1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends.  This makes it easier to access the data and
11 // provides a single place that needs to check it for validity.  All of these
12 // classes abort on error conditions.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CodeGenTarget.h"
17 #include "CodeGenDAGPatterns.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Timer.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 #include <algorithm>
28 using namespace llvm;
29 
30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
32 
33 static cl::opt<unsigned>
34     AsmParserNum("asmparsernum", cl::init(0),
35                  cl::desc("Make -gen-asm-parser emit assembly parser #N"),
36                  cl::cat(AsmParserCat));
37 
38 static cl::opt<unsigned>
39     AsmWriterNum("asmwriternum", cl::init(0),
40                  cl::desc("Make -gen-asm-writer emit assembly writer #N"),
41                  cl::cat(AsmWriterCat));
42 
43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
44 /// record corresponds to.
45 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
46   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
47 }
48 
49 StringRef llvm::getName(MVT::SimpleValueType T) {
50   switch (T) {
51   case MVT::Other:   return "UNKNOWN";
52   case MVT::iPTR:    return "TLI.getPointerTy()";
53   case MVT::iPTRAny: return "TLI.getPointerTy()";
54   default: return getEnumName(T);
55   }
56 }
57 
58 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
59   switch (T) {
60   case MVT::Other:    return "MVT::Other";
61   case MVT::i1:       return "MVT::i1";
62   case MVT::i8:       return "MVT::i8";
63   case MVT::i16:      return "MVT::i16";
64   case MVT::i32:      return "MVT::i32";
65   case MVT::i64:      return "MVT::i64";
66   case MVT::i128:     return "MVT::i128";
67   case MVT::Any:      return "MVT::Any";
68   case MVT::iAny:     return "MVT::iAny";
69   case MVT::fAny:     return "MVT::fAny";
70   case MVT::vAny:     return "MVT::vAny";
71   case MVT::f16:      return "MVT::f16";
72   case MVT::bf16:     return "MVT::bf16";
73   case MVT::f32:      return "MVT::f32";
74   case MVT::f64:      return "MVT::f64";
75   case MVT::f80:      return "MVT::f80";
76   case MVT::f128:     return "MVT::f128";
77   case MVT::ppcf128:  return "MVT::ppcf128";
78   case MVT::x86mmx:   return "MVT::x86mmx";
79   case MVT::x86amx:   return "MVT::x86amx";
80   case MVT::Glue:     return "MVT::Glue";
81   case MVT::isVoid:   return "MVT::isVoid";
82   case MVT::v1i1:     return "MVT::v1i1";
83   case MVT::v2i1:     return "MVT::v2i1";
84   case MVT::v4i1:     return "MVT::v4i1";
85   case MVT::v8i1:     return "MVT::v8i1";
86   case MVT::v16i1:    return "MVT::v16i1";
87   case MVT::v32i1:    return "MVT::v32i1";
88   case MVT::v64i1:    return "MVT::v64i1";
89   case MVT::v128i1:   return "MVT::v128i1";
90   case MVT::v256i1:   return "MVT::v256i1";
91   case MVT::v512i1:   return "MVT::v512i1";
92   case MVT::v1024i1:  return "MVT::v1024i1";
93   case MVT::v1i8:     return "MVT::v1i8";
94   case MVT::v2i8:     return "MVT::v2i8";
95   case MVT::v4i8:     return "MVT::v4i8";
96   case MVT::v8i8:     return "MVT::v8i8";
97   case MVT::v16i8:    return "MVT::v16i8";
98   case MVT::v32i8:    return "MVT::v32i8";
99   case MVT::v64i8:    return "MVT::v64i8";
100   case MVT::v128i8:   return "MVT::v128i8";
101   case MVT::v256i8:   return "MVT::v256i8";
102   case MVT::v512i8:   return "MVT::v512i8";
103   case MVT::v1024i8:  return "MVT::v1024i8";
104   case MVT::v1i16:    return "MVT::v1i16";
105   case MVT::v2i16:    return "MVT::v2i16";
106   case MVT::v3i16:    return "MVT::v3i16";
107   case MVT::v4i16:    return "MVT::v4i16";
108   case MVT::v8i16:    return "MVT::v8i16";
109   case MVT::v16i16:   return "MVT::v16i16";
110   case MVT::v32i16:   return "MVT::v32i16";
111   case MVT::v64i16:   return "MVT::v64i16";
112   case MVT::v128i16:  return "MVT::v128i16";
113   case MVT::v256i16:  return "MVT::v256i16";
114   case MVT::v512i16:  return "MVT::v512i16";
115   case MVT::v1i32:    return "MVT::v1i32";
116   case MVT::v2i32:    return "MVT::v2i32";
117   case MVT::v3i32:    return "MVT::v3i32";
118   case MVT::v4i32:    return "MVT::v4i32";
119   case MVT::v5i32:    return "MVT::v5i32";
120   case MVT::v6i32:    return "MVT::v6i32";
121   case MVT::v7i32:    return "MVT::v7i32";
122   case MVT::v8i32:    return "MVT::v8i32";
123   case MVT::v16i32:   return "MVT::v16i32";
124   case MVT::v32i32:   return "MVT::v32i32";
125   case MVT::v64i32:   return "MVT::v64i32";
126   case MVT::v128i32:  return "MVT::v128i32";
127   case MVT::v256i32:  return "MVT::v256i32";
128   case MVT::v512i32:  return "MVT::v512i32";
129   case MVT::v1024i32: return "MVT::v1024i32";
130   case MVT::v2048i32: return "MVT::v2048i32";
131   case MVT::v1i64:    return "MVT::v1i64";
132   case MVT::v2i64:    return "MVT::v2i64";
133   case MVT::v3i64:    return "MVT::v3i64";
134   case MVT::v4i64:    return "MVT::v4i64";
135   case MVT::v8i64:    return "MVT::v8i64";
136   case MVT::v16i64:   return "MVT::v16i64";
137   case MVT::v32i64:   return "MVT::v32i64";
138   case MVT::v64i64:   return "MVT::v64i64";
139   case MVT::v128i64:  return "MVT::v128i64";
140   case MVT::v256i64:  return "MVT::v256i64";
141   case MVT::v1i128:   return "MVT::v1i128";
142   case MVT::v1f16:    return "MVT::v1f16";
143   case MVT::v2f16:    return "MVT::v2f16";
144   case MVT::v3f16:    return "MVT::v3f16";
145   case MVT::v4f16:    return "MVT::v4f16";
146   case MVT::v8f16:    return "MVT::v8f16";
147   case MVT::v16f16:   return "MVT::v16f16";
148   case MVT::v32f16:   return "MVT::v32f16";
149   case MVT::v64f16:   return "MVT::v64f16";
150   case MVT::v128f16:  return "MVT::v128f16";
151   case MVT::v256f16:  return "MVT::v256f16";
152   case MVT::v512f16:  return "MVT::v512f16";
153   case MVT::v2bf16:   return "MVT::v2bf16";
154   case MVT::v3bf16:   return "MVT::v3bf16";
155   case MVT::v4bf16:   return "MVT::v4bf16";
156   case MVT::v8bf16:   return "MVT::v8bf16";
157   case MVT::v16bf16:  return "MVT::v16bf16";
158   case MVT::v32bf16:  return "MVT::v32bf16";
159   case MVT::v64bf16:  return "MVT::v64bf16";
160   case MVT::v128bf16: return "MVT::v128bf16";
161   case MVT::v1f32:    return "MVT::v1f32";
162   case MVT::v2f32:    return "MVT::v2f32";
163   case MVT::v3f32:    return "MVT::v3f32";
164   case MVT::v4f32:    return "MVT::v4f32";
165   case MVT::v5f32:    return "MVT::v5f32";
166   case MVT::v6f32:    return "MVT::v6f32";
167   case MVT::v7f32:    return "MVT::v7f32";
168   case MVT::v8f32:    return "MVT::v8f32";
169   case MVT::v16f32:   return "MVT::v16f32";
170   case MVT::v32f32:   return "MVT::v32f32";
171   case MVT::v64f32:   return "MVT::v64f32";
172   case MVT::v128f32:  return "MVT::v128f32";
173   case MVT::v256f32:  return "MVT::v256f32";
174   case MVT::v512f32:  return "MVT::v512f32";
175   case MVT::v1024f32: return "MVT::v1024f32";
176   case MVT::v2048f32: return "MVT::v2048f32";
177   case MVT::v1f64:    return "MVT::v1f64";
178   case MVT::v2f64:    return "MVT::v2f64";
179   case MVT::v3f64:    return "MVT::v3f64";
180   case MVT::v4f64:    return "MVT::v4f64";
181   case MVT::v8f64:    return "MVT::v8f64";
182   case MVT::v16f64:   return "MVT::v16f64";
183   case MVT::v32f64:   return "MVT::v32f64";
184   case MVT::v64f64:   return "MVT::v64f64";
185   case MVT::v128f64:  return "MVT::v128f64";
186   case MVT::v256f64:  return "MVT::v256f64";
187   case MVT::nxv1i1:   return "MVT::nxv1i1";
188   case MVT::nxv2i1:   return "MVT::nxv2i1";
189   case MVT::nxv4i1:   return "MVT::nxv4i1";
190   case MVT::nxv8i1:   return "MVT::nxv8i1";
191   case MVT::nxv16i1:  return "MVT::nxv16i1";
192   case MVT::nxv32i1:  return "MVT::nxv32i1";
193   case MVT::nxv64i1:  return "MVT::nxv64i1";
194   case MVT::nxv1i8:   return "MVT::nxv1i8";
195   case MVT::nxv2i8:   return "MVT::nxv2i8";
196   case MVT::nxv4i8:   return "MVT::nxv4i8";
197   case MVT::nxv8i8:   return "MVT::nxv8i8";
198   case MVT::nxv16i8:  return "MVT::nxv16i8";
199   case MVT::nxv32i8:  return "MVT::nxv32i8";
200   case MVT::nxv64i8:  return "MVT::nxv64i8";
201   case MVT::nxv1i16:  return "MVT::nxv1i16";
202   case MVT::nxv2i16:  return "MVT::nxv2i16";
203   case MVT::nxv4i16:  return "MVT::nxv4i16";
204   case MVT::nxv8i16:  return "MVT::nxv8i16";
205   case MVT::nxv16i16: return "MVT::nxv16i16";
206   case MVT::nxv32i16: return "MVT::nxv32i16";
207   case MVT::nxv1i32:  return "MVT::nxv1i32";
208   case MVT::nxv2i32:  return "MVT::nxv2i32";
209   case MVT::nxv4i32:  return "MVT::nxv4i32";
210   case MVT::nxv8i32:  return "MVT::nxv8i32";
211   case MVT::nxv16i32: return "MVT::nxv16i32";
212   case MVT::nxv32i32: return "MVT::nxv32i32";
213   case MVT::nxv1i64:  return "MVT::nxv1i64";
214   case MVT::nxv2i64:  return "MVT::nxv2i64";
215   case MVT::nxv4i64:  return "MVT::nxv4i64";
216   case MVT::nxv8i64:  return "MVT::nxv8i64";
217   case MVT::nxv16i64: return "MVT::nxv16i64";
218   case MVT::nxv32i64: return "MVT::nxv32i64";
219   case MVT::nxv1f16:  return "MVT::nxv1f16";
220   case MVT::nxv2f16:  return "MVT::nxv2f16";
221   case MVT::nxv4f16:  return "MVT::nxv4f16";
222   case MVT::nxv8f16:  return "MVT::nxv8f16";
223   case MVT::nxv16f16: return "MVT::nxv16f16";
224   case MVT::nxv32f16: return "MVT::nxv32f16";
225   case MVT::nxv1bf16:  return "MVT::nxv1bf16";
226   case MVT::nxv2bf16:  return "MVT::nxv2bf16";
227   case MVT::nxv4bf16:  return "MVT::nxv4bf16";
228   case MVT::nxv8bf16:  return "MVT::nxv8bf16";
229   case MVT::nxv1f32:   return "MVT::nxv1f32";
230   case MVT::nxv2f32:   return "MVT::nxv2f32";
231   case MVT::nxv4f32:   return "MVT::nxv4f32";
232   case MVT::nxv8f32:   return "MVT::nxv8f32";
233   case MVT::nxv16f32:  return "MVT::nxv16f32";
234   case MVT::nxv1f64:   return "MVT::nxv1f64";
235   case MVT::nxv2f64:   return "MVT::nxv2f64";
236   case MVT::nxv4f64:   return "MVT::nxv4f64";
237   case MVT::nxv8f64:   return "MVT::nxv8f64";
238   case MVT::token:     return "MVT::token";
239   case MVT::Metadata:  return "MVT::Metadata";
240   case MVT::iPTR:      return "MVT::iPTR";
241   case MVT::iPTRAny:   return "MVT::iPTRAny";
242   case MVT::Untyped:   return "MVT::Untyped";
243   case MVT::funcref:   return "MVT::funcref";
244   case MVT::externref: return "MVT::externref";
245   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
246   }
247 }
248 
249 /// getQualifiedName - Return the name of the specified record, with a
250 /// namespace qualifier if the record contains one.
251 ///
252 std::string llvm::getQualifiedName(const Record *R) {
253   std::string Namespace;
254   if (R->getValue("Namespace"))
255     Namespace = std::string(R->getValueAsString("Namespace"));
256   if (Namespace.empty())
257     return std::string(R->getName());
258   return Namespace + "::" + R->getName().str();
259 }
260 
261 
262 /// getTarget - Return the current instance of the Target class.
263 ///
264 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
265   : Records(records), CGH(records) {
266   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
267   if (Targets.size() == 0)
268     PrintFatalError("No 'Target' subclasses defined!");
269   if (Targets.size() != 1)
270     PrintFatalError("Multiple subclasses of Target defined!");
271   TargetRec = Targets[0];
272 }
273 
274 CodeGenTarget::~CodeGenTarget() {
275 }
276 
277 StringRef CodeGenTarget::getName() const { return TargetRec->getName(); }
278 
279 /// getInstNamespace - Find and return the target machine's instruction
280 /// namespace. The namespace is cached because it is requested multiple times.
281 StringRef CodeGenTarget::getInstNamespace() const {
282   if (InstNamespace.empty()) {
283     for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
284       // We are not interested in the "TargetOpcode" namespace.
285       if (Inst->Namespace != "TargetOpcode") {
286         InstNamespace = Inst->Namespace;
287         break;
288       }
289     }
290   }
291 
292   return InstNamespace;
293 }
294 
295 StringRef CodeGenTarget::getRegNamespace() const {
296   auto &RegClasses = RegBank->getRegClasses();
297   return RegClasses.size() > 0 ? RegClasses.front().Namespace : "";
298 }
299 
300 Record *CodeGenTarget::getInstructionSet() const {
301   return TargetRec->getValueAsDef("InstructionSet");
302 }
303 
304 bool CodeGenTarget::getAllowRegisterRenaming() const {
305   return TargetRec->getValueAsInt("AllowRegisterRenaming");
306 }
307 
308 /// getAsmParser - Return the AssemblyParser definition for this target.
309 ///
310 Record *CodeGenTarget::getAsmParser() const {
311   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
312   if (AsmParserNum >= LI.size())
313     PrintFatalError("Target does not have an AsmParser #" +
314                     Twine(AsmParserNum) + "!");
315   return LI[AsmParserNum];
316 }
317 
318 /// getAsmParserVariant - Return the AssemblyParserVariant definition for
319 /// this target.
320 ///
321 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
322   std::vector<Record*> LI =
323     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
324   if (i >= LI.size())
325     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
326                     "!");
327   return LI[i];
328 }
329 
330 /// getAsmParserVariantCount - Return the AssemblyParserVariant definition
331 /// available for this target.
332 ///
333 unsigned CodeGenTarget::getAsmParserVariantCount() const {
334   std::vector<Record*> LI =
335     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
336   return LI.size();
337 }
338 
339 /// getAsmWriter - Return the AssemblyWriter definition for this target.
340 ///
341 Record *CodeGenTarget::getAsmWriter() const {
342   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
343   if (AsmWriterNum >= LI.size())
344     PrintFatalError("Target does not have an AsmWriter #" +
345                     Twine(AsmWriterNum) + "!");
346   return LI[AsmWriterNum];
347 }
348 
349 CodeGenRegBank &CodeGenTarget::getRegBank() const {
350   if (!RegBank)
351     RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
352   return *RegBank;
353 }
354 
355 Optional<CodeGenRegisterClass *>
356 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy,
357                                     CodeGenRegBank &RegBank,
358                                     const CodeGenSubRegIndex *SubIdx,
359                                     bool MustBeAllocatable) const {
360   std::vector<CodeGenRegisterClass *> Candidates;
361   auto &RegClasses = RegBank.getRegClasses();
362 
363   // Try to find a register class which supports ValueTy, and also contains
364   // SubIdx.
365   for (CodeGenRegisterClass &RC : RegClasses) {
366     // Is there a subclass of this class which contains this subregister index?
367     CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
368     if (!SubClassWithSubReg)
369       continue;
370 
371     // We have a class. Check if it supports this value type.
372     if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy))
373       continue;
374 
375     // If necessary, check that it is allocatable.
376     if (MustBeAllocatable && !SubClassWithSubReg->Allocatable)
377       continue;
378 
379     // We have a register class which supports both the value type and
380     // subregister index. Remember it.
381     Candidates.push_back(SubClassWithSubReg);
382   }
383 
384   // If we didn't find anything, we're done.
385   if (Candidates.empty())
386     return None;
387 
388   // Find and return the largest of our candidate classes.
389   llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
390                                     const CodeGenRegisterClass *B) {
391     if (A->getMembers().size() > B->getMembers().size())
392       return true;
393 
394     if (A->getMembers().size() < B->getMembers().size())
395       return false;
396 
397     // Order by name as a tie-breaker.
398     return StringRef(A->getName()) < B->getName();
399   });
400 
401   return Candidates[0];
402 }
403 
404 void CodeGenTarget::ReadRegAltNameIndices() const {
405   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
406   llvm::sort(RegAltNameIndices, LessRecord());
407 }
408 
409 /// getRegisterByName - If there is a register with the specific AsmName,
410 /// return it.
411 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
412   return getRegBank().getRegistersByName().lookup(Name);
413 }
414 
415 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
416       const {
417   const CodeGenRegister *Reg = getRegBank().getReg(R);
418   std::vector<ValueTypeByHwMode> Result;
419   for (const auto &RC : getRegBank().getRegClasses()) {
420     if (RC.contains(Reg)) {
421       ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
422       llvm::append_range(Result, InVTs);
423     }
424   }
425 
426   // Remove duplicates.
427   llvm::sort(Result);
428   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
429   return Result;
430 }
431 
432 
433 void CodeGenTarget::ReadLegalValueTypes() const {
434   for (const auto &RC : getRegBank().getRegClasses())
435     llvm::append_range(LegalValueTypes, RC.VTs);
436 
437   // Remove duplicates.
438   llvm::sort(LegalValueTypes);
439   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
440                                     LegalValueTypes.end()),
441                         LegalValueTypes.end());
442 }
443 
444 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
445   if (!SchedModels)
446     SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
447   return *SchedModels;
448 }
449 
450 void CodeGenTarget::ReadInstructions() const {
451   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
452   if (Insts.size() <= 2)
453     PrintFatalError("No 'Instruction' subclasses defined!");
454 
455   // Parse the instructions defined in the .td file.
456   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
457     Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
458 }
459 
460 static const CodeGenInstruction *
461 GetInstByName(const char *Name,
462               const DenseMap<const Record*,
463                              std::unique_ptr<CodeGenInstruction>> &Insts,
464               RecordKeeper &Records) {
465   const Record *Rec = Records.getDef(Name);
466 
467   const auto I = Insts.find(Rec);
468   if (!Rec || I == Insts.end())
469     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
470   return I->second.get();
471 }
472 
473 static const char *const FixedInstrs[] = {
474 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
475 #include "llvm/Support/TargetOpcodes.def"
476     nullptr};
477 
478 unsigned CodeGenTarget::getNumFixedInstructions() {
479   return array_lengthof(FixedInstrs) - 1;
480 }
481 
482 /// Return all of the instructions defined by the target, ordered by
483 /// their enum value.
484 void CodeGenTarget::ComputeInstrsByEnum() const {
485   const auto &Insts = getInstructions();
486   for (const char *const *p = FixedInstrs; *p; ++p) {
487     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
488     assert(Instr && "Missing target independent instruction");
489     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
490     InstrsByEnum.push_back(Instr);
491   }
492   unsigned EndOfPredefines = InstrsByEnum.size();
493   assert(EndOfPredefines == getNumFixedInstructions() &&
494          "Missing generic opcode");
495 
496   for (const auto &I : Insts) {
497     const CodeGenInstruction *CGI = I.second.get();
498     if (CGI->Namespace != "TargetOpcode") {
499       InstrsByEnum.push_back(CGI);
500       if (CGI->TheDef->getValueAsBit("isPseudo"))
501         ++NumPseudoInstructions;
502     }
503   }
504 
505   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
506 
507   // All of the instructions are now in random order based on the map iteration.
508   llvm::sort(
509       InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
510       [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
511         const auto &D1 = *Rec1->TheDef;
512         const auto &D2 = *Rec2->TheDef;
513         return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
514                std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
515       });
516 }
517 
518 
519 /// isLittleEndianEncoding - Return whether this target encodes its instruction
520 /// in little-endian format, i.e. bits laid out in the order [0..n]
521 ///
522 bool CodeGenTarget::isLittleEndianEncoding() const {
523   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
524 }
525 
526 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
527 /// encodings, reverse the bit order of all instructions.
528 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
529   if (!isLittleEndianEncoding())
530     return;
531 
532   std::vector<Record *> Insts =
533       Records.getAllDerivedDefinitions("InstructionEncoding");
534   for (Record *R : Insts) {
535     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
536         R->getValueAsBit("isPseudo"))
537       continue;
538 
539     BitsInit *BI = R->getValueAsBitsInit("Inst");
540 
541     unsigned numBits = BI->getNumBits();
542 
543     SmallVector<Init *, 16> NewBits(numBits);
544 
545     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
546       unsigned bitSwapIdx = numBits - bit - 1;
547       Init *OrigBit = BI->getBit(bit);
548       Init *BitSwap = BI->getBit(bitSwapIdx);
549       NewBits[bit]        = BitSwap;
550       NewBits[bitSwapIdx] = OrigBit;
551     }
552     if (numBits % 2) {
553       unsigned middle = (numBits + 1) / 2;
554       NewBits[middle] = BI->getBit(middle);
555     }
556 
557     BitsInit *NewBI = BitsInit::get(NewBits);
558 
559     // Update the bits in reversed order so that emitInstrOpBits will get the
560     // correct endianness.
561     R->getValue("Inst")->setValue(NewBI);
562   }
563 }
564 
565 /// guessInstructionProperties - Return true if it's OK to guess instruction
566 /// properties instead of raising an error.
567 ///
568 /// This is configurable as a temporary migration aid. It will eventually be
569 /// permanently false.
570 bool CodeGenTarget::guessInstructionProperties() const {
571   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
572 }
573 
574 //===----------------------------------------------------------------------===//
575 // ComplexPattern implementation
576 //
577 ComplexPattern::ComplexPattern(Record *R) {
578   Ty          = ::getValueType(R->getValueAsDef("Ty"));
579   NumOperands = R->getValueAsInt("NumOperands");
580   SelectFunc = std::string(R->getValueAsString("SelectFunc"));
581   RootNodes   = R->getValueAsListOfDefs("RootNodes");
582 
583   // FIXME: This is a hack to statically increase the priority of patterns which
584   // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
585   // possible pattern match we'll need to dynamically calculate the complexity
586   // of all patterns a dag can potentially map to.
587   int64_t RawComplexity = R->getValueAsInt("Complexity");
588   if (RawComplexity == -1)
589     Complexity = NumOperands * 3;
590   else
591     Complexity = RawComplexity;
592 
593   // FIXME: Why is this different from parseSDPatternOperatorProperties?
594   // Parse the properties.
595   Properties = 0;
596   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
597   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
598     if (PropList[i]->getName() == "SDNPHasChain") {
599       Properties |= 1 << SDNPHasChain;
600     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
601       Properties |= 1 << SDNPOptInGlue;
602     } else if (PropList[i]->getName() == "SDNPMayStore") {
603       Properties |= 1 << SDNPMayStore;
604     } else if (PropList[i]->getName() == "SDNPMayLoad") {
605       Properties |= 1 << SDNPMayLoad;
606     } else if (PropList[i]->getName() == "SDNPSideEffect") {
607       Properties |= 1 << SDNPSideEffect;
608     } else if (PropList[i]->getName() == "SDNPMemOperand") {
609       Properties |= 1 << SDNPMemOperand;
610     } else if (PropList[i]->getName() == "SDNPVariadic") {
611       Properties |= 1 << SDNPVariadic;
612     } else if (PropList[i]->getName() == "SDNPWantRoot") {
613       Properties |= 1 << SDNPWantRoot;
614     } else if (PropList[i]->getName() == "SDNPWantParent") {
615       Properties |= 1 << SDNPWantParent;
616     } else {
617       PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
618                                        PropList[i]->getName() +
619                                        "' on ComplexPattern '" + R->getName() +
620                                        "'!");
621     }
622 }
623 
624 //===----------------------------------------------------------------------===//
625 // CodeGenIntrinsic Implementation
626 //===----------------------------------------------------------------------===//
627 
628 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
629   std::vector<Record *> IntrProperties =
630       RC.getAllDerivedDefinitions("IntrinsicProperty");
631 
632   std::vector<Record *> DefaultProperties;
633   for (Record *Rec : IntrProperties)
634     if (Rec->getValueAsBit("IsDefault"))
635       DefaultProperties.push_back(Rec);
636 
637   std::vector<Record *> Defs = RC.getAllDerivedDefinitions("Intrinsic");
638   Intrinsics.reserve(Defs.size());
639 
640   for (unsigned I = 0, e = Defs.size(); I != e; ++I)
641     Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties));
642 
643   llvm::sort(Intrinsics,
644              [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
645                return std::tie(LHS.TargetPrefix, LHS.Name) <
646                       std::tie(RHS.TargetPrefix, RHS.Name);
647              });
648   Targets.push_back({"", 0, 0});
649   for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
650     if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
651       Targets.back().Count = I - Targets.back().Offset;
652       Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
653     }
654   Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
655 }
656 
657 CodeGenIntrinsic::CodeGenIntrinsic(Record *R,
658                                    std::vector<Record *> DefaultProperties) {
659   TheDef = R;
660   std::string DefName = std::string(R->getName());
661   ArrayRef<SMLoc> DefLoc = R->getLoc();
662   ModRef = ReadWriteMem;
663   Properties = 0;
664   isOverloaded = false;
665   isCommutative = false;
666   canThrow = false;
667   isNoReturn = false;
668   isNoSync = false;
669   isNoFree = false;
670   isWillReturn = false;
671   isCold = false;
672   isNoDuplicate = false;
673   isNoMerge = false;
674   isConvergent = false;
675   isSpeculatable = false;
676   hasSideEffects = false;
677 
678   if (DefName.size() <= 4 ||
679       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
680     PrintFatalError(DefLoc,
681                     "Intrinsic '" + DefName + "' does not start with 'int_'!");
682 
683   EnumName = std::string(DefName.begin()+4, DefName.end());
684 
685   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
686     GCCBuiltinName = std::string(R->getValueAsString("GCCBuiltinName"));
687   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
688     MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName"));
689 
690   TargetPrefix = std::string(R->getValueAsString("TargetPrefix"));
691   Name = std::string(R->getValueAsString("LLVMName"));
692 
693   if (Name == "") {
694     // If an explicit name isn't specified, derive one from the DefName.
695     Name = "llvm.";
696 
697     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
698       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
699   } else {
700     // Verify it starts with "llvm.".
701     if (Name.size() <= 5 ||
702         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
703       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
704                                   "'s name does not start with 'llvm.'!");
705   }
706 
707   // If TargetPrefix is specified, make sure that Name starts with
708   // "llvm.<targetprefix>.".
709   if (!TargetPrefix.empty()) {
710     if (Name.size() < 6+TargetPrefix.size() ||
711         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
712         != (TargetPrefix + "."))
713       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
714                                   "' does not start with 'llvm." +
715                                   TargetPrefix + ".'!");
716   }
717 
718   ListInit *RetTypes = R->getValueAsListInit("RetTypes");
719   ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
720 
721   // First collate a list of overloaded types.
722   std::vector<MVT::SimpleValueType> OverloadedVTs;
723   for (ListInit *TypeList : {RetTypes, ParamTypes}) {
724     for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
725       Record *TyEl = TypeList->getElementAsRecord(i);
726       assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
727 
728       if (TyEl->isSubClassOf("LLVMMatchType"))
729         continue;
730 
731       MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
732       if (MVT(VT).isOverloaded()) {
733         OverloadedVTs.push_back(VT);
734         isOverloaded = true;
735       }
736     }
737   }
738 
739   // Parse the list of return types.
740   ListInit *TypeList = RetTypes;
741   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
742     Record *TyEl = TypeList->getElementAsRecord(i);
743     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
744     MVT::SimpleValueType VT;
745     if (TyEl->isSubClassOf("LLVMMatchType")) {
746       unsigned MatchTy = TyEl->getValueAsInt("Number");
747       assert(MatchTy < OverloadedVTs.size() &&
748              "Invalid matching number!");
749       VT = OverloadedVTs[MatchTy];
750       // It only makes sense to use the extended and truncated vector element
751       // variants with iAny types; otherwise, if the intrinsic is not
752       // overloaded, all the types can be specified directly.
753       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
754                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
755               VT == MVT::iAny || VT == MVT::vAny) &&
756              "Expected iAny or vAny type");
757     } else {
758       VT = getValueType(TyEl->getValueAsDef("VT"));
759     }
760 
761     // Reject invalid types.
762     if (VT == MVT::isVoid)
763       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
764                                   " has void in result type list!");
765 
766     IS.RetVTs.push_back(VT);
767     IS.RetTypeDefs.push_back(TyEl);
768   }
769 
770   // Parse the list of parameter types.
771   TypeList = ParamTypes;
772   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
773     Record *TyEl = TypeList->getElementAsRecord(i);
774     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
775     MVT::SimpleValueType VT;
776     if (TyEl->isSubClassOf("LLVMMatchType")) {
777       unsigned MatchTy = TyEl->getValueAsInt("Number");
778       if (MatchTy >= OverloadedVTs.size()) {
779         PrintError(R->getLoc(),
780                    "Parameter #" + Twine(i) + " has out of bounds matching "
781                    "number " + Twine(MatchTy));
782         PrintFatalError(DefLoc,
783                         Twine("ParamTypes is ") + TypeList->getAsString());
784       }
785       VT = OverloadedVTs[MatchTy];
786       // It only makes sense to use the extended and truncated vector element
787       // variants with iAny types; otherwise, if the intrinsic is not
788       // overloaded, all the types can be specified directly.
789       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
790                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
791               VT == MVT::iAny || VT == MVT::vAny) &&
792              "Expected iAny or vAny type");
793     } else
794       VT = getValueType(TyEl->getValueAsDef("VT"));
795 
796     // Reject invalid types.
797     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
798       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
799                                   " has void in result type list!");
800 
801     IS.ParamVTs.push_back(VT);
802     IS.ParamTypeDefs.push_back(TyEl);
803   }
804 
805   // Parse the intrinsic properties.
806   ListInit *PropList = R->getValueAsListInit("IntrProperties");
807   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
808     Record *Property = PropList->getElementAsRecord(i);
809     assert(Property->isSubClassOf("IntrinsicProperty") &&
810            "Expected a property!");
811 
812     setProperty(Property);
813   }
814 
815   // Set default properties to true.
816   setDefaultProperties(R, DefaultProperties);
817 
818   // Also record the SDPatternOperator Properties.
819   Properties = parseSDPatternOperatorProperties(R);
820 
821   // Sort the argument attributes for later benefit.
822   llvm::sort(ArgumentAttributes);
823 }
824 
825 void CodeGenIntrinsic::setDefaultProperties(
826     Record *R, std::vector<Record *> DefaultProperties) {
827   // opt-out of using default attributes.
828   if (R->getValueAsBit("DisableDefaultAttributes"))
829     return;
830 
831   for (Record *Rec : DefaultProperties)
832     setProperty(Rec);
833 }
834 
835 void CodeGenIntrinsic::setProperty(Record *R) {
836   if (R->getName() == "IntrNoMem")
837     ModRef = NoMem;
838   else if (R->getName() == "IntrReadMem") {
839     if (!(ModRef & MR_Ref))
840       PrintFatalError(TheDef->getLoc(),
841                       Twine("IntrReadMem cannot be used after IntrNoMem or "
842                             "IntrWriteMem. Default is ReadWrite"));
843     ModRef = ModRefBehavior(ModRef & ~MR_Mod);
844   } else if (R->getName() == "IntrWriteMem") {
845     if (!(ModRef & MR_Mod))
846       PrintFatalError(TheDef->getLoc(),
847                       Twine("IntrWriteMem cannot be used after IntrNoMem or "
848                             "IntrReadMem. Default is ReadWrite"));
849     ModRef = ModRefBehavior(ModRef & ~MR_Ref);
850   } else if (R->getName() == "IntrArgMemOnly")
851     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
852   else if (R->getName() == "IntrInaccessibleMemOnly")
853     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
854   else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly")
855     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
856                             MR_InaccessibleMem);
857   else if (R->getName() == "Commutative")
858     isCommutative = true;
859   else if (R->getName() == "Throws")
860     canThrow = true;
861   else if (R->getName() == "IntrNoDuplicate")
862     isNoDuplicate = true;
863   else if (R->getName() == "IntrNoMerge")
864     isNoMerge = true;
865   else if (R->getName() == "IntrConvergent")
866     isConvergent = true;
867   else if (R->getName() == "IntrNoReturn")
868     isNoReturn = true;
869   else if (R->getName() == "IntrNoSync")
870     isNoSync = true;
871   else if (R->getName() == "IntrNoFree")
872     isNoFree = true;
873   else if (R->getName() == "IntrWillReturn")
874     isWillReturn = !isNoReturn;
875   else if (R->getName() == "IntrCold")
876     isCold = true;
877   else if (R->getName() == "IntrSpeculatable")
878     isSpeculatable = true;
879   else if (R->getName() == "IntrHasSideEffects")
880     hasSideEffects = true;
881   else if (R->isSubClassOf("NoCapture")) {
882     unsigned ArgNo = R->getValueAsInt("ArgNo");
883     ArgumentAttributes.emplace_back(ArgNo, NoCapture, 0);
884   } else if (R->isSubClassOf("NoAlias")) {
885     unsigned ArgNo = R->getValueAsInt("ArgNo");
886     ArgumentAttributes.emplace_back(ArgNo, NoAlias, 0);
887   } else if (R->isSubClassOf("NoUndef")) {
888     unsigned ArgNo = R->getValueAsInt("ArgNo");
889     ArgumentAttributes.emplace_back(ArgNo, NoUndef, 0);
890   } else if (R->isSubClassOf("Returned")) {
891     unsigned ArgNo = R->getValueAsInt("ArgNo");
892     ArgumentAttributes.emplace_back(ArgNo, Returned, 0);
893   } else if (R->isSubClassOf("ReadOnly")) {
894     unsigned ArgNo = R->getValueAsInt("ArgNo");
895     ArgumentAttributes.emplace_back(ArgNo, ReadOnly, 0);
896   } else if (R->isSubClassOf("WriteOnly")) {
897     unsigned ArgNo = R->getValueAsInt("ArgNo");
898     ArgumentAttributes.emplace_back(ArgNo, WriteOnly, 0);
899   } else if (R->isSubClassOf("ReadNone")) {
900     unsigned ArgNo = R->getValueAsInt("ArgNo");
901     ArgumentAttributes.emplace_back(ArgNo, ReadNone, 0);
902   } else if (R->isSubClassOf("ImmArg")) {
903     unsigned ArgNo = R->getValueAsInt("ArgNo");
904     ArgumentAttributes.emplace_back(ArgNo, ImmArg, 0);
905   } else if (R->isSubClassOf("Align")) {
906     unsigned ArgNo = R->getValueAsInt("ArgNo");
907     uint64_t Align = R->getValueAsInt("Align");
908     ArgumentAttributes.emplace_back(ArgNo, Alignment, Align);
909   } else
910     llvm_unreachable("Unknown property!");
911 }
912 
913 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
914   if (ParamIdx >= IS.ParamVTs.size())
915     return false;
916   MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
917   return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
918 }
919 
920 bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
921   // Convert argument index to attribute index starting from `FirstArgIndex`.
922   ArgAttribute Val{ParamIdx + 1, ImmArg, 0};
923   return std::binary_search(ArgumentAttributes.begin(),
924                             ArgumentAttributes.end(), Val);
925 }
926