1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class wraps target description classes used by the various code 10 // generation TableGen backends. This makes it easier to access the data and 11 // provides a single place that needs to check it for validity. All of these 12 // classes abort on error conditions. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CodeGenTarget.h" 17 #include "CodeGenDAGPatterns.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Timer.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <algorithm> 28 using namespace llvm; 29 30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 32 33 static cl::opt<unsigned> 34 AsmParserNum("asmparsernum", cl::init(0), 35 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 36 cl::cat(AsmParserCat)); 37 38 static cl::opt<unsigned> 39 AsmWriterNum("asmwriternum", cl::init(0), 40 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 41 cl::cat(AsmWriterCat)); 42 43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 44 /// record corresponds to. 45 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 46 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 47 } 48 49 StringRef llvm::getName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "UNKNOWN"; 52 case MVT::iPTR: return "TLI.getPointerTy()"; 53 case MVT::iPTRAny: return "TLI.getPointerTy()"; 54 default: return getEnumName(T); 55 } 56 } 57 58 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 59 switch (T) { 60 case MVT::Other: return "MVT::Other"; 61 case MVT::i1: return "MVT::i1"; 62 case MVT::i8: return "MVT::i8"; 63 case MVT::i16: return "MVT::i16"; 64 case MVT::i32: return "MVT::i32"; 65 case MVT::i64: return "MVT::i64"; 66 case MVT::i128: return "MVT::i128"; 67 case MVT::Any: return "MVT::Any"; 68 case MVT::iAny: return "MVT::iAny"; 69 case MVT::fAny: return "MVT::fAny"; 70 case MVT::vAny: return "MVT::vAny"; 71 case MVT::f16: return "MVT::f16"; 72 case MVT::f32: return "MVT::f32"; 73 case MVT::f64: return "MVT::f64"; 74 case MVT::f80: return "MVT::f80"; 75 case MVT::f128: return "MVT::f128"; 76 case MVT::ppcf128: return "MVT::ppcf128"; 77 case MVT::x86mmx: return "MVT::x86mmx"; 78 case MVT::Glue: return "MVT::Glue"; 79 case MVT::isVoid: return "MVT::isVoid"; 80 case MVT::v1i1: return "MVT::v1i1"; 81 case MVT::v2i1: return "MVT::v2i1"; 82 case MVT::v4i1: return "MVT::v4i1"; 83 case MVT::v8i1: return "MVT::v8i1"; 84 case MVT::v16i1: return "MVT::v16i1"; 85 case MVT::v32i1: return "MVT::v32i1"; 86 case MVT::v64i1: return "MVT::v64i1"; 87 case MVT::v128i1: return "MVT::v128i1"; 88 case MVT::v512i1: return "MVT::v512i1"; 89 case MVT::v1024i1: return "MVT::v1024i1"; 90 case MVT::v1i8: return "MVT::v1i8"; 91 case MVT::v2i8: return "MVT::v2i8"; 92 case MVT::v4i8: return "MVT::v4i8"; 93 case MVT::v8i8: return "MVT::v8i8"; 94 case MVT::v16i8: return "MVT::v16i8"; 95 case MVT::v32i8: return "MVT::v32i8"; 96 case MVT::v64i8: return "MVT::v64i8"; 97 case MVT::v128i8: return "MVT::v128i8"; 98 case MVT::v256i8: return "MVT::v256i8"; 99 case MVT::v1i16: return "MVT::v1i16"; 100 case MVT::v2i16: return "MVT::v2i16"; 101 case MVT::v4i16: return "MVT::v4i16"; 102 case MVT::v8i16: return "MVT::v8i16"; 103 case MVT::v16i16: return "MVT::v16i16"; 104 case MVT::v32i16: return "MVT::v32i16"; 105 case MVT::v64i16: return "MVT::v64i16"; 106 case MVT::v128i16: return "MVT::v128i16"; 107 case MVT::v1i32: return "MVT::v1i32"; 108 case MVT::v2i32: return "MVT::v2i32"; 109 case MVT::v4i32: return "MVT::v4i32"; 110 case MVT::v8i32: return "MVT::v8i32"; 111 case MVT::v16i32: return "MVT::v16i32"; 112 case MVT::v32i32: return "MVT::v32i32"; 113 case MVT::v64i32: return "MVT::v64i32"; 114 case MVT::v1i64: return "MVT::v1i64"; 115 case MVT::v2i64: return "MVT::v2i64"; 116 case MVT::v4i64: return "MVT::v4i64"; 117 case MVT::v8i64: return "MVT::v8i64"; 118 case MVT::v16i64: return "MVT::v16i64"; 119 case MVT::v32i64: return "MVT::v32i64"; 120 case MVT::v1i128: return "MVT::v1i128"; 121 case MVT::v2f16: return "MVT::v2f16"; 122 case MVT::v4f16: return "MVT::v4f16"; 123 case MVT::v8f16: return "MVT::v8f16"; 124 case MVT::v1f32: return "MVT::v1f32"; 125 case MVT::v2f32: return "MVT::v2f32"; 126 case MVT::v4f32: return "MVT::v4f32"; 127 case MVT::v8f32: return "MVT::v8f32"; 128 case MVT::v16f32: return "MVT::v16f32"; 129 case MVT::v1f64: return "MVT::v1f64"; 130 case MVT::v2f64: return "MVT::v2f64"; 131 case MVT::v4f64: return "MVT::v4f64"; 132 case MVT::v8f64: return "MVT::v8f64"; 133 case MVT::nxv1i1: return "MVT::nxv1i1"; 134 case MVT::nxv2i1: return "MVT::nxv2i1"; 135 case MVT::nxv4i1: return "MVT::nxv4i1"; 136 case MVT::nxv8i1: return "MVT::nxv8i1"; 137 case MVT::nxv16i1: return "MVT::nxv16i1"; 138 case MVT::nxv32i1: return "MVT::nxv32i1"; 139 case MVT::nxv1i8: return "MVT::nxv1i8"; 140 case MVT::nxv2i8: return "MVT::nxv2i8"; 141 case MVT::nxv4i8: return "MVT::nxv4i8"; 142 case MVT::nxv8i8: return "MVT::nxv8i8"; 143 case MVT::nxv16i8: return "MVT::nxv16i8"; 144 case MVT::nxv32i8: return "MVT::nxv32i8"; 145 case MVT::nxv1i16: return "MVT::nxv1i16"; 146 case MVT::nxv2i16: return "MVT::nxv2i16"; 147 case MVT::nxv4i16: return "MVT::nxv4i16"; 148 case MVT::nxv8i16: return "MVT::nxv8i16"; 149 case MVT::nxv16i16: return "MVT::nxv16i16"; 150 case MVT::nxv32i16: return "MVT::nxv32i16"; 151 case MVT::nxv1i32: return "MVT::nxv1i32"; 152 case MVT::nxv2i32: return "MVT::nxv2i32"; 153 case MVT::nxv4i32: return "MVT::nxv4i32"; 154 case MVT::nxv8i32: return "MVT::nxv8i32"; 155 case MVT::nxv16i32: return "MVT::nxv16i32"; 156 case MVT::nxv1i64: return "MVT::nxv1i64"; 157 case MVT::nxv2i64: return "MVT::nxv2i64"; 158 case MVT::nxv4i64: return "MVT::nxv4i64"; 159 case MVT::nxv8i64: return "MVT::nxv8i64"; 160 case MVT::nxv16i64: return "MVT::nxv16i64"; 161 case MVT::nxv2f16: return "MVT::nxv2f16"; 162 case MVT::nxv4f16: return "MVT::nxv4f16"; 163 case MVT::nxv8f16: return "MVT::nxv8f16"; 164 case MVT::nxv1f32: return "MVT::nxv1f32"; 165 case MVT::nxv2f32: return "MVT::nxv2f32"; 166 case MVT::nxv4f32: return "MVT::nxv4f32"; 167 case MVT::nxv8f32: return "MVT::nxv8f32"; 168 case MVT::nxv16f32: return "MVT::nxv16f32"; 169 case MVT::nxv1f64: return "MVT::nxv1f64"; 170 case MVT::nxv2f64: return "MVT::nxv2f64"; 171 case MVT::nxv4f64: return "MVT::nxv4f64"; 172 case MVT::nxv8f64: return "MVT::nxv8f64"; 173 case MVT::token: return "MVT::token"; 174 case MVT::Metadata: return "MVT::Metadata"; 175 case MVT::iPTR: return "MVT::iPTR"; 176 case MVT::iPTRAny: return "MVT::iPTRAny"; 177 case MVT::Untyped: return "MVT::Untyped"; 178 case MVT::ExceptRef: return "MVT::ExceptRef"; 179 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 180 } 181 } 182 183 /// getQualifiedName - Return the name of the specified record, with a 184 /// namespace qualifier if the record contains one. 185 /// 186 std::string llvm::getQualifiedName(const Record *R) { 187 std::string Namespace; 188 if (R->getValue("Namespace")) 189 Namespace = R->getValueAsString("Namespace"); 190 if (Namespace.empty()) return R->getName(); 191 return Namespace + "::" + R->getName().str(); 192 } 193 194 195 /// getTarget - Return the current instance of the Target class. 196 /// 197 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 198 : Records(records), CGH(records) { 199 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 200 if (Targets.size() == 0) 201 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 202 if (Targets.size() != 1) 203 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 204 TargetRec = Targets[0]; 205 } 206 207 CodeGenTarget::~CodeGenTarget() { 208 } 209 210 const StringRef CodeGenTarget::getName() const { 211 return TargetRec->getName(); 212 } 213 214 StringRef CodeGenTarget::getInstNamespace() const { 215 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 216 // Make sure not to pick up "TargetOpcode" by accidentally getting 217 // the namespace off the PHI instruction or something. 218 if (Inst->Namespace != "TargetOpcode") 219 return Inst->Namespace; 220 } 221 222 return ""; 223 } 224 225 Record *CodeGenTarget::getInstructionSet() const { 226 return TargetRec->getValueAsDef("InstructionSet"); 227 } 228 229 bool CodeGenTarget::getAllowRegisterRenaming() const { 230 return TargetRec->getValueAsInt("AllowRegisterRenaming"); 231 } 232 233 /// getAsmParser - Return the AssemblyParser definition for this target. 234 /// 235 Record *CodeGenTarget::getAsmParser() const { 236 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 237 if (AsmParserNum >= LI.size()) 238 PrintFatalError("Target does not have an AsmParser #" + 239 Twine(AsmParserNum) + "!"); 240 return LI[AsmParserNum]; 241 } 242 243 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 244 /// this target. 245 /// 246 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 247 std::vector<Record*> LI = 248 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 249 if (i >= LI.size()) 250 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 251 "!"); 252 return LI[i]; 253 } 254 255 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 256 /// available for this target. 257 /// 258 unsigned CodeGenTarget::getAsmParserVariantCount() const { 259 std::vector<Record*> LI = 260 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 261 return LI.size(); 262 } 263 264 /// getAsmWriter - Return the AssemblyWriter definition for this target. 265 /// 266 Record *CodeGenTarget::getAsmWriter() const { 267 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 268 if (AsmWriterNum >= LI.size()) 269 PrintFatalError("Target does not have an AsmWriter #" + 270 Twine(AsmWriterNum) + "!"); 271 return LI[AsmWriterNum]; 272 } 273 274 CodeGenRegBank &CodeGenTarget::getRegBank() const { 275 if (!RegBank) 276 RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes()); 277 return *RegBank; 278 } 279 280 void CodeGenTarget::ReadRegAltNameIndices() const { 281 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 282 llvm::sort(RegAltNameIndices, LessRecord()); 283 } 284 285 /// getRegisterByName - If there is a register with the specific AsmName, 286 /// return it. 287 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 288 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 289 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 290 if (I == Regs.end()) 291 return nullptr; 292 return I->second; 293 } 294 295 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R) 296 const { 297 const CodeGenRegister *Reg = getRegBank().getReg(R); 298 std::vector<ValueTypeByHwMode> Result; 299 for (const auto &RC : getRegBank().getRegClasses()) { 300 if (RC.contains(Reg)) { 301 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); 302 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 303 } 304 } 305 306 // Remove duplicates. 307 llvm::sort(Result); 308 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 309 return Result; 310 } 311 312 313 void CodeGenTarget::ReadLegalValueTypes() const { 314 for (const auto &RC : getRegBank().getRegClasses()) 315 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 316 317 // Remove duplicates. 318 llvm::sort(LegalValueTypes); 319 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 320 LegalValueTypes.end()), 321 LegalValueTypes.end()); 322 } 323 324 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 325 if (!SchedModels) 326 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this); 327 return *SchedModels; 328 } 329 330 void CodeGenTarget::ReadInstructions() const { 331 NamedRegionTimer T("Read Instructions", "Time spent reading instructions", 332 "CodeGenTarget", "CodeGenTarget", TimeRegions); 333 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 334 if (Insts.size() <= 2) 335 PrintFatalError("No 'Instruction' subclasses defined!"); 336 337 // Parse the instructions defined in the .td file. 338 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 339 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]); 340 } 341 342 static const CodeGenInstruction * 343 GetInstByName(const char *Name, 344 const DenseMap<const Record*, 345 std::unique_ptr<CodeGenInstruction>> &Insts, 346 RecordKeeper &Records) { 347 const Record *Rec = Records.getDef(Name); 348 349 const auto I = Insts.find(Rec); 350 if (!Rec || I == Insts.end()) 351 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 352 return I->second.get(); 353 } 354 355 static const char *const FixedInstrs[] = { 356 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 357 #include "llvm/Support/TargetOpcodes.def" 358 nullptr}; 359 360 unsigned CodeGenTarget::getNumFixedInstructions() { 361 return array_lengthof(FixedInstrs) - 1; 362 } 363 364 /// Return all of the instructions defined by the target, ordered by 365 /// their enum value. 366 void CodeGenTarget::ComputeInstrsByEnum() const { 367 const auto &Insts = getInstructions(); 368 for (const char *const *p = FixedInstrs; *p; ++p) { 369 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 370 assert(Instr && "Missing target independent instruction"); 371 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 372 InstrsByEnum.push_back(Instr); 373 } 374 unsigned EndOfPredefines = InstrsByEnum.size(); 375 assert(EndOfPredefines == getNumFixedInstructions() && 376 "Missing generic opcode"); 377 378 for (const auto &I : Insts) { 379 const CodeGenInstruction *CGI = I.second.get(); 380 if (CGI->Namespace != "TargetOpcode") { 381 InstrsByEnum.push_back(CGI); 382 if (CGI->TheDef->getValueAsBit("isPseudo")) 383 ++NumPseudoInstructions; 384 } 385 } 386 387 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 388 389 // All of the instructions are now in random order based on the map iteration. 390 llvm::sort( 391 InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 392 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 393 const auto &D1 = *Rec1->TheDef; 394 const auto &D2 = *Rec2->TheDef; 395 return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < 396 std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); 397 }); 398 } 399 400 401 /// isLittleEndianEncoding - Return whether this target encodes its instruction 402 /// in little-endian format, i.e. bits laid out in the order [0..n] 403 /// 404 bool CodeGenTarget::isLittleEndianEncoding() const { 405 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 406 } 407 408 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 409 /// encodings, reverse the bit order of all instructions. 410 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 411 if (!isLittleEndianEncoding()) 412 return; 413 414 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 415 for (Record *R : Insts) { 416 if (R->getValueAsString("Namespace") == "TargetOpcode" || 417 R->getValueAsBit("isPseudo")) 418 continue; 419 420 BitsInit *BI = R->getValueAsBitsInit("Inst"); 421 422 unsigned numBits = BI->getNumBits(); 423 424 SmallVector<Init *, 16> NewBits(numBits); 425 426 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 427 unsigned bitSwapIdx = numBits - bit - 1; 428 Init *OrigBit = BI->getBit(bit); 429 Init *BitSwap = BI->getBit(bitSwapIdx); 430 NewBits[bit] = BitSwap; 431 NewBits[bitSwapIdx] = OrigBit; 432 } 433 if (numBits % 2) { 434 unsigned middle = (numBits + 1) / 2; 435 NewBits[middle] = BI->getBit(middle); 436 } 437 438 BitsInit *NewBI = BitsInit::get(NewBits); 439 440 // Update the bits in reversed order so that emitInstrOpBits will get the 441 // correct endianness. 442 R->getValue("Inst")->setValue(NewBI); 443 } 444 } 445 446 /// guessInstructionProperties - Return true if it's OK to guess instruction 447 /// properties instead of raising an error. 448 /// 449 /// This is configurable as a temporary migration aid. It will eventually be 450 /// permanently false. 451 bool CodeGenTarget::guessInstructionProperties() const { 452 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 453 } 454 455 //===----------------------------------------------------------------------===// 456 // ComplexPattern implementation 457 // 458 ComplexPattern::ComplexPattern(Record *R) { 459 Ty = ::getValueType(R->getValueAsDef("Ty")); 460 NumOperands = R->getValueAsInt("NumOperands"); 461 SelectFunc = R->getValueAsString("SelectFunc"); 462 RootNodes = R->getValueAsListOfDefs("RootNodes"); 463 464 // FIXME: This is a hack to statically increase the priority of patterns which 465 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 466 // possible pattern match we'll need to dynamically calculate the complexity 467 // of all patterns a dag can potentially map to. 468 int64_t RawComplexity = R->getValueAsInt("Complexity"); 469 if (RawComplexity == -1) 470 Complexity = NumOperands * 3; 471 else 472 Complexity = RawComplexity; 473 474 // FIXME: Why is this different from parseSDPatternOperatorProperties? 475 // Parse the properties. 476 Properties = 0; 477 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 478 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 479 if (PropList[i]->getName() == "SDNPHasChain") { 480 Properties |= 1 << SDNPHasChain; 481 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 482 Properties |= 1 << SDNPOptInGlue; 483 } else if (PropList[i]->getName() == "SDNPMayStore") { 484 Properties |= 1 << SDNPMayStore; 485 } else if (PropList[i]->getName() == "SDNPMayLoad") { 486 Properties |= 1 << SDNPMayLoad; 487 } else if (PropList[i]->getName() == "SDNPSideEffect") { 488 Properties |= 1 << SDNPSideEffect; 489 } else if (PropList[i]->getName() == "SDNPMemOperand") { 490 Properties |= 1 << SDNPMemOperand; 491 } else if (PropList[i]->getName() == "SDNPVariadic") { 492 Properties |= 1 << SDNPVariadic; 493 } else if (PropList[i]->getName() == "SDNPWantRoot") { 494 Properties |= 1 << SDNPWantRoot; 495 } else if (PropList[i]->getName() == "SDNPWantParent") { 496 Properties |= 1 << SDNPWantParent; 497 } else { 498 PrintFatalError(R->getLoc(), "Unsupported SD Node property '" + 499 PropList[i]->getName() + 500 "' on ComplexPattern '" + R->getName() + 501 "'!"); 502 } 503 } 504 505 //===----------------------------------------------------------------------===// 506 // CodeGenIntrinsic Implementation 507 //===----------------------------------------------------------------------===// 508 509 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC, 510 bool TargetOnly) { 511 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 512 513 Intrinsics.reserve(Defs.size()); 514 515 for (unsigned I = 0, e = Defs.size(); I != e; ++I) { 516 bool isTarget = Defs[I]->getValueAsBit("isTarget"); 517 if (isTarget == TargetOnly) 518 Intrinsics.push_back(CodeGenIntrinsic(Defs[I])); 519 } 520 llvm::sort(Intrinsics, 521 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 522 return std::tie(LHS.TargetPrefix, LHS.Name) < 523 std::tie(RHS.TargetPrefix, RHS.Name); 524 }); 525 Targets.push_back({"", 0, 0}); 526 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 527 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 528 Targets.back().Count = I - Targets.back().Offset; 529 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 530 } 531 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 532 } 533 534 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 535 TheDef = R; 536 std::string DefName = R->getName(); 537 ArrayRef<SMLoc> DefLoc = R->getLoc(); 538 ModRef = ReadWriteMem; 539 Properties = 0; 540 isOverloaded = false; 541 isCommutative = false; 542 canThrow = false; 543 isNoReturn = false; 544 isCold = false; 545 isNoDuplicate = false; 546 isConvergent = false; 547 isSpeculatable = false; 548 hasSideEffects = false; 549 550 if (DefName.size() <= 4 || 551 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 552 PrintFatalError(DefLoc, 553 "Intrinsic '" + DefName + "' does not start with 'int_'!"); 554 555 EnumName = std::string(DefName.begin()+4, DefName.end()); 556 557 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 558 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 559 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 560 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 561 562 TargetPrefix = R->getValueAsString("TargetPrefix"); 563 Name = R->getValueAsString("LLVMName"); 564 565 if (Name == "") { 566 // If an explicit name isn't specified, derive one from the DefName. 567 Name = "llvm."; 568 569 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 570 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 571 } else { 572 // Verify it starts with "llvm.". 573 if (Name.size() <= 5 || 574 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 575 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 576 "'s name does not start with 'llvm.'!"); 577 } 578 579 // If TargetPrefix is specified, make sure that Name starts with 580 // "llvm.<targetprefix>.". 581 if (!TargetPrefix.empty()) { 582 if (Name.size() < 6+TargetPrefix.size() || 583 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 584 != (TargetPrefix + ".")) 585 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 586 "' does not start with 'llvm." + 587 TargetPrefix + ".'!"); 588 } 589 590 // Parse the list of return types. 591 std::vector<MVT::SimpleValueType> OverloadedVTs; 592 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 593 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 594 Record *TyEl = TypeList->getElementAsRecord(i); 595 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 596 MVT::SimpleValueType VT; 597 if (TyEl->isSubClassOf("LLVMMatchType")) { 598 unsigned MatchTy = TyEl->getValueAsInt("Number"); 599 assert(MatchTy < OverloadedVTs.size() && 600 "Invalid matching number!"); 601 VT = OverloadedVTs[MatchTy]; 602 // It only makes sense to use the extended and truncated vector element 603 // variants with iAny types; otherwise, if the intrinsic is not 604 // overloaded, all the types can be specified directly. 605 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 606 !TyEl->isSubClassOf("LLVMTruncatedType")) || 607 VT == MVT::iAny || VT == MVT::vAny) && 608 "Expected iAny or vAny type"); 609 } else { 610 VT = getValueType(TyEl->getValueAsDef("VT")); 611 } 612 if (MVT(VT).isOverloaded()) { 613 OverloadedVTs.push_back(VT); 614 isOverloaded = true; 615 } 616 617 // Reject invalid types. 618 if (VT == MVT::isVoid) 619 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 620 " has void in result type list!"); 621 622 IS.RetVTs.push_back(VT); 623 IS.RetTypeDefs.push_back(TyEl); 624 } 625 626 // Parse the list of parameter types. 627 TypeList = R->getValueAsListInit("ParamTypes"); 628 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 629 Record *TyEl = TypeList->getElementAsRecord(i); 630 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 631 MVT::SimpleValueType VT; 632 if (TyEl->isSubClassOf("LLVMMatchType")) { 633 unsigned MatchTy = TyEl->getValueAsInt("Number"); 634 if (MatchTy >= OverloadedVTs.size()) { 635 PrintError(R->getLoc(), 636 "Parameter #" + Twine(i) + " has out of bounds matching " 637 "number " + Twine(MatchTy)); 638 PrintFatalError(DefLoc, 639 Twine("ParamTypes is ") + TypeList->getAsString()); 640 } 641 VT = OverloadedVTs[MatchTy]; 642 // It only makes sense to use the extended and truncated vector element 643 // variants with iAny types; otherwise, if the intrinsic is not 644 // overloaded, all the types can be specified directly. 645 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 646 !TyEl->isSubClassOf("LLVMTruncatedType") && 647 !TyEl->isSubClassOf("LLVMScalarOrSameVectorWidth")) || 648 VT == MVT::iAny || VT == MVT::vAny) && 649 "Expected iAny or vAny type"); 650 } else 651 VT = getValueType(TyEl->getValueAsDef("VT")); 652 653 if (MVT(VT).isOverloaded()) { 654 OverloadedVTs.push_back(VT); 655 isOverloaded = true; 656 } 657 658 // Reject invalid types. 659 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 660 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 661 " has void in result type list!"); 662 663 IS.ParamVTs.push_back(VT); 664 IS.ParamTypeDefs.push_back(TyEl); 665 } 666 667 // Parse the intrinsic properties. 668 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 669 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 670 Record *Property = PropList->getElementAsRecord(i); 671 assert(Property->isSubClassOf("IntrinsicProperty") && 672 "Expected a property!"); 673 674 if (Property->getName() == "IntrNoMem") 675 ModRef = NoMem; 676 else if (Property->getName() == "IntrReadMem") 677 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 678 else if (Property->getName() == "IntrWriteMem") 679 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 680 else if (Property->getName() == "IntrArgMemOnly") 681 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 682 else if (Property->getName() == "IntrInaccessibleMemOnly") 683 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 684 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly") 685 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 686 MR_InaccessibleMem); 687 else if (Property->getName() == "Commutative") 688 isCommutative = true; 689 else if (Property->getName() == "Throws") 690 canThrow = true; 691 else if (Property->getName() == "IntrNoDuplicate") 692 isNoDuplicate = true; 693 else if (Property->getName() == "IntrConvergent") 694 isConvergent = true; 695 else if (Property->getName() == "IntrNoReturn") 696 isNoReturn = true; 697 else if (Property->getName() == "IntrCold") 698 isCold = true; 699 else if (Property->getName() == "IntrSpeculatable") 700 isSpeculatable = true; 701 else if (Property->getName() == "IntrHasSideEffects") 702 hasSideEffects = true; 703 else if (Property->isSubClassOf("NoCapture")) { 704 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 705 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 706 } else if (Property->isSubClassOf("Returned")) { 707 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 708 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned)); 709 } else if (Property->isSubClassOf("ReadOnly")) { 710 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 711 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 712 } else if (Property->isSubClassOf("WriteOnly")) { 713 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 714 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly)); 715 } else if (Property->isSubClassOf("ReadNone")) { 716 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 717 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 718 } else 719 llvm_unreachable("Unknown property!"); 720 } 721 722 // Also record the SDPatternOperator Properties. 723 Properties = parseSDPatternOperatorProperties(R); 724 725 // Sort the argument attributes for later benefit. 726 llvm::sort(ArgumentAttributes); 727 } 728