1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes abort on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/TableGen/Error.h" 24 #include "llvm/TableGen/Record.h" 25 #include <algorithm> 26 using namespace llvm; 27 28 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 29 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 30 31 static cl::opt<unsigned> 32 AsmParserNum("asmparsernum", cl::init(0), 33 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 34 cl::cat(AsmParserCat)); 35 36 static cl::opt<unsigned> 37 AsmWriterNum("asmwriternum", cl::init(0), 38 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 39 cl::cat(AsmWriterCat)); 40 41 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 42 /// record corresponds to. 43 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 44 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 45 } 46 47 StringRef llvm::getName(MVT::SimpleValueType T) { 48 switch (T) { 49 case MVT::Other: return "UNKNOWN"; 50 case MVT::iPTR: return "TLI.getPointerTy()"; 51 case MVT::iPTRAny: return "TLI.getPointerTy()"; 52 default: return getEnumName(T); 53 } 54 } 55 56 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 57 switch (T) { 58 case MVT::Other: return "MVT::Other"; 59 case MVT::i1: return "MVT::i1"; 60 case MVT::i8: return "MVT::i8"; 61 case MVT::i16: return "MVT::i16"; 62 case MVT::i32: return "MVT::i32"; 63 case MVT::i64: return "MVT::i64"; 64 case MVT::i128: return "MVT::i128"; 65 case MVT::Any: return "MVT::Any"; 66 case MVT::iAny: return "MVT::iAny"; 67 case MVT::fAny: return "MVT::fAny"; 68 case MVT::vAny: return "MVT::vAny"; 69 case MVT::f16: return "MVT::f16"; 70 case MVT::f32: return "MVT::f32"; 71 case MVT::f64: return "MVT::f64"; 72 case MVT::f80: return "MVT::f80"; 73 case MVT::f128: return "MVT::f128"; 74 case MVT::ppcf128: return "MVT::ppcf128"; 75 case MVT::x86mmx: return "MVT::x86mmx"; 76 case MVT::Glue: return "MVT::Glue"; 77 case MVT::isVoid: return "MVT::isVoid"; 78 case MVT::v1i1: return "MVT::v1i1"; 79 case MVT::v2i1: return "MVT::v2i1"; 80 case MVT::v4i1: return "MVT::v4i1"; 81 case MVT::v8i1: return "MVT::v8i1"; 82 case MVT::v16i1: return "MVT::v16i1"; 83 case MVT::v32i1: return "MVT::v32i1"; 84 case MVT::v64i1: return "MVT::v64i1"; 85 case MVT::v128i1: return "MVT::v128i1"; 86 case MVT::v512i1: return "MVT::v512i1"; 87 case MVT::v1024i1: return "MVT::v1024i1"; 88 case MVT::v1i8: return "MVT::v1i8"; 89 case MVT::v2i8: return "MVT::v2i8"; 90 case MVT::v4i8: return "MVT::v4i8"; 91 case MVT::v8i8: return "MVT::v8i8"; 92 case MVT::v16i8: return "MVT::v16i8"; 93 case MVT::v32i8: return "MVT::v32i8"; 94 case MVT::v64i8: return "MVT::v64i8"; 95 case MVT::v128i8: return "MVT::v128i8"; 96 case MVT::v256i8: return "MVT::v256i8"; 97 case MVT::v1i16: return "MVT::v1i16"; 98 case MVT::v2i16: return "MVT::v2i16"; 99 case MVT::v4i16: return "MVT::v4i16"; 100 case MVT::v8i16: return "MVT::v8i16"; 101 case MVT::v16i16: return "MVT::v16i16"; 102 case MVT::v32i16: return "MVT::v32i16"; 103 case MVT::v64i16: return "MVT::v64i16"; 104 case MVT::v128i16: return "MVT::v128i16"; 105 case MVT::v1i32: return "MVT::v1i32"; 106 case MVT::v2i32: return "MVT::v2i32"; 107 case MVT::v4i32: return "MVT::v4i32"; 108 case MVT::v8i32: return "MVT::v8i32"; 109 case MVT::v16i32: return "MVT::v16i32"; 110 case MVT::v32i32: return "MVT::v32i32"; 111 case MVT::v64i32: return "MVT::v64i32"; 112 case MVT::v1i64: return "MVT::v1i64"; 113 case MVT::v2i64: return "MVT::v2i64"; 114 case MVT::v4i64: return "MVT::v4i64"; 115 case MVT::v8i64: return "MVT::v8i64"; 116 case MVT::v16i64: return "MVT::v16i64"; 117 case MVT::v32i64: return "MVT::v32i64"; 118 case MVT::v1i128: return "MVT::v1i128"; 119 case MVT::v2f16: return "MVT::v2f16"; 120 case MVT::v4f16: return "MVT::v4f16"; 121 case MVT::v8f16: return "MVT::v8f16"; 122 case MVT::v1f32: return "MVT::v1f32"; 123 case MVT::v2f32: return "MVT::v2f32"; 124 case MVT::v4f32: return "MVT::v4f32"; 125 case MVT::v8f32: return "MVT::v8f32"; 126 case MVT::v16f32: return "MVT::v16f32"; 127 case MVT::v1f64: return "MVT::v1f64"; 128 case MVT::v2f64: return "MVT::v2f64"; 129 case MVT::v4f64: return "MVT::v4f64"; 130 case MVT::v8f64: return "MVT::v8f64"; 131 case MVT::nxv1i1: return "MVT::nxv1i1"; 132 case MVT::nxv2i1: return "MVT::nxv2i1"; 133 case MVT::nxv4i1: return "MVT::nxv4i1"; 134 case MVT::nxv8i1: return "MVT::nxv8i1"; 135 case MVT::nxv16i1: return "MVT::nxv16i1"; 136 case MVT::nxv32i1: return "MVT::nxv32i1"; 137 case MVT::nxv1i8: return "MVT::nxv1i8"; 138 case MVT::nxv2i8: return "MVT::nxv2i8"; 139 case MVT::nxv4i8: return "MVT::nxv4i8"; 140 case MVT::nxv8i8: return "MVT::nxv8i8"; 141 case MVT::nxv16i8: return "MVT::nxv16i8"; 142 case MVT::nxv32i8: return "MVT::nxv32i8"; 143 case MVT::nxv1i16: return "MVT::nxv1i16"; 144 case MVT::nxv2i16: return "MVT::nxv2i16"; 145 case MVT::nxv4i16: return "MVT::nxv4i16"; 146 case MVT::nxv8i16: return "MVT::nxv8i16"; 147 case MVT::nxv16i16: return "MVT::nxv16i16"; 148 case MVT::nxv32i16: return "MVT::nxv32i16"; 149 case MVT::nxv1i32: return "MVT::nxv1i32"; 150 case MVT::nxv2i32: return "MVT::nxv2i32"; 151 case MVT::nxv4i32: return "MVT::nxv4i32"; 152 case MVT::nxv8i32: return "MVT::nxv8i32"; 153 case MVT::nxv16i32: return "MVT::nxv16i32"; 154 case MVT::nxv1i64: return "MVT::nxv1i64"; 155 case MVT::nxv2i64: return "MVT::nxv2i64"; 156 case MVT::nxv4i64: return "MVT::nxv4i64"; 157 case MVT::nxv8i64: return "MVT::nxv8i64"; 158 case MVT::nxv16i64: return "MVT::nxv16i64"; 159 case MVT::nxv2f16: return "MVT::nxv2f16"; 160 case MVT::nxv4f16: return "MVT::nxv4f16"; 161 case MVT::nxv8f16: return "MVT::nxv8f16"; 162 case MVT::nxv1f32: return "MVT::nxv1f32"; 163 case MVT::nxv2f32: return "MVT::nxv2f32"; 164 case MVT::nxv4f32: return "MVT::nxv4f32"; 165 case MVT::nxv8f32: return "MVT::nxv8f32"; 166 case MVT::nxv16f32: return "MVT::nxv16f32"; 167 case MVT::nxv1f64: return "MVT::nxv1f64"; 168 case MVT::nxv2f64: return "MVT::nxv2f64"; 169 case MVT::nxv4f64: return "MVT::nxv4f64"; 170 case MVT::nxv8f64: return "MVT::nxv8f64"; 171 case MVT::token: return "MVT::token"; 172 case MVT::Metadata: return "MVT::Metadata"; 173 case MVT::iPTR: return "MVT::iPTR"; 174 case MVT::iPTRAny: return "MVT::iPTRAny"; 175 case MVT::Untyped: return "MVT::Untyped"; 176 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 177 } 178 } 179 180 /// getQualifiedName - Return the name of the specified record, with a 181 /// namespace qualifier if the record contains one. 182 /// 183 std::string llvm::getQualifiedName(const Record *R) { 184 std::string Namespace; 185 if (R->getValue("Namespace")) 186 Namespace = R->getValueAsString("Namespace"); 187 if (Namespace.empty()) return R->getName(); 188 return Namespace + "::" + R->getName().str(); 189 } 190 191 192 /// getTarget - Return the current instance of the Target class. 193 /// 194 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 195 : Records(records), CGH(records) { 196 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 197 if (Targets.size() == 0) 198 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 199 if (Targets.size() != 1) 200 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 201 TargetRec = Targets[0]; 202 } 203 204 CodeGenTarget::~CodeGenTarget() { 205 } 206 207 const StringRef CodeGenTarget::getName() const { 208 return TargetRec->getName(); 209 } 210 211 StringRef CodeGenTarget::getInstNamespace() const { 212 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 213 // Make sure not to pick up "TargetOpcode" by accidentally getting 214 // the namespace off the PHI instruction or something. 215 if (Inst->Namespace != "TargetOpcode") 216 return Inst->Namespace; 217 } 218 219 return ""; 220 } 221 222 Record *CodeGenTarget::getInstructionSet() const { 223 return TargetRec->getValueAsDef("InstructionSet"); 224 } 225 226 227 /// getAsmParser - Return the AssemblyParser definition for this target. 228 /// 229 Record *CodeGenTarget::getAsmParser() const { 230 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 231 if (AsmParserNum >= LI.size()) 232 PrintFatalError("Target does not have an AsmParser #" + 233 Twine(AsmParserNum) + "!"); 234 return LI[AsmParserNum]; 235 } 236 237 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 238 /// this target. 239 /// 240 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 241 std::vector<Record*> LI = 242 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 243 if (i >= LI.size()) 244 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 245 "!"); 246 return LI[i]; 247 } 248 249 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 250 /// available for this target. 251 /// 252 unsigned CodeGenTarget::getAsmParserVariantCount() const { 253 std::vector<Record*> LI = 254 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 255 return LI.size(); 256 } 257 258 /// getAsmWriter - Return the AssemblyWriter definition for this target. 259 /// 260 Record *CodeGenTarget::getAsmWriter() const { 261 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 262 if (AsmWriterNum >= LI.size()) 263 PrintFatalError("Target does not have an AsmWriter #" + 264 Twine(AsmWriterNum) + "!"); 265 return LI[AsmWriterNum]; 266 } 267 268 CodeGenRegBank &CodeGenTarget::getRegBank() const { 269 if (!RegBank) 270 RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes()); 271 return *RegBank; 272 } 273 274 void CodeGenTarget::ReadRegAltNameIndices() const { 275 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 276 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 277 } 278 279 /// getRegisterByName - If there is a register with the specific AsmName, 280 /// return it. 281 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 282 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 283 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 284 if (I == Regs.end()) 285 return nullptr; 286 return I->second; 287 } 288 289 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R) 290 const { 291 const CodeGenRegister *Reg = getRegBank().getReg(R); 292 std::vector<ValueTypeByHwMode> Result; 293 for (const auto &RC : getRegBank().getRegClasses()) { 294 if (RC.contains(Reg)) { 295 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); 296 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 297 } 298 } 299 300 // Remove duplicates. 301 std::sort(Result.begin(), Result.end()); 302 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 303 return Result; 304 } 305 306 307 void CodeGenTarget::ReadLegalValueTypes() const { 308 for (const auto &RC : getRegBank().getRegClasses()) 309 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 310 311 // Remove duplicates. 312 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 313 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 314 LegalValueTypes.end()), 315 LegalValueTypes.end()); 316 } 317 318 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 319 if (!SchedModels) 320 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this); 321 return *SchedModels; 322 } 323 324 void CodeGenTarget::ReadInstructions() const { 325 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 326 if (Insts.size() <= 2) 327 PrintFatalError("No 'Instruction' subclasses defined!"); 328 329 // Parse the instructions defined in the .td file. 330 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 331 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]); 332 } 333 334 static const CodeGenInstruction * 335 GetInstByName(const char *Name, 336 const DenseMap<const Record*, 337 std::unique_ptr<CodeGenInstruction>> &Insts, 338 RecordKeeper &Records) { 339 const Record *Rec = Records.getDef(Name); 340 341 const auto I = Insts.find(Rec); 342 if (!Rec || I == Insts.end()) 343 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 344 return I->second.get(); 345 } 346 347 /// \brief Return all of the instructions defined by the target, ordered by 348 /// their enum value. 349 void CodeGenTarget::ComputeInstrsByEnum() const { 350 static const char *const FixedInstrs[] = { 351 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 352 #include "llvm/CodeGen/TargetOpcodes.def" 353 nullptr}; 354 const auto &Insts = getInstructions(); 355 for (const char *const *p = FixedInstrs; *p; ++p) { 356 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 357 assert(Instr && "Missing target independent instruction"); 358 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 359 InstrsByEnum.push_back(Instr); 360 } 361 unsigned EndOfPredefines = InstrsByEnum.size(); 362 363 for (const auto &I : Insts) { 364 const CodeGenInstruction *CGI = I.second.get(); 365 if (CGI->Namespace != "TargetOpcode") 366 InstrsByEnum.push_back(CGI); 367 } 368 369 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 370 371 // All of the instructions are now in random order based on the map iteration. 372 // Sort them by name. 373 std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 374 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 375 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 376 }); 377 } 378 379 380 /// isLittleEndianEncoding - Return whether this target encodes its instruction 381 /// in little-endian format, i.e. bits laid out in the order [0..n] 382 /// 383 bool CodeGenTarget::isLittleEndianEncoding() const { 384 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 385 } 386 387 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 388 /// encodings, reverse the bit order of all instructions. 389 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 390 if (!isLittleEndianEncoding()) 391 return; 392 393 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 394 for (Record *R : Insts) { 395 if (R->getValueAsString("Namespace") == "TargetOpcode" || 396 R->getValueAsBit("isPseudo")) 397 continue; 398 399 BitsInit *BI = R->getValueAsBitsInit("Inst"); 400 401 unsigned numBits = BI->getNumBits(); 402 403 SmallVector<Init *, 16> NewBits(numBits); 404 405 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 406 unsigned bitSwapIdx = numBits - bit - 1; 407 Init *OrigBit = BI->getBit(bit); 408 Init *BitSwap = BI->getBit(bitSwapIdx); 409 NewBits[bit] = BitSwap; 410 NewBits[bitSwapIdx] = OrigBit; 411 } 412 if (numBits % 2) { 413 unsigned middle = (numBits + 1) / 2; 414 NewBits[middle] = BI->getBit(middle); 415 } 416 417 BitsInit *NewBI = BitsInit::get(NewBits); 418 419 // Update the bits in reversed order so that emitInstrOpBits will get the 420 // correct endianness. 421 R->getValue("Inst")->setValue(NewBI); 422 } 423 } 424 425 /// guessInstructionProperties - Return true if it's OK to guess instruction 426 /// properties instead of raising an error. 427 /// 428 /// This is configurable as a temporary migration aid. It will eventually be 429 /// permanently false. 430 bool CodeGenTarget::guessInstructionProperties() const { 431 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 432 } 433 434 //===----------------------------------------------------------------------===// 435 // ComplexPattern implementation 436 // 437 ComplexPattern::ComplexPattern(Record *R) { 438 Ty = ::getValueType(R->getValueAsDef("Ty")); 439 NumOperands = R->getValueAsInt("NumOperands"); 440 SelectFunc = R->getValueAsString("SelectFunc"); 441 RootNodes = R->getValueAsListOfDefs("RootNodes"); 442 443 // FIXME: This is a hack to statically increase the priority of patterns which 444 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 445 // possible pattern match we'll need to dynamically calculate the complexity 446 // of all patterns a dag can potentially map to. 447 int64_t RawComplexity = R->getValueAsInt("Complexity"); 448 if (RawComplexity == -1) 449 Complexity = NumOperands * 3; 450 else 451 Complexity = RawComplexity; 452 453 // Parse the properties. 454 Properties = 0; 455 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 456 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 457 if (PropList[i]->getName() == "SDNPHasChain") { 458 Properties |= 1 << SDNPHasChain; 459 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 460 Properties |= 1 << SDNPOptInGlue; 461 } else if (PropList[i]->getName() == "SDNPMayStore") { 462 Properties |= 1 << SDNPMayStore; 463 } else if (PropList[i]->getName() == "SDNPMayLoad") { 464 Properties |= 1 << SDNPMayLoad; 465 } else if (PropList[i]->getName() == "SDNPSideEffect") { 466 Properties |= 1 << SDNPSideEffect; 467 } else if (PropList[i]->getName() == "SDNPMemOperand") { 468 Properties |= 1 << SDNPMemOperand; 469 } else if (PropList[i]->getName() == "SDNPVariadic") { 470 Properties |= 1 << SDNPVariadic; 471 } else if (PropList[i]->getName() == "SDNPWantRoot") { 472 Properties |= 1 << SDNPWantRoot; 473 } else if (PropList[i]->getName() == "SDNPWantParent") { 474 Properties |= 1 << SDNPWantParent; 475 } else { 476 PrintFatalError("Unsupported SD Node property '" + 477 PropList[i]->getName() + "' on ComplexPattern '" + 478 R->getName() + "'!"); 479 } 480 } 481 482 //===----------------------------------------------------------------------===// 483 // CodeGenIntrinsic Implementation 484 //===----------------------------------------------------------------------===// 485 486 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC, 487 bool TargetOnly) { 488 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 489 490 Intrinsics.reserve(Defs.size()); 491 492 for (unsigned I = 0, e = Defs.size(); I != e; ++I) { 493 bool isTarget = Defs[I]->getValueAsBit("isTarget"); 494 if (isTarget == TargetOnly) 495 Intrinsics.push_back(CodeGenIntrinsic(Defs[I])); 496 } 497 std::sort(Intrinsics.begin(), Intrinsics.end(), 498 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 499 return std::tie(LHS.TargetPrefix, LHS.Name) < 500 std::tie(RHS.TargetPrefix, RHS.Name); 501 }); 502 Targets.push_back({"", 0, 0}); 503 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 504 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 505 Targets.back().Count = I - Targets.back().Offset; 506 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 507 } 508 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 509 } 510 511 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 512 TheDef = R; 513 std::string DefName = R->getName(); 514 ModRef = ReadWriteMem; 515 isOverloaded = false; 516 isCommutative = false; 517 canThrow = false; 518 isNoReturn = false; 519 isNoDuplicate = false; 520 isConvergent = false; 521 isSpeculatable = false; 522 hasSideEffects = false; 523 524 if (DefName.size() <= 4 || 525 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 526 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!"); 527 528 EnumName = std::string(DefName.begin()+4, DefName.end()); 529 530 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 531 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 532 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 533 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 534 535 TargetPrefix = R->getValueAsString("TargetPrefix"); 536 Name = R->getValueAsString("LLVMName"); 537 538 if (Name == "") { 539 // If an explicit name isn't specified, derive one from the DefName. 540 Name = "llvm."; 541 542 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 543 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 544 } else { 545 // Verify it starts with "llvm.". 546 if (Name.size() <= 5 || 547 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 548 PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); 549 } 550 551 // If TargetPrefix is specified, make sure that Name starts with 552 // "llvm.<targetprefix>.". 553 if (!TargetPrefix.empty()) { 554 if (Name.size() < 6+TargetPrefix.size() || 555 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 556 != (TargetPrefix + ".")) 557 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." + 558 TargetPrefix + ".'!"); 559 } 560 561 // Parse the list of return types. 562 std::vector<MVT::SimpleValueType> OverloadedVTs; 563 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 564 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 565 Record *TyEl = TypeList->getElementAsRecord(i); 566 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 567 MVT::SimpleValueType VT; 568 if (TyEl->isSubClassOf("LLVMMatchType")) { 569 unsigned MatchTy = TyEl->getValueAsInt("Number"); 570 assert(MatchTy < OverloadedVTs.size() && 571 "Invalid matching number!"); 572 VT = OverloadedVTs[MatchTy]; 573 // It only makes sense to use the extended and truncated vector element 574 // variants with iAny types; otherwise, if the intrinsic is not 575 // overloaded, all the types can be specified directly. 576 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 577 !TyEl->isSubClassOf("LLVMTruncatedType")) || 578 VT == MVT::iAny || VT == MVT::vAny) && 579 "Expected iAny or vAny type"); 580 } else { 581 VT = getValueType(TyEl->getValueAsDef("VT")); 582 } 583 if (MVT(VT).isOverloaded()) { 584 OverloadedVTs.push_back(VT); 585 isOverloaded = true; 586 } 587 588 // Reject invalid types. 589 if (VT == MVT::isVoid) 590 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 591 592 IS.RetVTs.push_back(VT); 593 IS.RetTypeDefs.push_back(TyEl); 594 } 595 596 // Parse the list of parameter types. 597 TypeList = R->getValueAsListInit("ParamTypes"); 598 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 599 Record *TyEl = TypeList->getElementAsRecord(i); 600 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 601 MVT::SimpleValueType VT; 602 if (TyEl->isSubClassOf("LLVMMatchType")) { 603 unsigned MatchTy = TyEl->getValueAsInt("Number"); 604 assert(MatchTy < OverloadedVTs.size() && 605 "Invalid matching number!"); 606 VT = OverloadedVTs[MatchTy]; 607 // It only makes sense to use the extended and truncated vector element 608 // variants with iAny types; otherwise, if the intrinsic is not 609 // overloaded, all the types can be specified directly. 610 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 611 !TyEl->isSubClassOf("LLVMTruncatedType") && 612 !TyEl->isSubClassOf("LLVMVectorSameWidth")) || 613 VT == MVT::iAny || VT == MVT::vAny) && 614 "Expected iAny or vAny type"); 615 } else 616 VT = getValueType(TyEl->getValueAsDef("VT")); 617 618 if (MVT(VT).isOverloaded()) { 619 OverloadedVTs.push_back(VT); 620 isOverloaded = true; 621 } 622 623 // Reject invalid types. 624 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 625 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 626 627 IS.ParamVTs.push_back(VT); 628 IS.ParamTypeDefs.push_back(TyEl); 629 } 630 631 // Parse the intrinsic properties. 632 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 633 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 634 Record *Property = PropList->getElementAsRecord(i); 635 assert(Property->isSubClassOf("IntrinsicProperty") && 636 "Expected a property!"); 637 638 if (Property->getName() == "IntrNoMem") 639 ModRef = NoMem; 640 else if (Property->getName() == "IntrReadMem") 641 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 642 else if (Property->getName() == "IntrWriteMem") 643 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 644 else if (Property->getName() == "IntrArgMemOnly") 645 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 646 else if (Property->getName() == "IntrInaccessibleMemOnly") 647 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 648 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly") 649 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 650 MR_InaccessibleMem); 651 else if (Property->getName() == "Commutative") 652 isCommutative = true; 653 else if (Property->getName() == "Throws") 654 canThrow = true; 655 else if (Property->getName() == "IntrNoDuplicate") 656 isNoDuplicate = true; 657 else if (Property->getName() == "IntrConvergent") 658 isConvergent = true; 659 else if (Property->getName() == "IntrNoReturn") 660 isNoReturn = true; 661 else if (Property->getName() == "IntrSpeculatable") 662 isSpeculatable = true; 663 else if (Property->getName() == "IntrHasSideEffects") 664 hasSideEffects = true; 665 else if (Property->isSubClassOf("NoCapture")) { 666 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 667 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 668 } else if (Property->isSubClassOf("Returned")) { 669 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 670 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned)); 671 } else if (Property->isSubClassOf("ReadOnly")) { 672 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 673 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 674 } else if (Property->isSubClassOf("WriteOnly")) { 675 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 676 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly)); 677 } else if (Property->isSubClassOf("ReadNone")) { 678 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 679 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 680 } else 681 llvm_unreachable("Unknown property!"); 682 } 683 684 // Sort the argument attributes for later benefit. 685 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 686 } 687