } 206 207 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 208 /// available for this target. 209 /// 210 unsigned CodeGenTarget::getAsmParserVariantCount() const { 211 std::vector<Record*> LI = 212 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 213 return LI.size(); 214 } 215 216 /// getAsmWriter - Return the AssemblyWriter definition for this target. 217 /// 218 Record *CodeGenTarget::getAsmWriter() const { 219 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 220 if (AsmWriterNum >= LI.size()) 221 PrintFatalError("Target does not have an AsmWriter #" + 222 Twine(AsmWriterNum) + "!"); 223 return LI[AsmWriterNum]; 224 } 225 226 CodeGenRegBank &CodeGenTarget::getRegBank() const { 227 if (!RegBank) 228 RegBank = llvm::make_unique<CodeGenRegBank>(Records); 229 return *RegBank; 230 } 231 232 void CodeGenTarget::ReadRegAltNameIndices() const { 233 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 234 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 235 } 236 237 /// getRegisterByName - If there is a register with the specific AsmName, 238 /// return it. 239 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 240 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 241 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 242 if (I == Regs.end()) 243 return nullptr; 244 return I->second; 245 } 246 247 std::vector<MVT::SimpleValueType> CodeGenTarget:: 248 getRegisterVTs(Record *R) const { 249 const CodeGenRegister *Reg = getRegBank().getReg(R); 250 std::vector<MVT::SimpleValueType> Result; 251 for (const auto &RC : getRegBank().getRegClasses()) { 252 if (RC.contains(Reg)) { 253 ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes(); 254 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 255 } 256 } 257 258 // Remove duplicates. 259 array_pod_sort(Result.begin(), Result.end()); 260 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 261 return Result; 262 } 263 264 265 void CodeGenTarget::ReadLegalValueTypes() const { 266 for (const auto &RC : getRegBank().getRegClasses()) 267 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 268 269 // Remove duplicates. 270 array_pod_sort(LegalValueTypes.begin(), LegalValueTypes.end()); 271 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 272 LegalValueTypes.end()), 273 LegalValueTypes.end()); 274 } 275 276 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 277 if (!SchedModels) 278 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this); 279 return *SchedModels; 280 } 281 282 void CodeGenTarget::ReadInstructions() const { 283 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 284 if (Insts.size() <= 2) 285 PrintFatalError("No 'Instruction' subclasses defined!"); 286 287 // Parse the instructions defined in the .td file. 288 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 289 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]); 290 } 291 292 static const CodeGenInstruction * 293 GetInstByName(const char *Name, 294 const DenseMap<const Record*, 295 std::unique_ptr<CodeGenInstruction>> &Insts, 296 RecordKeeper &Records) { 297 const Record *Rec = Records.getDef(Name); 298 299 const auto I = Insts.find(Rec); 300 if (!Rec || I == Insts.end()) 301 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 302 return I->second.get(); 303 } 304 305 /// \brief Return all of the instructions defined by the target, ordered by 306 /// their enum value. 307 void CodeGenTarget::ComputeInstrsByEnum() const { 308 static const char *const FixedInstrs[] = { 309 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 310 #include "llvm/Target/TargetOpcodes.def" 311 nullptr}; 312 const auto &Insts = getInstructions(); 313 for (const char *const *p = FixedInstrs; *p; ++p) { 314 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 315 assert(Instr && "Missing target independent instruction"); 316 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 317 InstrsByEnum.push_back(Instr); 318 } 319 unsigned EndOfPredefines = InstrsByEnum.size(); 320 321 for (const auto &I : Insts) { 322 const CodeGenInstruction *CGI = I.second.get(); 323 if (CGI->Namespace != "TargetOpcode") 324 InstrsByEnum.push_back(CGI); 325 } 326 327 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 328 329 // All of the instructions are now in random order based on the map iteration. 330 // Sort them by name. 331 std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 332 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 333 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 334 }); 335 } 336 337 338 /// isLittleEndianEncoding - Return whether this target encodes its instruction 339 /// in little-endian format, i.e. bits laid out in the order [0..n] 340 /// 341 bool CodeGenTarget::isLittleEndianEncoding() const { 342 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 343 } 344 345 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 346 /// encodings, reverse the bit order of all instructions. 347 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 348 if (!isLittleEndianEncoding()) 349 return; 350 351 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 352 for (Record *R : Insts) { 353 if (R->getValueAsString("Namespace") == "TargetOpcode" || 354 R->getValueAsBit("isPseudo")) 355 continue; 356 357 BitsInit *BI = R->getValueAsBitsInit("Inst"); 358 359 unsigned numBits = BI->getNumBits(); 360 361 SmallVector<Init *, 16> NewBits(numBits); 362 363 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 364 unsigned bitSwapIdx = numBits - bit - 1; 365 Init *OrigBit = BI->getBit(bit); 366 Init *BitSwap = BI->getBit(bitSwapIdx); 367 NewBits[bit] = BitSwap; 368 NewBits[bitSwapIdx] = OrigBit; 369 } 370 if (numBits % 2) { 371 unsigned middle = (numBits + 1) / 2; 372 NewBits[middle] = BI->getBit(middle); 373 } 374 375 BitsInit *NewBI = BitsInit::get(NewBits); 376 377 // Update the bits in reversed order so that emitInstrOpBits will get the 378 // correct endianness. 379 R->getValue("Inst")->setValue(NewBI); 380 } 381 } 382 383 /// guessInstructionProperties - Return true if it's OK to guess instruction 384 /// properties instead of raising an error. 385 /// 386 /// This is configurable as a temporary migration aid. It will eventually be 387 /// permanently false. 388 bool CodeGenTarget::guessInstructionProperties() const { 389 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 390 } 391 392 //===----------------------------------------------------------------------===// 393 // ComplexPattern implementation 394 // 395 ComplexPattern::ComplexPattern(Record *R) { 396 Ty = ::getValueType(R->getValueAsDef("Ty")); 397 NumOperands = R->getValueAsInt("NumOperands"); 398 SelectFunc = R->getValueAsString("SelectFunc"); 399 RootNodes = R->getValueAsListOfDefs("RootNodes"); 400 401 // FIXME: This is a hack to statically increase the priority of patterns which 402 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 403 // possible pattern match we'll need to dynamically calculate the complexity 404 // of all patterns a dag can potentially map to. 405 int64_t RawComplexity = R->getValueAsInt("Complexity"); 406 if (RawComplexity == -1) 407 Complexity = NumOperands * 3; 408 else 409 Complexity = RawComplexity; 410 411 // Parse the properties. 412 Properties = 0; 413 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 414 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 415 if (PropList[i]->getName() == "SDNPHasChain") { 416 Properties |= 1 << SDNPHasChain; 417 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 418 Properties |= 1 << SDNPOptInGlue; 419 } else if (PropList[i]->getName() == "SDNPMayStore") { 420 Properties |= 1 << SDNPMayStore; 421 } else if (PropList[i]->getName() == "SDNPMayLoad") { 422 Properties |= 1 << SDNPMayLoad; 423 } else if (PropList[i]->getName() == "SDNPSideEffect") { 424 Properties |= 1 << SDNPSideEffect; 425 } else if (PropList[i]->getName() == "SDNPMemOperand") { 426 Properties |= 1 << SDNPMemOperand; 427 } else if (PropList[i]->getName() == "SDNPVariadic") { 428 Properties |= 1 << SDNPVariadic; 429 } else if (PropList[i]->getName() == "SDNPWantRoot") { 430 Properties |= 1 << SDNPWantRoot; 431 } else if (PropList[i]->getName() == "SDNPWantParent") { 432 Properties |= 1 << SDNPWantParent; 433 } else { 434 PrintFatalError("Unsupported SD Node property '" + 435 PropList[i]->getName() + "' on ComplexPattern '" + 436 R->getName() + "'!"); 437 } 438 } 439 440 //===----------------------------------------------------------------------===// 441 // CodeGenIntrinsic Implementation 442 //===----------------------------------------------------------------------===// 443 444 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC, 445 bool TargetOnly) { 446 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 447 448 Intrinsics.reserve(Defs.size()); 449 450 for (unsigned I = 0, e = Defs.size(); I != e; ++I) { 451 bool isTarget = Defs[I]->getValueAsBit("isTarget"); 452 if (isTarget == TargetOnly) 453 Intrinsics.push_back(CodeGenIntrinsic(Defs[I])); 454 } 455 std::sort(Intrinsics.begin(), Intrinsics.end(), 456 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 457 return std::tie(LHS.TargetPrefix, LHS.Name) < 458 std::tie(RHS.TargetPrefix, RHS.Name); 459 }); 460 Targets.push_back({"", 0, 0}); 461 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 462 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 463 Targets.back().Count = I - Targets.back().Offset; 464 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 465 } 466 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 467 } 468 469 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 470 TheDef = R; 471 std::string DefName = R->getName(); 472 ModRef = ReadWriteMem; 473 isOverloaded = false; 474 isCommutative = false; 475 canThrow = false; 476 isNoReturn = false; 477 isNoDuplicate = false; 478 isConvergent = false; 479 480 if (DefName.size() <= 4 || 481 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 482 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!"); 483 484 EnumName = std::string(DefName.begin()+4, DefName.end()); 485 486 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 487 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 488 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 489 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 490 491 TargetPrefix = R->getValueAsString("TargetPrefix"); 492 Name = R->getValueAsString("LLVMName"); 493 494 if (Name == "") { 495 // If an explicit name isn't specified, derive one from the DefName. 496 Name = "llvm."; 497 498 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 499 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 500 } else { 501 // Verify it starts with "llvm.". 502 if (Name.size() <= 5 || 503 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 504 PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); 505 } 506 507 // If TargetPrefix is specified, make sure that Name starts with 508 // "llvm.<targetprefix>.". 509 if (!TargetPrefix.empty()) { 510 if (Name.size() < 6+TargetPrefix.size() || 511 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 512 != (TargetPrefix + ".")) 513 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." + 514 TargetPrefix + ".'!"); 515 } 516 517 // Parse the list of return types. 518 std::vector<MVT::SimpleValueType> OverloadedVTs; 519 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 520 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 521 Record *TyEl = TypeList->getElementAsRecord(i); 522 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 523 MVT::SimpleValueType VT; 524 if (TyEl->isSubClassOf("LLVMMatchType")) { 525 unsigned MatchTy = TyEl->getValueAsInt("Number"); 526 assert(MatchTy < OverloadedVTs.size() && 527 "Invalid matching number!"); 528 VT = OverloadedVTs[MatchTy]; 529 // It only makes sense to use the extended and truncated vector element 530 // variants with iAny types; otherwise, if the intrinsic is not 531 // overloaded, all the types can be specified directly. 532 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 533 !TyEl->isSubClassOf("LLVMTruncatedType")) || 534 VT == MVT::iAny || VT == MVT::vAny) && 535 "Expected iAny or vAny type"); 536 } else { 537 VT = getValueType(TyEl->getValueAsDef("VT")); 538 } 539 if (MVT(VT).isOverloaded()) { 540 OverloadedVTs.push_back(VT); 541 isOverloaded = true; 542 } 543 544 // Reject invalid types. 545 if (VT == MVT::isVoid) 546 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 547 548 IS.RetVTs.push_back(VT); 549 IS.RetTypeDefs.push_back(TyEl); 550 } 551 552 // Parse the list of parameter types. 553 TypeList = R->getValueAsListInit("ParamTypes"); 554 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 555 Record *TyEl = TypeList->getElementAsRecord(i); 556 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 557 MVT::SimpleValueType VT; 558 if (TyEl->isSubClassOf("LLVMMatchType")) { 559 unsigned MatchTy = TyEl->getValueAsInt("Number"); 560 assert(MatchTy < OverloadedVTs.size() && 561 "Invalid matching number!"); 562 VT = OverloadedVTs[MatchTy]; 563 // It only makes sense to use the extended and truncated vector element 564 // variants with iAny types; otherwise, if the intrinsic is not 565 // overloaded, all the types can be specified directly. 566 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 567 !TyEl->isSubClassOf("LLVMTruncatedType") && 568 !TyEl->isSubClassOf("LLVMVectorSameWidth")) || 569 VT == MVT::iAny || VT == MVT::vAny) && 570 "Expected iAny or vAny type"); 571 } else 572 VT = getValueType(TyEl->getValueAsDef("VT")); 573 574 if (MVT(VT).isOverloaded()) { 575 OverloadedVTs.push_back(VT); 576 isOverloaded = true; 577 } 578 579 // Reject invalid types. 580 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 581 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 582 583 IS.ParamVTs.push_back(VT); 584 IS.ParamTypeDefs.push_back(TyEl); 585 } 586 587 // Parse the intrinsic properties. 588 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 589 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 590 Record *Property = PropList->getElementAsRecord(i); 591 assert(Property->isSubClassOf("IntrinsicProperty") && 592 "Expected a property!"); 593 594 if (Property->getName() == "IntrNoMem") 595 ModRef = NoMem; 596 else if (Property->getName() == "IntrReadMem") 597 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 598 else if (Property->getName() == "IntrWriteMem") 599 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 600 else if (Property->getName() == "IntrArgMemOnly") 601 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 602 else if (Property->getName() == "IntrInaccessibleMemOnly") 603 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 604 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly") 605 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 606 MR_InaccessibleMem); 607 else if (Property->getName() == "Commutative") 608 isCommutative = true; 609 else if (Property->getName() == "Throws") 610 canThrow = true; 611 else if (Property->getName() == "IntrNoDuplicate") 612 isNoDuplicate = true; 613 else if (Property->getName() == "IntrConvergent") 614 isConvergent = true; 615 else if (Property->getName() == "IntrNoReturn") 616 isNoReturn = true; 617 else if (Property->isSubClassOf("NoCapture")) { 618 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 619 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 620 } else if (Property->isSubClassOf("Returned")) { 621 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 622 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned)); 623 } else if (Property->isSubClassOf("ReadOnly")) { 624 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 625 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 626 } else if (Property->isSubClassOf("WriteOnly")) { 627 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 628 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly)); 629 } else if (Property->isSubClassOf("ReadNone")) { 630 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 631 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 632 } else 633 llvm_unreachable("Unknown property!"); 634 } 635 636 // Sort the argument attributes for later benefit. 637 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 638 } 639