1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes throw exceptions on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "Record.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include <algorithm> 24 using namespace llvm; 25 26 static cl::opt<unsigned> 27 AsmParserNum("asmparsernum", cl::init(0), 28 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 29 30 static cl::opt<unsigned> 31 AsmWriterNum("asmwriternum", cl::init(0), 32 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 33 34 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 35 /// record corresponds to. 36 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 37 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 38 } 39 40 std::string llvm::getName(MVT::SimpleValueType T) { 41 switch (T) { 42 case MVT::Other: return "UNKNOWN"; 43 case MVT::iPTR: return "TLI.getPointerTy()"; 44 case MVT::iPTRAny: return "TLI.getPointerTy()"; 45 default: return getEnumName(T); 46 } 47 } 48 49 std::string llvm::getEnumName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "MVT::Other"; 52 case MVT::i1: return "MVT::i1"; 53 case MVT::i8: return "MVT::i8"; 54 case MVT::i16: return "MVT::i16"; 55 case MVT::i32: return "MVT::i32"; 56 case MVT::i64: return "MVT::i64"; 57 case MVT::i128: return "MVT::i128"; 58 case MVT::iAny: return "MVT::iAny"; 59 case MVT::fAny: return "MVT::fAny"; 60 case MVT::vAny: return "MVT::vAny"; 61 case MVT::f32: return "MVT::f32"; 62 case MVT::f64: return "MVT::f64"; 63 case MVT::f80: return "MVT::f80"; 64 case MVT::f128: return "MVT::f128"; 65 case MVT::ppcf128: return "MVT::ppcf128"; 66 case MVT::Flag: return "MVT::Flag"; 67 case MVT::isVoid:return "MVT::isVoid"; 68 case MVT::v2i8: return "MVT::v2i8"; 69 case MVT::v4i8: return "MVT::v4i8"; 70 case MVT::v8i8: return "MVT::v8i8"; 71 case MVT::v16i8: return "MVT::v16i8"; 72 case MVT::v32i8: return "MVT::v32i8"; 73 case MVT::v2i16: return "MVT::v2i16"; 74 case MVT::v4i16: return "MVT::v4i16"; 75 case MVT::v8i16: return "MVT::v8i16"; 76 case MVT::v16i16: return "MVT::v16i16"; 77 case MVT::v2i32: return "MVT::v2i32"; 78 case MVT::v4i32: return "MVT::v4i32"; 79 case MVT::v8i32: return "MVT::v8i32"; 80 case MVT::v1i64: return "MVT::v1i64"; 81 case MVT::v2i64: return "MVT::v2i64"; 82 case MVT::v4i64: return "MVT::v4i64"; 83 case MVT::v2f32: return "MVT::v2f32"; 84 case MVT::v4f32: return "MVT::v4f32"; 85 case MVT::v8f32: return "MVT::v8f32"; 86 case MVT::v2f64: return "MVT::v2f64"; 87 case MVT::v4f64: return "MVT::v4f64"; 88 case MVT::Metadata: return "MVT::Metadata"; 89 case MVT::iPTR: return "MVT::iPTR"; 90 case MVT::iPTRAny: return "MVT::iPTRAny"; 91 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 92 } 93 } 94 95 /// getQualifiedName - Return the name of the specified record, with a 96 /// namespace qualifier if the record contains one. 97 /// 98 std::string llvm::getQualifiedName(const Record *R) { 99 std::string Namespace = R->getValueAsString("Namespace"); 100 if (Namespace.empty()) return R->getName(); 101 return Namespace + "::" + R->getName(); 102 } 103 104 105 106 107 /// getTarget - Return the current instance of the Target class. 108 /// 109 CodeGenTarget::CodeGenTarget() { 110 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 111 if (Targets.size() == 0) 112 throw std::string("ERROR: No 'Target' subclasses defined!"); 113 if (Targets.size() != 1) 114 throw std::string("ERROR: Multiple subclasses of Target defined!"); 115 TargetRec = Targets[0]; 116 } 117 118 119 const std::string &CodeGenTarget::getName() const { 120 return TargetRec->getName(); 121 } 122 123 std::string CodeGenTarget::getInstNamespace() const { 124 for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { 125 // Make sure not to pick up "TargetOpcode" by accidentally getting 126 // the namespace off the PHI instruction or something. 127 if ((*i)->Namespace != "TargetOpcode") 128 return (*i)->Namespace; 129 } 130 131 return ""; 132 } 133 134 Record *CodeGenTarget::getInstructionSet() const { 135 return TargetRec->getValueAsDef("InstructionSet"); 136 } 137 138 139 /// getAsmParser - Return the AssemblyParser definition for this target. 140 /// 141 Record *CodeGenTarget::getAsmParser() const { 142 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 143 if (AsmParserNum >= LI.size()) 144 throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!"; 145 return LI[AsmParserNum]; 146 } 147 148 /// getAsmWriter - Return the AssemblyWriter definition for this target. 149 /// 150 Record *CodeGenTarget::getAsmWriter() const { 151 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 152 if (AsmWriterNum >= LI.size()) 153 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; 154 return LI[AsmWriterNum]; 155 } 156 157 void CodeGenTarget::ReadRegisters() const { 158 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 159 if (Regs.empty()) 160 throw std::string("No 'Register' subclasses defined!"); 161 162 Registers.reserve(Regs.size()); 163 Registers.assign(Regs.begin(), Regs.end()); 164 } 165 166 CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) { 167 DeclaredSpillSize = R->getValueAsInt("SpillSize"); 168 DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment"); 169 } 170 171 const std::string &CodeGenRegister::getName() const { 172 return TheDef->getName(); 173 } 174 175 void CodeGenTarget::ReadRegisterClasses() const { 176 std::vector<Record*> RegClasses = 177 Records.getAllDerivedDefinitions("RegisterClass"); 178 if (RegClasses.empty()) 179 throw std::string("No 'RegisterClass' subclasses defined!"); 180 181 RegisterClasses.reserve(RegClasses.size()); 182 RegisterClasses.assign(RegClasses.begin(), RegClasses.end()); 183 } 184 185 std::vector<MVT::SimpleValueType> CodeGenTarget:: 186 getRegisterVTs(Record *R) const { 187 std::vector<MVT::SimpleValueType> Result; 188 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 189 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 190 const CodeGenRegisterClass &RC = RegisterClasses[i]; 191 for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) { 192 if (R == RC.Elements[ei]) { 193 const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes(); 194 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 195 } 196 } 197 } 198 199 // Remove duplicates. 200 array_pod_sort(Result.begin(), Result.end()); 201 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 202 return Result; 203 } 204 205 206 CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) { 207 // Rename anonymous register classes. 208 if (R->getName().size() > 9 && R->getName()[9] == '.') { 209 static unsigned AnonCounter = 0; 210 R->setName("AnonRegClass_"+utostr(AnonCounter++)); 211 } 212 213 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 214 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 215 Record *Type = TypeList[i]; 216 if (!Type->isSubClassOf("ValueType")) 217 throw "RegTypes list member '" + Type->getName() + 218 "' does not derive from the ValueType class!"; 219 VTs.push_back(getValueType(Type)); 220 } 221 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 222 223 std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList"); 224 for (unsigned i = 0, e = RegList.size(); i != e; ++i) { 225 Record *Reg = RegList[i]; 226 if (!Reg->isSubClassOf("Register")) 227 throw "Register Class member '" + Reg->getName() + 228 "' does not derive from the Register class!"; 229 Elements.push_back(Reg); 230 } 231 232 std::vector<Record*> SubRegClassList = 233 R->getValueAsListOfDefs("SubRegClassList"); 234 for (unsigned i = 0, e = SubRegClassList.size(); i != e; ++i) { 235 Record *SubRegClass = SubRegClassList[i]; 236 if (!SubRegClass->isSubClassOf("RegisterClass")) 237 throw "Register Class member '" + SubRegClass->getName() + 238 "' does not derive from the RegisterClass class!"; 239 SubRegClasses.push_back(SubRegClass); 240 } 241 242 // Allow targets to override the size in bits of the RegisterClass. 243 unsigned Size = R->getValueAsInt("Size"); 244 245 Namespace = R->getValueAsString("Namespace"); 246 SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits(); 247 SpillAlignment = R->getValueAsInt("Alignment"); 248 CopyCost = R->getValueAsInt("CopyCost"); 249 MethodBodies = R->getValueAsCode("MethodBodies"); 250 MethodProtos = R->getValueAsCode("MethodProtos"); 251 } 252 253 const std::string &CodeGenRegisterClass::getName() const { 254 return TheDef->getName(); 255 } 256 257 void CodeGenTarget::ReadLegalValueTypes() const { 258 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 259 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 260 for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri) 261 LegalValueTypes.push_back(RCs[i].VTs[ri]); 262 263 // Remove duplicates. 264 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 265 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 266 LegalValueTypes.end()), 267 LegalValueTypes.end()); 268 } 269 270 271 void CodeGenTarget::ReadInstructions() const { 272 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 273 if (Insts.size() <= 2) 274 throw std::string("No 'Instruction' subclasses defined!"); 275 276 // Parse the instructions defined in the .td file. 277 std::string InstFormatName = 278 getAsmWriter()->getValueAsString("InstFormatName"); 279 280 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 281 std::string AsmStr = Insts[i]->getValueAsString(InstFormatName); 282 Instructions[Insts[i]] = new CodeGenInstruction(Insts[i], AsmStr); 283 } 284 } 285 286 static const CodeGenInstruction * 287 GetInstByName(const char *Name, 288 const DenseMap<const Record*, CodeGenInstruction*> &Insts) { 289 const Record *Rec = Records.getDef(Name); 290 291 DenseMap<const Record*, CodeGenInstruction*>::const_iterator 292 I = Insts.find(Rec); 293 if (Rec == 0 || I == Insts.end()) 294 throw std::string("Could not find '") + Name + "' instruction!"; 295 return I->second; 296 } 297 298 namespace { 299 /// SortInstByName - Sorting predicate to sort instructions by name. 300 /// 301 struct SortInstByName { 302 bool operator()(const CodeGenInstruction *Rec1, 303 const CodeGenInstruction *Rec2) const { 304 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 305 } 306 }; 307 } 308 309 /// getInstructionsByEnumValue - Return all of the instructions defined by the 310 /// target, ordered by their enum value. 311 void CodeGenTarget::ComputeInstrsByEnum() const { 312 const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions(); 313 const CodeGenInstruction *PHI = GetInstByName("PHI", Insts); 314 const CodeGenInstruction *INLINEASM = GetInstByName("INLINEASM", Insts); 315 const CodeGenInstruction *DBG_LABEL = GetInstByName("DBG_LABEL", Insts); 316 const CodeGenInstruction *EH_LABEL = GetInstByName("EH_LABEL", Insts); 317 const CodeGenInstruction *GC_LABEL = GetInstByName("GC_LABEL", Insts); 318 const CodeGenInstruction *KILL = GetInstByName("KILL", Insts); 319 const CodeGenInstruction *EXTRACT_SUBREG = 320 GetInstByName("EXTRACT_SUBREG", Insts); 321 const CodeGenInstruction *INSERT_SUBREG = 322 GetInstByName("INSERT_SUBREG", Insts); 323 const CodeGenInstruction *IMPLICIT_DEF = GetInstByName("IMPLICIT_DEF", Insts); 324 const CodeGenInstruction *SUBREG_TO_REG = 325 GetInstByName("SUBREG_TO_REG", Insts); 326 const CodeGenInstruction *COPY_TO_REGCLASS = 327 GetInstByName("COPY_TO_REGCLASS", Insts); 328 const CodeGenInstruction *DBG_VALUE = GetInstByName("DBG_VALUE", Insts); 329 const CodeGenInstruction *REG_SEQUENCE = GetInstByName("REG_SEQUENCE", Insts); 330 331 // Print out the rest of the instructions now. 332 InstrsByEnum.push_back(PHI); 333 InstrsByEnum.push_back(INLINEASM); 334 InstrsByEnum.push_back(DBG_LABEL); 335 InstrsByEnum.push_back(EH_LABEL); 336 InstrsByEnum.push_back(GC_LABEL); 337 InstrsByEnum.push_back(KILL); 338 InstrsByEnum.push_back(EXTRACT_SUBREG); 339 InstrsByEnum.push_back(INSERT_SUBREG); 340 InstrsByEnum.push_back(IMPLICIT_DEF); 341 InstrsByEnum.push_back(SUBREG_TO_REG); 342 InstrsByEnum.push_back(COPY_TO_REGCLASS); 343 InstrsByEnum.push_back(DBG_VALUE); 344 InstrsByEnum.push_back(REG_SEQUENCE); 345 346 unsigned EndOfPredefines = InstrsByEnum.size(); 347 348 for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator 349 I = Insts.begin(), E = Insts.end(); I != E; ++I) { 350 const CodeGenInstruction *CGI = I->second; 351 if (CGI != PHI && 352 CGI != INLINEASM && 353 CGI != DBG_LABEL && 354 CGI != EH_LABEL && 355 CGI != GC_LABEL && 356 CGI != KILL && 357 CGI != EXTRACT_SUBREG && 358 CGI != INSERT_SUBREG && 359 CGI != IMPLICIT_DEF && 360 CGI != SUBREG_TO_REG && 361 CGI != COPY_TO_REGCLASS && 362 CGI != DBG_VALUE && 363 CGI != REG_SEQUENCE) 364 InstrsByEnum.push_back(CGI); 365 } 366 367 // All of the instructions are now in random order based on the map iteration. 368 // Sort them by name. 369 std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(), 370 SortInstByName()); 371 } 372 373 374 /// isLittleEndianEncoding - Return whether this target encodes its instruction 375 /// in little-endian format, i.e. bits laid out in the order [0..n] 376 /// 377 bool CodeGenTarget::isLittleEndianEncoding() const { 378 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 379 } 380 381 //===----------------------------------------------------------------------===// 382 // ComplexPattern implementation 383 // 384 ComplexPattern::ComplexPattern(Record *R) { 385 Ty = ::getValueType(R->getValueAsDef("Ty")); 386 NumOperands = R->getValueAsInt("NumOperands"); 387 SelectFunc = R->getValueAsString("SelectFunc"); 388 RootNodes = R->getValueAsListOfDefs("RootNodes"); 389 390 // Parse the properties. 391 Properties = 0; 392 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 393 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 394 if (PropList[i]->getName() == "SDNPHasChain") { 395 Properties |= 1 << SDNPHasChain; 396 } else if (PropList[i]->getName() == "SDNPOptInFlag") { 397 Properties |= 1 << SDNPOptInFlag; 398 } else if (PropList[i]->getName() == "SDNPMayStore") { 399 Properties |= 1 << SDNPMayStore; 400 } else if (PropList[i]->getName() == "SDNPMayLoad") { 401 Properties |= 1 << SDNPMayLoad; 402 } else if (PropList[i]->getName() == "SDNPSideEffect") { 403 Properties |= 1 << SDNPSideEffect; 404 } else if (PropList[i]->getName() == "SDNPMemOperand") { 405 Properties |= 1 << SDNPMemOperand; 406 } else if (PropList[i]->getName() == "SDNPVariadic") { 407 Properties |= 1 << SDNPVariadic; 408 } else { 409 errs() << "Unsupported SD Node property '" << PropList[i]->getName() 410 << "' on ComplexPattern '" << R->getName() << "'!\n"; 411 exit(1); 412 } 413 } 414 415 //===----------------------------------------------------------------------===// 416 // CodeGenIntrinsic Implementation 417 //===----------------------------------------------------------------------===// 418 419 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 420 bool TargetOnly) { 421 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 422 423 std::vector<CodeGenIntrinsic> Result; 424 425 for (unsigned i = 0, e = I.size(); i != e; ++i) { 426 bool isTarget = I[i]->getValueAsBit("isTarget"); 427 if (isTarget == TargetOnly) 428 Result.push_back(CodeGenIntrinsic(I[i])); 429 } 430 return Result; 431 } 432 433 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 434 TheDef = R; 435 std::string DefName = R->getName(); 436 ModRef = WriteMem; 437 isOverloaded = false; 438 isCommutative = false; 439 440 if (DefName.size() <= 4 || 441 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 442 throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; 443 444 EnumName = std::string(DefName.begin()+4, DefName.end()); 445 446 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 447 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 448 449 TargetPrefix = R->getValueAsString("TargetPrefix"); 450 Name = R->getValueAsString("LLVMName"); 451 452 if (Name == "") { 453 // If an explicit name isn't specified, derive one from the DefName. 454 Name = "llvm."; 455 456 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 457 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 458 } else { 459 // Verify it starts with "llvm.". 460 if (Name.size() <= 5 || 461 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 462 throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; 463 } 464 465 // If TargetPrefix is specified, make sure that Name starts with 466 // "llvm.<targetprefix>.". 467 if (!TargetPrefix.empty()) { 468 if (Name.size() < 6+TargetPrefix.size() || 469 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 470 != (TargetPrefix + ".")) 471 throw "Intrinsic '" + DefName + "' does not start with 'llvm." + 472 TargetPrefix + ".'!"; 473 } 474 475 // Parse the list of return types. 476 std::vector<MVT::SimpleValueType> OverloadedVTs; 477 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 478 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 479 Record *TyEl = TypeList->getElementAsRecord(i); 480 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 481 MVT::SimpleValueType VT; 482 if (TyEl->isSubClassOf("LLVMMatchType")) { 483 unsigned MatchTy = TyEl->getValueAsInt("Number"); 484 assert(MatchTy < OverloadedVTs.size() && 485 "Invalid matching number!"); 486 VT = OverloadedVTs[MatchTy]; 487 // It only makes sense to use the extended and truncated vector element 488 // variants with iAny types; otherwise, if the intrinsic is not 489 // overloaded, all the types can be specified directly. 490 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 491 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 492 VT == MVT::iAny || VT == MVT::vAny) && 493 "Expected iAny or vAny type"); 494 } else { 495 VT = getValueType(TyEl->getValueAsDef("VT")); 496 } 497 if (EVT(VT).isOverloaded()) { 498 OverloadedVTs.push_back(VT); 499 isOverloaded = true; 500 } 501 502 // Reject invalid types. 503 if (VT == MVT::isVoid) 504 throw "Intrinsic '" + DefName + " has void in result type list!"; 505 506 IS.RetVTs.push_back(VT); 507 IS.RetTypeDefs.push_back(TyEl); 508 } 509 510 // Parse the list of parameter types. 511 TypeList = R->getValueAsListInit("ParamTypes"); 512 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 513 Record *TyEl = TypeList->getElementAsRecord(i); 514 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 515 MVT::SimpleValueType VT; 516 if (TyEl->isSubClassOf("LLVMMatchType")) { 517 unsigned MatchTy = TyEl->getValueAsInt("Number"); 518 assert(MatchTy < OverloadedVTs.size() && 519 "Invalid matching number!"); 520 VT = OverloadedVTs[MatchTy]; 521 // It only makes sense to use the extended and truncated vector element 522 // variants with iAny types; otherwise, if the intrinsic is not 523 // overloaded, all the types can be specified directly. 524 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 525 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 526 VT == MVT::iAny || VT == MVT::vAny) && 527 "Expected iAny or vAny type"); 528 } else 529 VT = getValueType(TyEl->getValueAsDef("VT")); 530 531 if (EVT(VT).isOverloaded()) { 532 OverloadedVTs.push_back(VT); 533 isOverloaded = true; 534 } 535 536 // Reject invalid types. 537 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 538 throw "Intrinsic '" + DefName + " has void in result type list!"; 539 540 IS.ParamVTs.push_back(VT); 541 IS.ParamTypeDefs.push_back(TyEl); 542 } 543 544 // Parse the intrinsic properties. 545 ListInit *PropList = R->getValueAsListInit("Properties"); 546 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 547 Record *Property = PropList->getElementAsRecord(i); 548 assert(Property->isSubClassOf("IntrinsicProperty") && 549 "Expected a property!"); 550 551 if (Property->getName() == "IntrNoMem") 552 ModRef = NoMem; 553 else if (Property->getName() == "IntrReadArgMem") 554 ModRef = ReadArgMem; 555 else if (Property->getName() == "IntrReadMem") 556 ModRef = ReadMem; 557 else if (Property->getName() == "IntrWriteArgMem") 558 ModRef = WriteArgMem; 559 else if (Property->getName() == "IntrWriteMem") 560 ModRef = WriteMem; 561 else if (Property->getName() == "Commutative") 562 isCommutative = true; 563 else if (Property->isSubClassOf("NoCapture")) { 564 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 565 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 566 } else 567 assert(0 && "Unknown property!"); 568 } 569 } 570