1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes abort on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/TableGen/Error.h" 24 #include "llvm/TableGen/Record.h" 25 #include <algorithm> 26 using namespace llvm; 27 28 static cl::opt<unsigned> 29 AsmParserNum("asmparsernum", cl::init(0), 30 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 31 32 static cl::opt<unsigned> 33 AsmWriterNum("asmwriternum", cl::init(0), 34 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 35 36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 37 /// record corresponds to. 38 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 39 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 40 } 41 42 std::string llvm::getName(MVT::SimpleValueType T) { 43 switch (T) { 44 case MVT::Other: return "UNKNOWN"; 45 case MVT::iPTR: return "TLI.getPointerTy()"; 46 case MVT::iPTRAny: return "TLI.getPointerTy()"; 47 default: return getEnumName(T); 48 } 49 } 50 51 std::string llvm::getEnumName(MVT::SimpleValueType T) { 52 switch (T) { 53 case MVT::Other: return "MVT::Other"; 54 case MVT::i1: return "MVT::i1"; 55 case MVT::i8: return "MVT::i8"; 56 case MVT::i16: return "MVT::i16"; 57 case MVT::i32: return "MVT::i32"; 58 case MVT::i64: return "MVT::i64"; 59 case MVT::i128: return "MVT::i128"; 60 case MVT::iAny: return "MVT::iAny"; 61 case MVT::fAny: return "MVT::fAny"; 62 case MVT::vAny: return "MVT::vAny"; 63 case MVT::f16: return "MVT::f16"; 64 case MVT::f32: return "MVT::f32"; 65 case MVT::f64: return "MVT::f64"; 66 case MVT::f80: return "MVT::f80"; 67 case MVT::f128: return "MVT::f128"; 68 case MVT::ppcf128: return "MVT::ppcf128"; 69 case MVT::x86mmx: return "MVT::x86mmx"; 70 case MVT::Glue: return "MVT::Glue"; 71 case MVT::isVoid: return "MVT::isVoid"; 72 case MVT::v2i1: return "MVT::v2i1"; 73 case MVT::v4i1: return "MVT::v4i1"; 74 case MVT::v8i1: return "MVT::v8i1"; 75 case MVT::v16i1: return "MVT::v16i1"; 76 case MVT::v32i1: return "MVT::v32i1"; 77 case MVT::v64i1: return "MVT::v64i1"; 78 case MVT::v1i8: return "MVT::v1i8"; 79 case MVT::v2i8: return "MVT::v2i8"; 80 case MVT::v4i8: return "MVT::v4i8"; 81 case MVT::v8i8: return "MVT::v8i8"; 82 case MVT::v16i8: return "MVT::v16i8"; 83 case MVT::v32i8: return "MVT::v32i8"; 84 case MVT::v64i8: return "MVT::v64i8"; 85 case MVT::v1i16: return "MVT::v1i16"; 86 case MVT::v2i16: return "MVT::v2i16"; 87 case MVT::v4i16: return "MVT::v4i16"; 88 case MVT::v8i16: return "MVT::v8i16"; 89 case MVT::v16i16: return "MVT::v16i16"; 90 case MVT::v32i16: return "MVT::v32i16"; 91 case MVT::v1i32: return "MVT::v1i32"; 92 case MVT::v2i32: return "MVT::v2i32"; 93 case MVT::v4i32: return "MVT::v4i32"; 94 case MVT::v8i32: return "MVT::v8i32"; 95 case MVT::v16i32: return "MVT::v16i32"; 96 case MVT::v1i64: return "MVT::v1i64"; 97 case MVT::v2i64: return "MVT::v2i64"; 98 case MVT::v4i64: return "MVT::v4i64"; 99 case MVT::v8i64: return "MVT::v8i64"; 100 case MVT::v16i64: return "MVT::v16i64"; 101 case MVT::v2f16: return "MVT::v2f16"; 102 case MVT::v8f16: return "MVT::v8f16"; 103 case MVT::v1f32: return "MVT::v1f32"; 104 case MVT::v2f32: return "MVT::v2f32"; 105 case MVT::v4f32: return "MVT::v4f32"; 106 case MVT::v8f32: return "MVT::v8f32"; 107 case MVT::v16f32: return "MVT::v16f32"; 108 case MVT::v1f64: return "MVT::v1f64"; 109 case MVT::v2f64: return "MVT::v2f64"; 110 case MVT::v4f64: return "MVT::v4f64"; 111 case MVT::v8f64: return "MVT::v8f64"; 112 case MVT::Metadata: return "MVT::Metadata"; 113 case MVT::iPTR: return "MVT::iPTR"; 114 case MVT::iPTRAny: return "MVT::iPTRAny"; 115 case MVT::Untyped: return "MVT::Untyped"; 116 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 117 } 118 } 119 120 /// getQualifiedName - Return the name of the specified record, with a 121 /// namespace qualifier if the record contains one. 122 /// 123 std::string llvm::getQualifiedName(const Record *R) { 124 std::string Namespace; 125 if (R->getValue("Namespace")) 126 Namespace = R->getValueAsString("Namespace"); 127 if (Namespace.empty()) return R->getName(); 128 return Namespace + "::" + R->getName(); 129 } 130 131 132 /// getTarget - Return the current instance of the Target class. 133 /// 134 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 135 : Records(records), RegBank(0), SchedModels(0) { 136 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 137 if (Targets.size() == 0) 138 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 139 if (Targets.size() != 1) 140 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 141 TargetRec = Targets[0]; 142 } 143 144 CodeGenTarget::~CodeGenTarget() { 145 delete RegBank; 146 delete SchedModels; 147 } 148 149 const std::string &CodeGenTarget::getName() const { 150 return TargetRec->getName(); 151 } 152 153 std::string CodeGenTarget::getInstNamespace() const { 154 for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { 155 // Make sure not to pick up "TargetOpcode" by accidentally getting 156 // the namespace off the PHI instruction or something. 157 if ((*i)->Namespace != "TargetOpcode") 158 return (*i)->Namespace; 159 } 160 161 return ""; 162 } 163 164 Record *CodeGenTarget::getInstructionSet() const { 165 return TargetRec->getValueAsDef("InstructionSet"); 166 } 167 168 169 /// getAsmParser - Return the AssemblyParser definition for this target. 170 /// 171 Record *CodeGenTarget::getAsmParser() const { 172 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 173 if (AsmParserNum >= LI.size()) 174 PrintFatalError("Target does not have an AsmParser #" + utostr(AsmParserNum) + "!"); 175 return LI[AsmParserNum]; 176 } 177 178 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 179 /// this target. 180 /// 181 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 182 std::vector<Record*> LI = 183 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 184 if (i >= LI.size()) 185 PrintFatalError("Target does not have an AsmParserVariant #" + utostr(i) + "!"); 186 return LI[i]; 187 } 188 189 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 190 /// available for this target. 191 /// 192 unsigned CodeGenTarget::getAsmParserVariantCount() const { 193 std::vector<Record*> LI = 194 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 195 return LI.size(); 196 } 197 198 /// getAsmWriter - Return the AssemblyWriter definition for this target. 199 /// 200 Record *CodeGenTarget::getAsmWriter() const { 201 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 202 if (AsmWriterNum >= LI.size()) 203 PrintFatalError("Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"); 204 return LI[AsmWriterNum]; 205 } 206 207 CodeGenRegBank &CodeGenTarget::getRegBank() const { 208 if (!RegBank) 209 RegBank = new CodeGenRegBank(Records); 210 return *RegBank; 211 } 212 213 void CodeGenTarget::ReadRegAltNameIndices() const { 214 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 215 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 216 } 217 218 /// getRegisterByName - If there is a register with the specific AsmName, 219 /// return it. 220 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 221 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 222 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 223 if (I == Regs.end()) 224 return 0; 225 return I->second; 226 } 227 228 std::vector<MVT::SimpleValueType> CodeGenTarget:: 229 getRegisterVTs(Record *R) const { 230 const CodeGenRegister *Reg = getRegBank().getReg(R); 231 std::vector<MVT::SimpleValueType> Result; 232 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 233 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 234 const CodeGenRegisterClass &RC = *RCs[i]; 235 if (RC.contains(Reg)) { 236 ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes(); 237 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 238 } 239 } 240 241 // Remove duplicates. 242 array_pod_sort(Result.begin(), Result.end()); 243 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 244 return Result; 245 } 246 247 248 void CodeGenTarget::ReadLegalValueTypes() const { 249 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 250 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 251 for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri) 252 LegalValueTypes.push_back(RCs[i]->VTs[ri]); 253 254 // Remove duplicates. 255 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 256 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 257 LegalValueTypes.end()), 258 LegalValueTypes.end()); 259 } 260 261 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 262 if (!SchedModels) 263 SchedModels = new CodeGenSchedModels(Records, *this); 264 return *SchedModels; 265 } 266 267 void CodeGenTarget::ReadInstructions() const { 268 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 269 if (Insts.size() <= 2) 270 PrintFatalError("No 'Instruction' subclasses defined!"); 271 272 // Parse the instructions defined in the .td file. 273 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 274 Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]); 275 } 276 277 static const CodeGenInstruction * 278 GetInstByName(const char *Name, 279 const DenseMap<const Record*, CodeGenInstruction*> &Insts, 280 RecordKeeper &Records) { 281 const Record *Rec = Records.getDef(Name); 282 283 DenseMap<const Record*, CodeGenInstruction*>::const_iterator 284 I = Insts.find(Rec); 285 if (Rec == 0 || I == Insts.end()) 286 PrintFatalError(std::string("Could not find '") + Name + "' instruction!"); 287 return I->second; 288 } 289 290 namespace { 291 /// SortInstByName - Sorting predicate to sort instructions by name. 292 /// 293 struct SortInstByName { 294 bool operator()(const CodeGenInstruction *Rec1, 295 const CodeGenInstruction *Rec2) const { 296 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 297 } 298 }; 299 } 300 301 /// getInstructionsByEnumValue - Return all of the instructions defined by the 302 /// target, ordered by their enum value. 303 void CodeGenTarget::ComputeInstrsByEnum() const { 304 // The ordering here must match the ordering in TargetOpcodes.h. 305 static const char *const FixedInstrs[] = { 306 "PHI", 307 "INLINEASM", 308 "PROLOG_LABEL", 309 "EH_LABEL", 310 "GC_LABEL", 311 "KILL", 312 "EXTRACT_SUBREG", 313 "INSERT_SUBREG", 314 "IMPLICIT_DEF", 315 "SUBREG_TO_REG", 316 "COPY_TO_REGCLASS", 317 "DBG_VALUE", 318 "REG_SEQUENCE", 319 "COPY", 320 "BUNDLE", 321 "LIFETIME_START", 322 "LIFETIME_END", 323 0 324 }; 325 const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions(); 326 for (const char *const *p = FixedInstrs; *p; ++p) { 327 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 328 assert(Instr && "Missing target independent instruction"); 329 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 330 InstrsByEnum.push_back(Instr); 331 } 332 unsigned EndOfPredefines = InstrsByEnum.size(); 333 334 for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator 335 I = Insts.begin(), E = Insts.end(); I != E; ++I) { 336 const CodeGenInstruction *CGI = I->second; 337 if (CGI->Namespace != "TargetOpcode") 338 InstrsByEnum.push_back(CGI); 339 } 340 341 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 342 343 // All of the instructions are now in random order based on the map iteration. 344 // Sort them by name. 345 std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(), 346 SortInstByName()); 347 } 348 349 350 /// isLittleEndianEncoding - Return whether this target encodes its instruction 351 /// in little-endian format, i.e. bits laid out in the order [0..n] 352 /// 353 bool CodeGenTarget::isLittleEndianEncoding() const { 354 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 355 } 356 357 /// guessInstructionProperties - Return true if it's OK to guess instruction 358 /// properties instead of raising an error. 359 /// 360 /// This is configurable as a temporary migration aid. It will eventually be 361 /// permanently false. 362 bool CodeGenTarget::guessInstructionProperties() const { 363 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 364 } 365 366 //===----------------------------------------------------------------------===// 367 // ComplexPattern implementation 368 // 369 ComplexPattern::ComplexPattern(Record *R) { 370 Ty = ::getValueType(R->getValueAsDef("Ty")); 371 NumOperands = R->getValueAsInt("NumOperands"); 372 SelectFunc = R->getValueAsString("SelectFunc"); 373 RootNodes = R->getValueAsListOfDefs("RootNodes"); 374 375 // Parse the properties. 376 Properties = 0; 377 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 378 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 379 if (PropList[i]->getName() == "SDNPHasChain") { 380 Properties |= 1 << SDNPHasChain; 381 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 382 Properties |= 1 << SDNPOptInGlue; 383 } else if (PropList[i]->getName() == "SDNPMayStore") { 384 Properties |= 1 << SDNPMayStore; 385 } else if (PropList[i]->getName() == "SDNPMayLoad") { 386 Properties |= 1 << SDNPMayLoad; 387 } else if (PropList[i]->getName() == "SDNPSideEffect") { 388 Properties |= 1 << SDNPSideEffect; 389 } else if (PropList[i]->getName() == "SDNPMemOperand") { 390 Properties |= 1 << SDNPMemOperand; 391 } else if (PropList[i]->getName() == "SDNPVariadic") { 392 Properties |= 1 << SDNPVariadic; 393 } else if (PropList[i]->getName() == "SDNPWantRoot") { 394 Properties |= 1 << SDNPWantRoot; 395 } else if (PropList[i]->getName() == "SDNPWantParent") { 396 Properties |= 1 << SDNPWantParent; 397 } else { 398 errs() << "Unsupported SD Node property '" << PropList[i]->getName() 399 << "' on ComplexPattern '" << R->getName() << "'!\n"; 400 exit(1); 401 } 402 } 403 404 //===----------------------------------------------------------------------===// 405 // CodeGenIntrinsic Implementation 406 //===----------------------------------------------------------------------===// 407 408 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 409 bool TargetOnly) { 410 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 411 412 std::vector<CodeGenIntrinsic> Result; 413 414 for (unsigned i = 0, e = I.size(); i != e; ++i) { 415 bool isTarget = I[i]->getValueAsBit("isTarget"); 416 if (isTarget == TargetOnly) 417 Result.push_back(CodeGenIntrinsic(I[i])); 418 } 419 return Result; 420 } 421 422 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 423 TheDef = R; 424 std::string DefName = R->getName(); 425 ModRef = ReadWriteMem; 426 isOverloaded = false; 427 isCommutative = false; 428 canThrow = false; 429 isNoReturn = false; 430 431 if (DefName.size() <= 4 || 432 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 433 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!"); 434 435 EnumName = std::string(DefName.begin()+4, DefName.end()); 436 437 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 438 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 439 440 TargetPrefix = R->getValueAsString("TargetPrefix"); 441 Name = R->getValueAsString("LLVMName"); 442 443 if (Name == "") { 444 // If an explicit name isn't specified, derive one from the DefName. 445 Name = "llvm."; 446 447 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 448 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 449 } else { 450 // Verify it starts with "llvm.". 451 if (Name.size() <= 5 || 452 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 453 PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); 454 } 455 456 // If TargetPrefix is specified, make sure that Name starts with 457 // "llvm.<targetprefix>.". 458 if (!TargetPrefix.empty()) { 459 if (Name.size() < 6+TargetPrefix.size() || 460 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 461 != (TargetPrefix + ".")) 462 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." + 463 TargetPrefix + ".'!"); 464 } 465 466 // Parse the list of return types. 467 std::vector<MVT::SimpleValueType> OverloadedVTs; 468 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 469 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 470 Record *TyEl = TypeList->getElementAsRecord(i); 471 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 472 MVT::SimpleValueType VT; 473 if (TyEl->isSubClassOf("LLVMMatchType")) { 474 unsigned MatchTy = TyEl->getValueAsInt("Number"); 475 assert(MatchTy < OverloadedVTs.size() && 476 "Invalid matching number!"); 477 VT = OverloadedVTs[MatchTy]; 478 // It only makes sense to use the extended and truncated vector element 479 // variants with iAny types; otherwise, if the intrinsic is not 480 // overloaded, all the types can be specified directly. 481 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 482 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 483 VT == MVT::iAny || VT == MVT::vAny) && 484 "Expected iAny or vAny type"); 485 } else { 486 VT = getValueType(TyEl->getValueAsDef("VT")); 487 } 488 if (EVT(VT).isOverloaded()) { 489 OverloadedVTs.push_back(VT); 490 isOverloaded = true; 491 } 492 493 // Reject invalid types. 494 if (VT == MVT::isVoid) 495 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 496 497 IS.RetVTs.push_back(VT); 498 IS.RetTypeDefs.push_back(TyEl); 499 } 500 501 // Parse the list of parameter types. 502 TypeList = R->getValueAsListInit("ParamTypes"); 503 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 504 Record *TyEl = TypeList->getElementAsRecord(i); 505 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 506 MVT::SimpleValueType VT; 507 if (TyEl->isSubClassOf("LLVMMatchType")) { 508 unsigned MatchTy = TyEl->getValueAsInt("Number"); 509 assert(MatchTy < OverloadedVTs.size() && 510 "Invalid matching number!"); 511 VT = OverloadedVTs[MatchTy]; 512 // It only makes sense to use the extended and truncated vector element 513 // variants with iAny types; otherwise, if the intrinsic is not 514 // overloaded, all the types can be specified directly. 515 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 516 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 517 VT == MVT::iAny || VT == MVT::vAny) && 518 "Expected iAny or vAny type"); 519 } else 520 VT = getValueType(TyEl->getValueAsDef("VT")); 521 522 if (EVT(VT).isOverloaded()) { 523 OverloadedVTs.push_back(VT); 524 isOverloaded = true; 525 } 526 527 // Reject invalid types. 528 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 529 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 530 531 IS.ParamVTs.push_back(VT); 532 IS.ParamTypeDefs.push_back(TyEl); 533 } 534 535 // Parse the intrinsic properties. 536 ListInit *PropList = R->getValueAsListInit("Properties"); 537 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 538 Record *Property = PropList->getElementAsRecord(i); 539 assert(Property->isSubClassOf("IntrinsicProperty") && 540 "Expected a property!"); 541 542 if (Property->getName() == "IntrNoMem") 543 ModRef = NoMem; 544 else if (Property->getName() == "IntrReadArgMem") 545 ModRef = ReadArgMem; 546 else if (Property->getName() == "IntrReadMem") 547 ModRef = ReadMem; 548 else if (Property->getName() == "IntrReadWriteArgMem") 549 ModRef = ReadWriteArgMem; 550 else if (Property->getName() == "Commutative") 551 isCommutative = true; 552 else if (Property->getName() == "Throws") 553 canThrow = true; 554 else if (Property->getName() == "IntrNoReturn") 555 isNoReturn = true; 556 else if (Property->isSubClassOf("NoCapture")) { 557 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 558 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 559 } else if (Property->isSubClassOf("ReadOnly")) { 560 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 561 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 562 } else if (Property->isSubClassOf("ReadNone")) { 563 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 564 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 565 } else 566 llvm_unreachable("Unknown property!"); 567 } 568 569 // Sort the argument attributes for later benefit. 570 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 571 } 572