1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper ---------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wrap target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes throw exceptions on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "Record.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/Support/CommandLine.h" 22 #include <set> 23 #include <algorithm> 24 using namespace llvm; 25 26 static cl::opt<unsigned> 27 AsmWriterNum("asmwriternum", cl::init(0), 28 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 29 30 /// getValueType - Return the MCV::ValueType that the specified TableGen record 31 /// corresponds to. 32 MVT::ValueType llvm::getValueType(Record *Rec, const CodeGenTarget *CGT) { 33 return (MVT::ValueType)Rec->getValueAsInt("Value"); 34 } 35 36 std::string llvm::getName(MVT::ValueType T) { 37 switch (T) { 38 case MVT::Other: return "UNKNOWN"; 39 case MVT::i1: return "MVT::i1"; 40 case MVT::i8: return "MVT::i8"; 41 case MVT::i16: return "MVT::i16"; 42 case MVT::i32: return "MVT::i32"; 43 case MVT::i64: return "MVT::i64"; 44 case MVT::i128: return "MVT::i128"; 45 case MVT::f32: return "MVT::f32"; 46 case MVT::f64: return "MVT::f64"; 47 case MVT::f80: return "MVT::f80"; 48 case MVT::f128: return "MVT::f128"; 49 case MVT::Flag: return "MVT::Flag"; 50 case MVT::isVoid:return "MVT::void"; 51 case MVT::v8i8: return "MVT::v8i8"; 52 case MVT::v4i16: return "MVT::v4i16"; 53 case MVT::v2i32: return "MVT::v2i32"; 54 case MVT::v16i8: return "MVT::v16i8"; 55 case MVT::v8i16: return "MVT::v8i16"; 56 case MVT::v4i32: return "MVT::v4i32"; 57 case MVT::v2i64: return "MVT::v2i64"; 58 case MVT::v2f32: return "MVT::v2f32"; 59 case MVT::v4f32: return "MVT::v4f32"; 60 case MVT::v2f64: return "MVT::v2f64"; 61 case MVT::iPTR: return "TLI.getPointerTy()"; 62 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 63 } 64 } 65 66 std::string llvm::getEnumName(MVT::ValueType T) { 67 switch (T) { 68 case MVT::Other: return "MVT::Other"; 69 case MVT::i1: return "MVT::i1"; 70 case MVT::i8: return "MVT::i8"; 71 case MVT::i16: return "MVT::i16"; 72 case MVT::i32: return "MVT::i32"; 73 case MVT::i64: return "MVT::i64"; 74 case MVT::i128: return "MVT::i128"; 75 case MVT::f32: return "MVT::f32"; 76 case MVT::f64: return "MVT::f64"; 77 case MVT::f80: return "MVT::f80"; 78 case MVT::f128: return "MVT::f128"; 79 case MVT::Flag: return "MVT::Flag"; 80 case MVT::isVoid:return "MVT::isVoid"; 81 case MVT::v8i8: return "MVT::v8i8"; 82 case MVT::v4i16: return "MVT::v4i16"; 83 case MVT::v2i32: return "MVT::v2i32"; 84 case MVT::v16i8: return "MVT::v16i8"; 85 case MVT::v8i16: return "MVT::v8i16"; 86 case MVT::v4i32: return "MVT::v4i32"; 87 case MVT::v2i64: return "MVT::v2i64"; 88 case MVT::v2f32: return "MVT::v2f32"; 89 case MVT::v4f32: return "MVT::v4f32"; 90 case MVT::v2f64: return "MVT::v2f64"; 91 case MVT::iPTR: return "TLI.getPointerTy()"; 92 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 93 } 94 } 95 96 97 std::ostream &llvm::operator<<(std::ostream &OS, MVT::ValueType T) { 98 return OS << getName(T); 99 } 100 101 102 /// getTarget - Return the current instance of the Target class. 103 /// 104 CodeGenTarget::CodeGenTarget() { 105 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 106 if (Targets.size() == 0) 107 throw std::string("ERROR: No 'Target' subclasses defined!"); 108 if (Targets.size() != 1) 109 throw std::string("ERROR: Multiple subclasses of Target defined!"); 110 TargetRec = Targets[0]; 111 } 112 113 114 const std::string &CodeGenTarget::getName() const { 115 return TargetRec->getName(); 116 } 117 118 Record *CodeGenTarget::getInstructionSet() const { 119 return TargetRec->getValueAsDef("InstructionSet"); 120 } 121 122 /// getAsmWriter - Return the AssemblyWriter definition for this target. 123 /// 124 Record *CodeGenTarget::getAsmWriter() const { 125 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 126 if (AsmWriterNum >= LI.size()) 127 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; 128 return LI[AsmWriterNum]; 129 } 130 131 void CodeGenTarget::ReadRegisters() const { 132 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 133 if (Regs.empty()) 134 throw std::string("No 'Register' subclasses defined!"); 135 136 Registers.reserve(Regs.size()); 137 Registers.assign(Regs.begin(), Regs.end()); 138 } 139 140 CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) { 141 DeclaredSpillSize = R->getValueAsInt("SpillSize"); 142 DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment"); 143 } 144 145 const std::string &CodeGenRegister::getName() const { 146 return TheDef->getName(); 147 } 148 149 void CodeGenTarget::ReadRegisterClasses() const { 150 std::vector<Record*> RegClasses = 151 Records.getAllDerivedDefinitions("RegisterClass"); 152 if (RegClasses.empty()) 153 throw std::string("No 'RegisterClass' subclasses defined!"); 154 155 RegisterClasses.reserve(RegClasses.size()); 156 RegisterClasses.assign(RegClasses.begin(), RegClasses.end()); 157 } 158 159 std::vector<unsigned char> CodeGenTarget::getRegisterVTs(Record *R) const { 160 std::vector<unsigned char> Result; 161 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 162 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 163 const CodeGenRegisterClass &RC = RegisterClasses[i]; 164 for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) { 165 if (R == RC.Elements[ei]) { 166 const std::vector<MVT::ValueType> &InVTs = RC.getValueTypes(); 167 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 168 Result.push_back(InVTs[i]); 169 } 170 } 171 } 172 return Result; 173 } 174 175 176 CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) { 177 // Rename anonymous register classes. 178 if (R->getName().size() > 9 && R->getName()[9] == '.') { 179 static unsigned AnonCounter = 0; 180 R->setName("AnonRegClass_"+utostr(AnonCounter++)); 181 } 182 183 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 184 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 185 Record *Type = TypeList[i]; 186 if (!Type->isSubClassOf("ValueType")) 187 throw "RegTypes list member '" + Type->getName() + 188 "' does not derive from the ValueType class!"; 189 VTs.push_back(getValueType(Type)); 190 } 191 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 192 193 std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList"); 194 for (unsigned i = 0, e = RegList.size(); i != e; ++i) { 195 Record *Reg = RegList[i]; 196 if (!Reg->isSubClassOf("Register")) 197 throw "Register Class member '" + Reg->getName() + 198 "' does not derive from the Register class!"; 199 Elements.push_back(Reg); 200 } 201 202 // Allow targets to override the size in bits of the RegisterClass. 203 unsigned Size = R->getValueAsInt("Size"); 204 205 Namespace = R->getValueAsString("Namespace"); 206 SpillSize = Size ? Size : MVT::getSizeInBits(VTs[0]); 207 SpillAlignment = R->getValueAsInt("Alignment"); 208 MethodBodies = R->getValueAsCode("MethodBodies"); 209 MethodProtos = R->getValueAsCode("MethodProtos"); 210 } 211 212 const std::string &CodeGenRegisterClass::getName() const { 213 return TheDef->getName(); 214 } 215 216 void CodeGenTarget::ReadLegalValueTypes() const { 217 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 218 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 219 for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri) 220 LegalValueTypes.push_back(RCs[i].VTs[ri]); 221 222 // Remove duplicates. 223 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 224 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 225 LegalValueTypes.end()), 226 LegalValueTypes.end()); 227 } 228 229 230 void CodeGenTarget::ReadInstructions() const { 231 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 232 if (Insts.size() <= 2) 233 throw std::string("No 'Instruction' subclasses defined!"); 234 235 // Parse the instructions defined in the .td file. 236 std::string InstFormatName = 237 getAsmWriter()->getValueAsString("InstFormatName"); 238 239 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 240 std::string AsmStr = Insts[i]->getValueAsString(InstFormatName); 241 Instructions.insert(std::make_pair(Insts[i]->getName(), 242 CodeGenInstruction(Insts[i], AsmStr))); 243 } 244 } 245 246 /// getInstructionsByEnumValue - Return all of the instructions defined by the 247 /// target, ordered by their enum value. 248 void CodeGenTarget:: 249 getInstructionsByEnumValue(std::vector<const CodeGenInstruction*> 250 &NumberedInstructions) { 251 std::map<std::string, CodeGenInstruction>::const_iterator I; 252 I = getInstructions().find("PHI"); 253 if (I == Instructions.end()) throw "Could not find 'PHI' instruction!"; 254 const CodeGenInstruction *PHI = &I->second; 255 256 I = getInstructions().find("INLINEASM"); 257 if (I == Instructions.end()) throw "Could not find 'INLINEASM' instruction!"; 258 const CodeGenInstruction *INLINEASM = &I->second; 259 260 // Print out the rest of the instructions now. 261 NumberedInstructions.push_back(PHI); 262 NumberedInstructions.push_back(INLINEASM); 263 for (inst_iterator II = inst_begin(), E = inst_end(); II != E; ++II) 264 if (&II->second != PHI &&&II->second != INLINEASM) 265 NumberedInstructions.push_back(&II->second); 266 } 267 268 269 /// isLittleEndianEncoding - Return whether this target encodes its instruction 270 /// in little-endian format, i.e. bits laid out in the order [0..n] 271 /// 272 bool CodeGenTarget::isLittleEndianEncoding() const { 273 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 274 } 275 276 static std::string ParseConstraint(const std::string &CStr, 277 CodeGenInstruction *I, unsigned &DestOp) { 278 const std::string ops("="); // FIXME: Only supports TIED_TO for now. 279 std::string::size_type pos = CStr.find_first_of(ops); 280 assert(pos != std::string::npos && "Unrecognized constraint"); 281 std::string Name = CStr.substr(1, pos); // Skip '$' 282 283 // TIED_TO: $src1 = $dst 284 const std::string delims(" \t"); 285 std::string::size_type wpos = Name.find_first_of(delims); 286 if (wpos != std::string::npos) 287 Name = Name.substr(0, wpos); 288 DestOp = I->getOperandNamed(Name); 289 290 Name = CStr.substr(pos+1); 291 wpos = Name.find_first_not_of(delims); 292 if (wpos != std::string::npos) 293 Name = Name.substr(wpos+1); 294 295 unsigned TIdx = I->getOperandNamed(Name); 296 if (TIdx >= DestOp) 297 throw "Illegal tied-to operand constraint '" + CStr + "'"; 298 299 // Build the string. 300 return "((" + utostr(TIdx) + " << 16) | TargetInstrInfo::TIED_TO)"; 301 } 302 303 static void ParseConstraints(const std::string &CStr, CodeGenInstruction *I) { 304 if (CStr.empty()) return; 305 306 const std::string delims(","); 307 std::string::size_type bidx, eidx; 308 309 bidx = CStr.find_first_not_of(delims); 310 while (bidx != std::string::npos) { 311 eidx = CStr.find_first_of(delims, bidx); 312 if (eidx == std::string::npos) 313 eidx = CStr.length(); 314 315 unsigned OpNo; 316 std::string Constr = ParseConstraint(CStr.substr(bidx, eidx), I, OpNo); 317 assert(OpNo < I->OperandList.size() && "Invalid operand no?"); 318 319 if (!I->OperandList[OpNo].Constraint.empty()) 320 throw "Operand #" + utostr(OpNo) + " cannot have multiple constraints!"; 321 I->OperandList[OpNo].Constraint = Constr; 322 bidx = CStr.find_first_not_of(delims, eidx); 323 } 324 } 325 326 CodeGenInstruction::CodeGenInstruction(Record *R, const std::string &AsmStr) 327 : TheDef(R), AsmString(AsmStr) { 328 Name = R->getValueAsString("Name"); 329 Namespace = R->getValueAsString("Namespace"); 330 331 isReturn = R->getValueAsBit("isReturn"); 332 isBranch = R->getValueAsBit("isBranch"); 333 isBarrier = R->getValueAsBit("isBarrier"); 334 isCall = R->getValueAsBit("isCall"); 335 isLoad = R->getValueAsBit("isLoad"); 336 isStore = R->getValueAsBit("isStore"); 337 isTwoAddress = R->getValueAsBit("isTwoAddress"); 338 isPredicated = false; // set below. 339 isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress"); 340 isCommutable = R->getValueAsBit("isCommutable"); 341 isTerminator = R->getValueAsBit("isTerminator"); 342 hasDelaySlot = R->getValueAsBit("hasDelaySlot"); 343 usesCustomDAGSchedInserter = R->getValueAsBit("usesCustomDAGSchedInserter"); 344 hasCtrlDep = R->getValueAsBit("hasCtrlDep"); 345 noResults = R->getValueAsBit("noResults"); 346 hasVariableNumberOfOperands = false; 347 348 DagInit *DI; 349 try { 350 DI = R->getValueAsDag("OperandList"); 351 } catch (...) { 352 // Error getting operand list, just ignore it (sparcv9). 353 AsmString.clear(); 354 OperandList.clear(); 355 return; 356 } 357 358 unsigned MIOperandNo = 0; 359 std::set<std::string> OperandNames; 360 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 361 DefInit *Arg = dynamic_cast<DefInit*>(DI->getArg(i)); 362 if (!Arg) 363 throw "Illegal operand for the '" + R->getName() + "' instruction!"; 364 365 Record *Rec = Arg->getDef(); 366 std::string PrintMethod = "printOperand"; 367 unsigned NumOps = 1; 368 DagInit *MIOpInfo = 0; 369 if (Rec->isSubClassOf("Operand")) { 370 PrintMethod = Rec->getValueAsString("PrintMethod"); 371 MIOpInfo = Rec->getValueAsDag("MIOperandInfo"); 372 373 // Verify that MIOpInfo has an 'ops' root value. 374 if (!dynamic_cast<DefInit*>(MIOpInfo->getOperator()) || 375 dynamic_cast<DefInit*>(MIOpInfo->getOperator()) 376 ->getDef()->getName() != "ops") 377 throw "Bad value for MIOperandInfo in operand '" + Rec->getName() + 378 "'\n"; 379 380 // If we have MIOpInfo, then we have #operands equal to number of entries 381 // in MIOperandInfo. 382 if (unsigned NumArgs = MIOpInfo->getNumArgs()) 383 NumOps = NumArgs; 384 385 isPredicated |= Rec->isSubClassOf("PredicateOperand"); 386 } else if (Rec->getName() == "variable_ops") { 387 hasVariableNumberOfOperands = true; 388 continue; 389 } else if (!Rec->isSubClassOf("RegisterClass")) 390 throw "Unknown operand class '" + Rec->getName() + 391 "' in instruction '" + R->getName() + "' instruction!"; 392 393 // Check that the operand has a name and that it's unique. 394 if (DI->getArgName(i).empty()) 395 throw "In instruction '" + R->getName() + "', operand #" + utostr(i) + 396 " has no name!"; 397 if (!OperandNames.insert(DI->getArgName(i)).second) 398 throw "In instruction '" + R->getName() + "', operand #" + utostr(i) + 399 " has the same name as a previous operand!"; 400 401 OperandList.push_back(OperandInfo(Rec, DI->getArgName(i), PrintMethod, 402 MIOperandNo, NumOps, MIOpInfo)); 403 MIOperandNo += NumOps; 404 } 405 406 ParseConstraints(R->getValueAsString("Constraints"), this); 407 408 // For backward compatibility: isTwoAddress means operand 1 is tied to 409 // operand 0. 410 if (isTwoAddress && OperandList[1].Constraint.empty()) 411 OperandList[1].Constraint = "((0 << 16) | TargetInstrInfo::TIED_TO)"; 412 413 // Any operands with unset constraints get 0 as their constraint. 414 for (unsigned op = 0, e = OperandList.size(); op != e; ++op) 415 if (OperandList[op].Constraint.empty()) 416 OperandList[op].Constraint = "0"; 417 } 418 419 420 421 /// getOperandNamed - Return the index of the operand with the specified 422 /// non-empty name. If the instruction does not have an operand with the 423 /// specified name, throw an exception. 424 /// 425 unsigned CodeGenInstruction::getOperandNamed(const std::string &Name) const { 426 assert(!Name.empty() && "Cannot search for operand with no name!"); 427 for (unsigned i = 0, e = OperandList.size(); i != e; ++i) 428 if (OperandList[i].Name == Name) return i; 429 throw "Instruction '" + TheDef->getName() + 430 "' does not have an operand named '$" + Name + "'!"; 431 } 432 433 //===----------------------------------------------------------------------===// 434 // ComplexPattern implementation 435 // 436 ComplexPattern::ComplexPattern(Record *R) { 437 Ty = ::getValueType(R->getValueAsDef("Ty")); 438 NumOperands = R->getValueAsInt("NumOperands"); 439 SelectFunc = R->getValueAsString("SelectFunc"); 440 RootNodes = R->getValueAsListOfDefs("RootNodes"); 441 442 // Parse the properties. 443 Properties = 0; 444 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 445 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 446 if (PropList[i]->getName() == "SDNPHasChain") { 447 Properties |= 1 << SDNPHasChain; 448 } else if (PropList[i]->getName() == "SDNPOptInFlag") { 449 Properties |= 1 << SDNPOptInFlag; 450 } else { 451 std::cerr << "Unsupported SD Node property '" << PropList[i]->getName() 452 << "' on ComplexPattern '" << R->getName() << "'!\n"; 453 exit(1); 454 } 455 } 456 457 //===----------------------------------------------------------------------===// 458 // CodeGenIntrinsic Implementation 459 //===----------------------------------------------------------------------===// 460 461 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC) { 462 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 463 464 std::vector<CodeGenIntrinsic> Result; 465 466 // If we are in the context of a target .td file, get the target info so that 467 // we can decode the current intptr_t. 468 CodeGenTarget *CGT = 0; 469 if (Records.getClass("Target") && 470 Records.getAllDerivedDefinitions("Target").size() == 1) 471 CGT = new CodeGenTarget(); 472 473 for (unsigned i = 0, e = I.size(); i != e; ++i) 474 Result.push_back(CodeGenIntrinsic(I[i], CGT)); 475 delete CGT; 476 return Result; 477 } 478 479 CodeGenIntrinsic::CodeGenIntrinsic(Record *R, CodeGenTarget *CGT) { 480 TheDef = R; 481 std::string DefName = R->getName(); 482 ModRef = WriteMem; 483 484 if (DefName.size() <= 4 || 485 std::string(DefName.begin(), DefName.begin()+4) != "int_") 486 throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; 487 EnumName = std::string(DefName.begin()+4, DefName.end()); 488 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 489 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 490 TargetPrefix = R->getValueAsString("TargetPrefix"); 491 Name = R->getValueAsString("LLVMName"); 492 if (Name == "") { 493 // If an explicit name isn't specified, derive one from the DefName. 494 Name = "llvm."; 495 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 496 if (EnumName[i] == '_') 497 Name += '.'; 498 else 499 Name += EnumName[i]; 500 } else { 501 // Verify it starts with "llvm.". 502 if (Name.size() <= 5 || 503 std::string(Name.begin(), Name.begin()+5) != "llvm.") 504 throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; 505 } 506 507 // If TargetPrefix is specified, make sure that Name starts with 508 // "llvm.<targetprefix>.". 509 if (!TargetPrefix.empty()) { 510 if (Name.size() < 6+TargetPrefix.size() || 511 std::string(Name.begin()+5, Name.begin()+6+TargetPrefix.size()) 512 != (TargetPrefix+".")) 513 throw "Intrinsic '" + DefName + "' does not start with 'llvm." + 514 TargetPrefix + ".'!"; 515 } 516 517 // Parse the list of argument types. 518 ListInit *TypeList = R->getValueAsListInit("Types"); 519 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 520 DefInit *DI = dynamic_cast<DefInit*>(TypeList->getElement(i)); 521 assert(DI && "Invalid list type!"); 522 Record *TyEl = DI->getDef(); 523 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 524 ArgTypes.push_back(TyEl->getValueAsString("TypeVal")); 525 526 if (CGT) 527 ArgVTs.push_back(getValueType(TyEl->getValueAsDef("VT"), CGT)); 528 ArgTypeDefs.push_back(TyEl); 529 } 530 if (ArgTypes.size() == 0) 531 throw "Intrinsic '"+DefName+"' needs at least a type for the ret value!"; 532 533 // Parse the intrinsic properties. 534 ListInit *PropList = R->getValueAsListInit("Properties"); 535 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 536 DefInit *DI = dynamic_cast<DefInit*>(PropList->getElement(i)); 537 assert(DI && "Invalid list type!"); 538 Record *Property = DI->getDef(); 539 assert(Property->isSubClassOf("IntrinsicProperty") && 540 "Expected a property!"); 541 542 if (Property->getName() == "IntrNoMem") 543 ModRef = NoMem; 544 else if (Property->getName() == "IntrReadArgMem") 545 ModRef = ReadArgMem; 546 else if (Property->getName() == "IntrReadMem") 547 ModRef = ReadMem; 548 else if (Property->getName() == "IntrWriteArgMem") 549 ModRef = WriteArgMem; 550 else if (Property->getName() == "IntrWriteMem") 551 ModRef = WriteMem; 552 else 553 assert(0 && "Unknown property!"); 554 } 555 } 556