1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes throw exceptions on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "Record.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/Support/CommandLine.h" 22 #include <algorithm> 23 using namespace llvm; 24 25 static cl::opt<unsigned> 26 AsmParserNum("asmparsernum", cl::init(0), 27 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 28 29 static cl::opt<unsigned> 30 AsmWriterNum("asmwriternum", cl::init(0), 31 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 32 33 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 34 /// record corresponds to. 35 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 36 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 37 } 38 39 std::string llvm::getName(MVT::SimpleValueType T) { 40 switch (T) { 41 case MVT::Other: return "UNKNOWN"; 42 case MVT::iPTR: return "TLI.getPointerTy()"; 43 case MVT::iPTRAny: return "TLI.getPointerTy()"; 44 default: return getEnumName(T); 45 } 46 } 47 48 std::string llvm::getEnumName(MVT::SimpleValueType T) { 49 switch (T) { 50 case MVT::Other: return "MVT::Other"; 51 case MVT::i1: return "MVT::i1"; 52 case MVT::i8: return "MVT::i8"; 53 case MVT::i16: return "MVT::i16"; 54 case MVT::i32: return "MVT::i32"; 55 case MVT::i64: return "MVT::i64"; 56 case MVT::i128: return "MVT::i128"; 57 case MVT::iAny: return "MVT::iAny"; 58 case MVT::fAny: return "MVT::fAny"; 59 case MVT::vAny: return "MVT::vAny"; 60 case MVT::f32: return "MVT::f32"; 61 case MVT::f64: return "MVT::f64"; 62 case MVT::f80: return "MVT::f80"; 63 case MVT::f128: return "MVT::f128"; 64 case MVT::ppcf128: return "MVT::ppcf128"; 65 case MVT::Flag: return "MVT::Flag"; 66 case MVT::isVoid:return "MVT::isVoid"; 67 case MVT::v2i8: return "MVT::v2i8"; 68 case MVT::v4i8: return "MVT::v4i8"; 69 case MVT::v8i8: return "MVT::v8i8"; 70 case MVT::v16i8: return "MVT::v16i8"; 71 case MVT::v32i8: return "MVT::v32i8"; 72 case MVT::v2i16: return "MVT::v2i16"; 73 case MVT::v4i16: return "MVT::v4i16"; 74 case MVT::v8i16: return "MVT::v8i16"; 75 case MVT::v16i16: return "MVT::v16i16"; 76 case MVT::v2i32: return "MVT::v2i32"; 77 case MVT::v4i32: return "MVT::v4i32"; 78 case MVT::v8i32: return "MVT::v8i32"; 79 case MVT::v1i64: return "MVT::v1i64"; 80 case MVT::v2i64: return "MVT::v2i64"; 81 case MVT::v4i64: return "MVT::v4i64"; 82 case MVT::v2f32: return "MVT::v2f32"; 83 case MVT::v4f32: return "MVT::v4f32"; 84 case MVT::v8f32: return "MVT::v8f32"; 85 case MVT::v2f64: return "MVT::v2f64"; 86 case MVT::v4f64: return "MVT::v4f64"; 87 case MVT::Metadata: return "MVT::Metadata"; 88 case MVT::iPTR: return "MVT::iPTR"; 89 case MVT::iPTRAny: return "MVT::iPTRAny"; 90 default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; 91 } 92 } 93 94 /// getQualifiedName - Return the name of the specified record, with a 95 /// namespace qualifier if the record contains one. 96 /// 97 std::string llvm::getQualifiedName(const Record *R) { 98 std::string Namespace = R->getValueAsString("Namespace"); 99 if (Namespace.empty()) return R->getName(); 100 return Namespace + "::" + R->getName(); 101 } 102 103 104 105 106 /// getTarget - Return the current instance of the Target class. 107 /// 108 CodeGenTarget::CodeGenTarget() { 109 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 110 if (Targets.size() == 0) 111 throw std::string("ERROR: No 'Target' subclasses defined!"); 112 if (Targets.size() != 1) 113 throw std::string("ERROR: Multiple subclasses of Target defined!"); 114 TargetRec = Targets[0]; 115 } 116 117 118 const std::string &CodeGenTarget::getName() const { 119 return TargetRec->getName(); 120 } 121 122 std::string CodeGenTarget::getInstNamespace() const { 123 for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { 124 // Make sure not to pick up "TargetOpcode" by accidentally getting 125 // the namespace off the PHI instruction or something. 126 if ((*i)->Namespace != "TargetOpcode") 127 return (*i)->Namespace; 128 } 129 130 return ""; 131 } 132 133 Record *CodeGenTarget::getInstructionSet() const { 134 return TargetRec->getValueAsDef("InstructionSet"); 135 } 136 137 138 /// getAsmParser - Return the AssemblyParser definition for this target. 139 /// 140 Record *CodeGenTarget::getAsmParser() const { 141 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 142 if (AsmParserNum >= LI.size()) 143 throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!"; 144 return LI[AsmParserNum]; 145 } 146 147 /// getAsmWriter - Return the AssemblyWriter definition for this target. 148 /// 149 Record *CodeGenTarget::getAsmWriter() const { 150 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 151 if (AsmWriterNum >= LI.size()) 152 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; 153 return LI[AsmWriterNum]; 154 } 155 156 void CodeGenTarget::ReadRegisters() const { 157 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 158 if (Regs.empty()) 159 throw std::string("No 'Register' subclasses defined!"); 160 161 Registers.reserve(Regs.size()); 162 Registers.assign(Regs.begin(), Regs.end()); 163 } 164 165 CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) { 166 DeclaredSpillSize = R->getValueAsInt("SpillSize"); 167 DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment"); 168 } 169 170 const std::string &CodeGenRegister::getName() const { 171 return TheDef->getName(); 172 } 173 174 void CodeGenTarget::ReadRegisterClasses() const { 175 std::vector<Record*> RegClasses = 176 Records.getAllDerivedDefinitions("RegisterClass"); 177 if (RegClasses.empty()) 178 throw std::string("No 'RegisterClass' subclasses defined!"); 179 180 RegisterClasses.reserve(RegClasses.size()); 181 RegisterClasses.assign(RegClasses.begin(), RegClasses.end()); 182 } 183 184 std::vector<MVT::SimpleValueType> CodeGenTarget:: 185 getRegisterVTs(Record *R) const { 186 std::vector<MVT::SimpleValueType> Result; 187 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 188 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 189 const CodeGenRegisterClass &RC = RegisterClasses[i]; 190 for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) { 191 if (R == RC.Elements[ei]) { 192 const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes(); 193 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 194 } 195 } 196 } 197 return Result; 198 } 199 200 201 CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) { 202 // Rename anonymous register classes. 203 if (R->getName().size() > 9 && R->getName()[9] == '.') { 204 static unsigned AnonCounter = 0; 205 R->setName("AnonRegClass_"+utostr(AnonCounter++)); 206 } 207 208 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 209 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 210 Record *Type = TypeList[i]; 211 if (!Type->isSubClassOf("ValueType")) 212 throw "RegTypes list member '" + Type->getName() + 213 "' does not derive from the ValueType class!"; 214 VTs.push_back(getValueType(Type)); 215 } 216 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 217 218 std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList"); 219 for (unsigned i = 0, e = RegList.size(); i != e; ++i) { 220 Record *Reg = RegList[i]; 221 if (!Reg->isSubClassOf("Register")) 222 throw "Register Class member '" + Reg->getName() + 223 "' does not derive from the Register class!"; 224 Elements.push_back(Reg); 225 } 226 227 std::vector<Record*> SubRegClassList = 228 R->getValueAsListOfDefs("SubRegClassList"); 229 for (unsigned i = 0, e = SubRegClassList.size(); i != e; ++i) { 230 Record *SubRegClass = SubRegClassList[i]; 231 if (!SubRegClass->isSubClassOf("RegisterClass")) 232 throw "Register Class member '" + SubRegClass->getName() + 233 "' does not derive from the RegisterClass class!"; 234 SubRegClasses.push_back(SubRegClass); 235 } 236 237 // Allow targets to override the size in bits of the RegisterClass. 238 unsigned Size = R->getValueAsInt("Size"); 239 240 Namespace = R->getValueAsString("Namespace"); 241 SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits(); 242 SpillAlignment = R->getValueAsInt("Alignment"); 243 CopyCost = R->getValueAsInt("CopyCost"); 244 MethodBodies = R->getValueAsCode("MethodBodies"); 245 MethodProtos = R->getValueAsCode("MethodProtos"); 246 } 247 248 const std::string &CodeGenRegisterClass::getName() const { 249 return TheDef->getName(); 250 } 251 252 void CodeGenTarget::ReadLegalValueTypes() const { 253 const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); 254 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 255 for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri) 256 LegalValueTypes.push_back(RCs[i].VTs[ri]); 257 258 // Remove duplicates. 259 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 260 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 261 LegalValueTypes.end()), 262 LegalValueTypes.end()); 263 } 264 265 266 void CodeGenTarget::ReadInstructions() const { 267 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 268 if (Insts.size() <= 2) 269 throw std::string("No 'Instruction' subclasses defined!"); 270 271 // Parse the instructions defined in the .td file. 272 std::string InstFormatName = 273 getAsmWriter()->getValueAsString("InstFormatName"); 274 275 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 276 std::string AsmStr = Insts[i]->getValueAsString(InstFormatName); 277 Instructions[Insts[i]] = new CodeGenInstruction(Insts[i], AsmStr); 278 } 279 } 280 281 static const CodeGenInstruction * 282 GetInstByName(const char *Name, 283 const DenseMap<const Record*, CodeGenInstruction*> &Insts) { 284 const Record *Rec = Records.getDef(Name); 285 286 DenseMap<const Record*, CodeGenInstruction*>::const_iterator 287 I = Insts.find(Rec); 288 if (Rec == 0 || I == Insts.end()) 289 throw std::string("Could not find '") + Name + "' instruction!"; 290 return I->second; 291 } 292 293 namespace { 294 /// SortInstByName - Sorting predicate to sort instructions by name. 295 /// 296 struct SortInstByName { 297 bool operator()(const CodeGenInstruction *Rec1, 298 const CodeGenInstruction *Rec2) const { 299 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 300 } 301 }; 302 } 303 304 /// getInstructionsByEnumValue - Return all of the instructions defined by the 305 /// target, ordered by their enum value. 306 void CodeGenTarget::ComputeInstrsByEnum() const { 307 const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions(); 308 const CodeGenInstruction *PHI = GetInstByName("PHI", Insts); 309 const CodeGenInstruction *INLINEASM = GetInstByName("INLINEASM", Insts); 310 const CodeGenInstruction *DBG_LABEL = GetInstByName("DBG_LABEL", Insts); 311 const CodeGenInstruction *EH_LABEL = GetInstByName("EH_LABEL", Insts); 312 const CodeGenInstruction *GC_LABEL = GetInstByName("GC_LABEL", Insts); 313 const CodeGenInstruction *KILL = GetInstByName("KILL", Insts); 314 const CodeGenInstruction *EXTRACT_SUBREG = 315 GetInstByName("EXTRACT_SUBREG", Insts); 316 const CodeGenInstruction *INSERT_SUBREG = 317 GetInstByName("INSERT_SUBREG", Insts); 318 const CodeGenInstruction *IMPLICIT_DEF = GetInstByName("IMPLICIT_DEF", Insts); 319 const CodeGenInstruction *SUBREG_TO_REG = 320 GetInstByName("SUBREG_TO_REG", Insts); 321 const CodeGenInstruction *COPY_TO_REGCLASS = 322 GetInstByName("COPY_TO_REGCLASS", Insts); 323 const CodeGenInstruction *DBG_VALUE = GetInstByName("DBG_VALUE", Insts); 324 325 // Print out the rest of the instructions now. 326 InstrsByEnum.push_back(PHI); 327 InstrsByEnum.push_back(INLINEASM); 328 InstrsByEnum.push_back(DBG_LABEL); 329 InstrsByEnum.push_back(EH_LABEL); 330 InstrsByEnum.push_back(GC_LABEL); 331 InstrsByEnum.push_back(KILL); 332 InstrsByEnum.push_back(EXTRACT_SUBREG); 333 InstrsByEnum.push_back(INSERT_SUBREG); 334 InstrsByEnum.push_back(IMPLICIT_DEF); 335 InstrsByEnum.push_back(SUBREG_TO_REG); 336 InstrsByEnum.push_back(COPY_TO_REGCLASS); 337 InstrsByEnum.push_back(DBG_VALUE); 338 339 unsigned EndOfPredefines = InstrsByEnum.size(); 340 341 for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator 342 I = Insts.begin(), E = Insts.end(); I != E; ++I) { 343 const CodeGenInstruction *CGI = I->second; 344 if (CGI != PHI && 345 CGI != INLINEASM && 346 CGI != DBG_LABEL && 347 CGI != EH_LABEL && 348 CGI != GC_LABEL && 349 CGI != KILL && 350 CGI != EXTRACT_SUBREG && 351 CGI != INSERT_SUBREG && 352 CGI != IMPLICIT_DEF && 353 CGI != SUBREG_TO_REG && 354 CGI != COPY_TO_REGCLASS && 355 CGI != DBG_VALUE) 356 InstrsByEnum.push_back(CGI); 357 } 358 359 // All of the instructions are now in random order based on the map iteration. 360 // Sort them by name. 361 std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(), 362 SortInstByName()); 363 } 364 365 366 /// isLittleEndianEncoding - Return whether this target encodes its instruction 367 /// in little-endian format, i.e. bits laid out in the order [0..n] 368 /// 369 bool CodeGenTarget::isLittleEndianEncoding() const { 370 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 371 } 372 373 //===----------------------------------------------------------------------===// 374 // ComplexPattern implementation 375 // 376 ComplexPattern::ComplexPattern(Record *R) { 377 Ty = ::getValueType(R->getValueAsDef("Ty")); 378 NumOperands = R->getValueAsInt("NumOperands"); 379 SelectFunc = R->getValueAsString("SelectFunc"); 380 RootNodes = R->getValueAsListOfDefs("RootNodes"); 381 382 // Parse the properties. 383 Properties = 0; 384 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 385 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 386 if (PropList[i]->getName() == "SDNPHasChain") { 387 Properties |= 1 << SDNPHasChain; 388 } else if (PropList[i]->getName() == "SDNPOptInFlag") { 389 Properties |= 1 << SDNPOptInFlag; 390 } else if (PropList[i]->getName() == "SDNPMayStore") { 391 Properties |= 1 << SDNPMayStore; 392 } else if (PropList[i]->getName() == "SDNPMayLoad") { 393 Properties |= 1 << SDNPMayLoad; 394 } else if (PropList[i]->getName() == "SDNPSideEffect") { 395 Properties |= 1 << SDNPSideEffect; 396 } else if (PropList[i]->getName() == "SDNPMemOperand") { 397 Properties |= 1 << SDNPMemOperand; 398 } else { 399 errs() << "Unsupported SD Node property '" << PropList[i]->getName() 400 << "' on ComplexPattern '" << R->getName() << "'!\n"; 401 exit(1); 402 } 403 } 404 405 //===----------------------------------------------------------------------===// 406 // CodeGenIntrinsic Implementation 407 //===----------------------------------------------------------------------===// 408 409 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 410 bool TargetOnly) { 411 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 412 413 std::vector<CodeGenIntrinsic> Result; 414 415 for (unsigned i = 0, e = I.size(); i != e; ++i) { 416 bool isTarget = I[i]->getValueAsBit("isTarget"); 417 if (isTarget == TargetOnly) 418 Result.push_back(CodeGenIntrinsic(I[i])); 419 } 420 return Result; 421 } 422 423 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 424 TheDef = R; 425 std::string DefName = R->getName(); 426 ModRef = WriteMem; 427 isOverloaded = false; 428 isCommutative = false; 429 430 if (DefName.size() <= 4 || 431 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 432 throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; 433 434 EnumName = std::string(DefName.begin()+4, DefName.end()); 435 436 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 437 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 438 439 TargetPrefix = R->getValueAsString("TargetPrefix"); 440 Name = R->getValueAsString("LLVMName"); 441 442 if (Name == "") { 443 // If an explicit name isn't specified, derive one from the DefName. 444 Name = "llvm."; 445 446 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 447 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 448 } else { 449 // Verify it starts with "llvm.". 450 if (Name.size() <= 5 || 451 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 452 throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; 453 } 454 455 // If TargetPrefix is specified, make sure that Name starts with 456 // "llvm.<targetprefix>.". 457 if (!TargetPrefix.empty()) { 458 if (Name.size() < 6+TargetPrefix.size() || 459 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 460 != (TargetPrefix + ".")) 461 throw "Intrinsic '" + DefName + "' does not start with 'llvm." + 462 TargetPrefix + ".'!"; 463 } 464 465 // Parse the list of return types. 466 std::vector<MVT::SimpleValueType> OverloadedVTs; 467 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 468 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 469 Record *TyEl = TypeList->getElementAsRecord(i); 470 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 471 MVT::SimpleValueType VT; 472 if (TyEl->isSubClassOf("LLVMMatchType")) { 473 unsigned MatchTy = TyEl->getValueAsInt("Number"); 474 assert(MatchTy < OverloadedVTs.size() && 475 "Invalid matching number!"); 476 VT = OverloadedVTs[MatchTy]; 477 // It only makes sense to use the extended and truncated vector element 478 // variants with iAny types; otherwise, if the intrinsic is not 479 // overloaded, all the types can be specified directly. 480 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 481 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 482 VT == MVT::iAny || VT == MVT::vAny) && 483 "Expected iAny or vAny type"); 484 } else { 485 VT = getValueType(TyEl->getValueAsDef("VT")); 486 } 487 if (EVT(VT).isOverloaded()) { 488 OverloadedVTs.push_back(VT); 489 isOverloaded |= true; 490 } 491 IS.RetVTs.push_back(VT); 492 IS.RetTypeDefs.push_back(TyEl); 493 } 494 495 if (IS.RetVTs.size() == 0) 496 throw "Intrinsic '"+DefName+"' needs at least a type for the ret value!"; 497 498 // Parse the list of parameter types. 499 TypeList = R->getValueAsListInit("ParamTypes"); 500 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 501 Record *TyEl = TypeList->getElementAsRecord(i); 502 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 503 MVT::SimpleValueType VT; 504 if (TyEl->isSubClassOf("LLVMMatchType")) { 505 unsigned MatchTy = TyEl->getValueAsInt("Number"); 506 assert(MatchTy < OverloadedVTs.size() && 507 "Invalid matching number!"); 508 VT = OverloadedVTs[MatchTy]; 509 // It only makes sense to use the extended and truncated vector element 510 // variants with iAny types; otherwise, if the intrinsic is not 511 // overloaded, all the types can be specified directly. 512 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 513 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 514 VT == MVT::iAny || VT == MVT::vAny) && 515 "Expected iAny or vAny type"); 516 } else 517 VT = getValueType(TyEl->getValueAsDef("VT")); 518 if (EVT(VT).isOverloaded()) { 519 OverloadedVTs.push_back(VT); 520 isOverloaded |= true; 521 } 522 IS.ParamVTs.push_back(VT); 523 IS.ParamTypeDefs.push_back(TyEl); 524 } 525 526 // Parse the intrinsic properties. 527 ListInit *PropList = R->getValueAsListInit("Properties"); 528 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 529 Record *Property = PropList->getElementAsRecord(i); 530 assert(Property->isSubClassOf("IntrinsicProperty") && 531 "Expected a property!"); 532 533 if (Property->getName() == "IntrNoMem") 534 ModRef = NoMem; 535 else if (Property->getName() == "IntrReadArgMem") 536 ModRef = ReadArgMem; 537 else if (Property->getName() == "IntrReadMem") 538 ModRef = ReadMem; 539 else if (Property->getName() == "IntrWriteArgMem") 540 ModRef = WriteArgMem; 541 else if (Property->getName() == "IntrWriteMem") 542 ModRef = WriteMem; 543 else if (Property->getName() == "Commutative") 544 isCommutative = true; 545 else if (Property->isSubClassOf("NoCapture")) { 546 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 547 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 548 } else 549 assert(0 && "Unknown property!"); 550 } 551 } 552