1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class wraps target description classes used by the various code 10 // generation TableGen backends. This makes it easier to access the data and 11 // provides a single place that needs to check it for validity. All of these 12 // classes abort on error conditions. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CodeGenTarget.h" 17 #include "CodeGenDAGPatterns.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Timer.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <algorithm> 28 using namespace llvm; 29 30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 32 33 static cl::opt<unsigned> 34 AsmParserNum("asmparsernum", cl::init(0), 35 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 36 cl::cat(AsmParserCat)); 37 38 static cl::opt<unsigned> 39 AsmWriterNum("asmwriternum", cl::init(0), 40 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 41 cl::cat(AsmWriterCat)); 42 43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 44 /// record corresponds to. 45 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 46 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 47 } 48 49 StringRef llvm::getName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "UNKNOWN"; 52 case MVT::iPTR: return "TLI.getPointerTy()"; 53 case MVT::iPTRAny: return "TLI.getPointerTy()"; 54 default: return getEnumName(T); 55 } 56 } 57 58 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 59 switch (T) { 60 case MVT::Other: return "MVT::Other"; 61 case MVT::i1: return "MVT::i1"; 62 case MVT::i8: return "MVT::i8"; 63 case MVT::i16: return "MVT::i16"; 64 case MVT::i32: return "MVT::i32"; 65 case MVT::i64: return "MVT::i64"; 66 case MVT::i128: return "MVT::i128"; 67 case MVT::Any: return "MVT::Any"; 68 case MVT::iAny: return "MVT::iAny"; 69 case MVT::fAny: return "MVT::fAny"; 70 case MVT::vAny: return "MVT::vAny"; 71 case MVT::f16: return "MVT::f16"; 72 case MVT::f32: return "MVT::f32"; 73 case MVT::f64: return "MVT::f64"; 74 case MVT::f80: return "MVT::f80"; 75 case MVT::f128: return "MVT::f128"; 76 case MVT::ppcf128: return "MVT::ppcf128"; 77 case MVT::x86mmx: return "MVT::x86mmx"; 78 case MVT::Glue: return "MVT::Glue"; 79 case MVT::isVoid: return "MVT::isVoid"; 80 case MVT::v1i1: return "MVT::v1i1"; 81 case MVT::v2i1: return "MVT::v2i1"; 82 case MVT::v4i1: return "MVT::v4i1"; 83 case MVT::v8i1: return "MVT::v8i1"; 84 case MVT::v16i1: return "MVT::v16i1"; 85 case MVT::v32i1: return "MVT::v32i1"; 86 case MVT::v64i1: return "MVT::v64i1"; 87 case MVT::v128i1: return "MVT::v128i1"; 88 case MVT::v512i1: return "MVT::v512i1"; 89 case MVT::v1024i1: return "MVT::v1024i1"; 90 case MVT::v1i8: return "MVT::v1i8"; 91 case MVT::v2i8: return "MVT::v2i8"; 92 case MVT::v4i8: return "MVT::v4i8"; 93 case MVT::v8i8: return "MVT::v8i8"; 94 case MVT::v16i8: return "MVT::v16i8"; 95 case MVT::v32i8: return "MVT::v32i8"; 96 case MVT::v64i8: return "MVT::v64i8"; 97 case MVT::v128i8: return "MVT::v128i8"; 98 case MVT::v256i8: return "MVT::v256i8"; 99 case MVT::v1i16: return "MVT::v1i16"; 100 case MVT::v2i16: return "MVT::v2i16"; 101 case MVT::v3i16: return "MVT::v3i16"; 102 case MVT::v4i16: return "MVT::v4i16"; 103 case MVT::v8i16: return "MVT::v8i16"; 104 case MVT::v16i16: return "MVT::v16i16"; 105 case MVT::v32i16: return "MVT::v32i16"; 106 case MVT::v64i16: return "MVT::v64i16"; 107 case MVT::v128i16: return "MVT::v128i16"; 108 case MVT::v1i32: return "MVT::v1i32"; 109 case MVT::v2i32: return "MVT::v2i32"; 110 case MVT::v3i32: return "MVT::v3i32"; 111 case MVT::v4i32: return "MVT::v4i32"; 112 case MVT::v5i32: return "MVT::v5i32"; 113 case MVT::v8i32: return "MVT::v8i32"; 114 case MVT::v16i32: return "MVT::v16i32"; 115 case MVT::v32i32: return "MVT::v32i32"; 116 case MVT::v64i32: return "MVT::v64i32"; 117 case MVT::v128i32: return "MVT::v128i32"; 118 case MVT::v256i32: return "MVT::v256i32"; 119 case MVT::v512i32: return "MVT::v512i32"; 120 case MVT::v1024i32: return "MVT::v1024i32"; 121 case MVT::v2048i32: return "MVT::v2048i32"; 122 case MVT::v1i64: return "MVT::v1i64"; 123 case MVT::v2i64: return "MVT::v2i64"; 124 case MVT::v4i64: return "MVT::v4i64"; 125 case MVT::v8i64: return "MVT::v8i64"; 126 case MVT::v16i64: return "MVT::v16i64"; 127 case MVT::v32i64: return "MVT::v32i64"; 128 case MVT::v1i128: return "MVT::v1i128"; 129 case MVT::v2f16: return "MVT::v2f16"; 130 case MVT::v3f16: return "MVT::v3f16"; 131 case MVT::v4f16: return "MVT::v4f16"; 132 case MVT::v8f16: return "MVT::v8f16"; 133 case MVT::v1f32: return "MVT::v1f32"; 134 case MVT::v2f32: return "MVT::v2f32"; 135 case MVT::v3f32: return "MVT::v3f32"; 136 case MVT::v4f32: return "MVT::v4f32"; 137 case MVT::v5f32: return "MVT::v5f32"; 138 case MVT::v8f32: return "MVT::v8f32"; 139 case MVT::v16f32: return "MVT::v16f32"; 140 case MVT::v32f32: return "MVT::v32f32"; 141 case MVT::v64f32: return "MVT::v64f32"; 142 case MVT::v128f32: return "MVT::v128f32"; 143 case MVT::v256f32: return "MVT::v256f32"; 144 case MVT::v512f32: return "MVT::v512f32"; 145 case MVT::v1024f32: return "MVT::v1024f32"; 146 case MVT::v2048f32: return "MVT::v2048f32"; 147 case MVT::v1f64: return "MVT::v1f64"; 148 case MVT::v2f64: return "MVT::v2f64"; 149 case MVT::v4f64: return "MVT::v4f64"; 150 case MVT::v8f64: return "MVT::v8f64"; 151 case MVT::nxv1i1: return "MVT::nxv1i1"; 152 case MVT::nxv2i1: return "MVT::nxv2i1"; 153 case MVT::nxv4i1: return "MVT::nxv4i1"; 154 case MVT::nxv8i1: return "MVT::nxv8i1"; 155 case MVT::nxv16i1: return "MVT::nxv16i1"; 156 case MVT::nxv32i1: return "MVT::nxv32i1"; 157 case MVT::nxv1i8: return "MVT::nxv1i8"; 158 case MVT::nxv2i8: return "MVT::nxv2i8"; 159 case MVT::nxv4i8: return "MVT::nxv4i8"; 160 case MVT::nxv8i8: return "MVT::nxv8i8"; 161 case MVT::nxv16i8: return "MVT::nxv16i8"; 162 case MVT::nxv32i8: return "MVT::nxv32i8"; 163 case MVT::nxv1i16: return "MVT::nxv1i16"; 164 case MVT::nxv2i16: return "MVT::nxv2i16"; 165 case MVT::nxv4i16: return "MVT::nxv4i16"; 166 case MVT::nxv8i16: return "MVT::nxv8i16"; 167 case MVT::nxv16i16: return "MVT::nxv16i16"; 168 case MVT::nxv32i16: return "MVT::nxv32i16"; 169 case MVT::nxv1i32: return "MVT::nxv1i32"; 170 case MVT::nxv2i32: return "MVT::nxv2i32"; 171 case MVT::nxv4i32: return "MVT::nxv4i32"; 172 case MVT::nxv8i32: return "MVT::nxv8i32"; 173 case MVT::nxv16i32: return "MVT::nxv16i32"; 174 case MVT::nxv1i64: return "MVT::nxv1i64"; 175 case MVT::nxv2i64: return "MVT::nxv2i64"; 176 case MVT::nxv4i64: return "MVT::nxv4i64"; 177 case MVT::nxv8i64: return "MVT::nxv8i64"; 178 case MVT::nxv16i64: return "MVT::nxv16i64"; 179 case MVT::nxv2f16: return "MVT::nxv2f16"; 180 case MVT::nxv4f16: return "MVT::nxv4f16"; 181 case MVT::nxv8f16: return "MVT::nxv8f16"; 182 case MVT::nxv1f32: return "MVT::nxv1f32"; 183 case MVT::nxv2f32: return "MVT::nxv2f32"; 184 case MVT::nxv4f32: return "MVT::nxv4f32"; 185 case MVT::nxv8f32: return "MVT::nxv8f32"; 186 case MVT::nxv16f32: return "MVT::nxv16f32"; 187 case MVT::nxv1f64: return "MVT::nxv1f64"; 188 case MVT::nxv2f64: return "MVT::nxv2f64"; 189 case MVT::nxv4f64: return "MVT::nxv4f64"; 190 case MVT::nxv8f64: return "MVT::nxv8f64"; 191 case MVT::token: return "MVT::token"; 192 case MVT::Metadata: return "MVT::Metadata"; 193 case MVT::iPTR: return "MVT::iPTR"; 194 case MVT::iPTRAny: return "MVT::iPTRAny"; 195 case MVT::Untyped: return "MVT::Untyped"; 196 case MVT::exnref: return "MVT::exnref"; 197 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 198 } 199 } 200 201 /// getQualifiedName - Return the name of the specified record, with a 202 /// namespace qualifier if the record contains one. 203 /// 204 std::string llvm::getQualifiedName(const Record *R) { 205 std::string Namespace; 206 if (R->getValue("Namespace")) 207 Namespace = R->getValueAsString("Namespace"); 208 if (Namespace.empty()) return R->getName(); 209 return Namespace + "::" + R->getName().str(); 210 } 211 212 213 /// getTarget - Return the current instance of the Target class. 214 /// 215 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 216 : Records(records), CGH(records) { 217 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 218 if (Targets.size() == 0) 219 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 220 if (Targets.size() != 1) 221 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 222 TargetRec = Targets[0]; 223 } 224 225 CodeGenTarget::~CodeGenTarget() { 226 } 227 228 const StringRef CodeGenTarget::getName() const { 229 return TargetRec->getName(); 230 } 231 232 StringRef CodeGenTarget::getInstNamespace() const { 233 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 234 // Make sure not to pick up "TargetOpcode" by accidentally getting 235 // the namespace off the PHI instruction or something. 236 if (Inst->Namespace != "TargetOpcode") 237 return Inst->Namespace; 238 } 239 240 return ""; 241 } 242 243 Record *CodeGenTarget::getInstructionSet() const { 244 return TargetRec->getValueAsDef("InstructionSet"); 245 } 246 247 bool CodeGenTarget::getAllowRegisterRenaming() const { 248 return TargetRec->getValueAsInt("AllowRegisterRenaming"); 249 } 250 251 /// getAsmParser - Return the AssemblyParser definition for this target. 252 /// 253 Record *CodeGenTarget::getAsmParser() const { 254 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 255 if (AsmParserNum >= LI.size()) 256 PrintFatalError("Target does not have an AsmParser #" + 257 Twine(AsmParserNum) + "!"); 258 return LI[AsmParserNum]; 259 } 260 261 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 262 /// this target. 263 /// 264 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 265 std::vector<Record*> LI = 266 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 267 if (i >= LI.size()) 268 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 269 "!"); 270 return LI[i]; 271 } 272 273 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 274 /// available for this target. 275 /// 276 unsigned CodeGenTarget::getAsmParserVariantCount() const { 277 std::vector<Record*> LI = 278 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 279 return LI.size(); 280 } 281 282 /// getAsmWriter - Return the AssemblyWriter definition for this target. 283 /// 284 Record *CodeGenTarget::getAsmWriter() const { 285 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 286 if (AsmWriterNum >= LI.size()) 287 PrintFatalError("Target does not have an AsmWriter #" + 288 Twine(AsmWriterNum) + "!"); 289 return LI[AsmWriterNum]; 290 } 291 292 CodeGenRegBank &CodeGenTarget::getRegBank() const { 293 if (!RegBank) 294 RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes()); 295 return *RegBank; 296 } 297 298 Optional<CodeGenRegisterClass *> 299 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy, 300 CodeGenRegBank &RegBank, 301 const CodeGenSubRegIndex *SubIdx) const { 302 std::vector<CodeGenRegisterClass *> Candidates; 303 auto &RegClasses = RegBank.getRegClasses(); 304 305 // Try to find a register class which supports ValueTy, and also contains 306 // SubIdx. 307 for (CodeGenRegisterClass &RC : RegClasses) { 308 // Is there a subclass of this class which contains this subregister index? 309 CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx); 310 if (!SubClassWithSubReg) 311 continue; 312 313 // We have a class. Check if it supports this value type. 314 if (llvm::none_of(SubClassWithSubReg->VTs, 315 [&ValueTy](const ValueTypeByHwMode &ClassVT) { 316 return ClassVT == ValueTy; 317 })) 318 continue; 319 320 // We have a register class which supports both the value type and 321 // subregister index. Remember it. 322 Candidates.push_back(SubClassWithSubReg); 323 } 324 325 // If we didn't find anything, we're done. 326 if (Candidates.empty()) 327 return None; 328 329 // Find and return the largest of our candidate classes. 330 llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A, 331 const CodeGenRegisterClass *B) { 332 if (A->getMembers().size() > B->getMembers().size()) 333 return true; 334 335 if (A->getMembers().size() < B->getMembers().size()) 336 return false; 337 338 // Order by name as a tie-breaker. 339 return StringRef(A->getName()) < B->getName(); 340 }); 341 342 return Candidates[0]; 343 } 344 345 void CodeGenTarget::ReadRegAltNameIndices() const { 346 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 347 llvm::sort(RegAltNameIndices, LessRecord()); 348 } 349 350 /// getRegisterByName - If there is a register with the specific AsmName, 351 /// return it. 352 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 353 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 354 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 355 if (I == Regs.end()) 356 return nullptr; 357 return I->second; 358 } 359 360 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R) 361 const { 362 const CodeGenRegister *Reg = getRegBank().getReg(R); 363 std::vector<ValueTypeByHwMode> Result; 364 for (const auto &RC : getRegBank().getRegClasses()) { 365 if (RC.contains(Reg)) { 366 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); 367 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 368 } 369 } 370 371 // Remove duplicates. 372 llvm::sort(Result); 373 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 374 return Result; 375 } 376 377 378 void CodeGenTarget::ReadLegalValueTypes() const { 379 for (const auto &RC : getRegBank().getRegClasses()) 380 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 381 382 // Remove duplicates. 383 llvm::sort(LegalValueTypes); 384 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 385 LegalValueTypes.end()), 386 LegalValueTypes.end()); 387 } 388 389 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 390 if (!SchedModels) 391 SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this); 392 return *SchedModels; 393 } 394 395 void CodeGenTarget::ReadInstructions() const { 396 NamedRegionTimer T("Read Instructions", "Time spent reading instructions", 397 "CodeGenTarget", "CodeGenTarget", TimeRegions); 398 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 399 if (Insts.size() <= 2) 400 PrintFatalError("No 'Instruction' subclasses defined!"); 401 402 // Parse the instructions defined in the .td file. 403 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 404 Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]); 405 } 406 407 static const CodeGenInstruction * 408 GetInstByName(const char *Name, 409 const DenseMap<const Record*, 410 std::unique_ptr<CodeGenInstruction>> &Insts, 411 RecordKeeper &Records) { 412 const Record *Rec = Records.getDef(Name); 413 414 const auto I = Insts.find(Rec); 415 if (!Rec || I == Insts.end()) 416 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 417 return I->second.get(); 418 } 419 420 static const char *const FixedInstrs[] = { 421 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 422 #include "llvm/Support/TargetOpcodes.def" 423 nullptr}; 424 425 unsigned CodeGenTarget::getNumFixedInstructions() { 426 return array_lengthof(FixedInstrs) - 1; 427 } 428 429 /// Return all of the instructions defined by the target, ordered by 430 /// their enum value. 431 void CodeGenTarget::ComputeInstrsByEnum() const { 432 const auto &Insts = getInstructions(); 433 for (const char *const *p = FixedInstrs; *p; ++p) { 434 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 435 assert(Instr && "Missing target independent instruction"); 436 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 437 InstrsByEnum.push_back(Instr); 438 } 439 unsigned EndOfPredefines = InstrsByEnum.size(); 440 assert(EndOfPredefines == getNumFixedInstructions() && 441 "Missing generic opcode"); 442 443 for (const auto &I : Insts) { 444 const CodeGenInstruction *CGI = I.second.get(); 445 if (CGI->Namespace != "TargetOpcode") { 446 InstrsByEnum.push_back(CGI); 447 if (CGI->TheDef->getValueAsBit("isPseudo")) 448 ++NumPseudoInstructions; 449 } 450 } 451 452 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 453 454 // All of the instructions are now in random order based on the map iteration. 455 llvm::sort( 456 InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 457 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 458 const auto &D1 = *Rec1->TheDef; 459 const auto &D2 = *Rec2->TheDef; 460 return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < 461 std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); 462 }); 463 } 464 465 466 /// isLittleEndianEncoding - Return whether this target encodes its instruction 467 /// in little-endian format, i.e. bits laid out in the order [0..n] 468 /// 469 bool CodeGenTarget::isLittleEndianEncoding() const { 470 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 471 } 472 473 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 474 /// encodings, reverse the bit order of all instructions. 475 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 476 if (!isLittleEndianEncoding()) 477 return; 478 479 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 480 for (Record *R : Insts) { 481 if (R->getValueAsString("Namespace") == "TargetOpcode" || 482 R->getValueAsBit("isPseudo")) 483 continue; 484 485 BitsInit *BI = R->getValueAsBitsInit("Inst"); 486 487 unsigned numBits = BI->getNumBits(); 488 489 SmallVector<Init *, 16> NewBits(numBits); 490 491 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 492 unsigned bitSwapIdx = numBits - bit - 1; 493 Init *OrigBit = BI->getBit(bit); 494 Init *BitSwap = BI->getBit(bitSwapIdx); 495 NewBits[bit] = BitSwap; 496 NewBits[bitSwapIdx] = OrigBit; 497 } 498 if (numBits % 2) { 499 unsigned middle = (numBits + 1) / 2; 500 NewBits[middle] = BI->getBit(middle); 501 } 502 503 BitsInit *NewBI = BitsInit::get(NewBits); 504 505 // Update the bits in reversed order so that emitInstrOpBits will get the 506 // correct endianness. 507 R->getValue("Inst")->setValue(NewBI); 508 } 509 } 510 511 /// guessInstructionProperties - Return true if it's OK to guess instruction 512 /// properties instead of raising an error. 513 /// 514 /// This is configurable as a temporary migration aid. It will eventually be 515 /// permanently false. 516 bool CodeGenTarget::guessInstructionProperties() const { 517 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 518 } 519 520 //===----------------------------------------------------------------------===// 521 // ComplexPattern implementation 522 // 523 ComplexPattern::ComplexPattern(Record *R) { 524 Ty = ::getValueType(R->getValueAsDef("Ty")); 525 NumOperands = R->getValueAsInt("NumOperands"); 526 SelectFunc = R->getValueAsString("SelectFunc"); 527 RootNodes = R->getValueAsListOfDefs("RootNodes"); 528 529 // FIXME: This is a hack to statically increase the priority of patterns which 530 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 531 // possible pattern match we'll need to dynamically calculate the complexity 532 // of all patterns a dag can potentially map to. 533 int64_t RawComplexity = R->getValueAsInt("Complexity"); 534 if (RawComplexity == -1) 535 Complexity = NumOperands * 3; 536 else 537 Complexity = RawComplexity; 538 539 // FIXME: Why is this different from parseSDPatternOperatorProperties? 540 // Parse the properties. 541 Properties = 0; 542 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 543 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 544 if (PropList[i]->getName() == "SDNPHasChain") { 545 Properties |= 1 << SDNPHasChain; 546 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 547 Properties |= 1 << SDNPOptInGlue; 548 } else if (PropList[i]->getName() == "SDNPMayStore") { 549 Properties |= 1 << SDNPMayStore; 550 } else if (PropList[i]->getName() == "SDNPMayLoad") { 551 Properties |= 1 << SDNPMayLoad; 552 } else if (PropList[i]->getName() == "SDNPSideEffect") { 553 Properties |= 1 << SDNPSideEffect; 554 } else if (PropList[i]->getName() == "SDNPMemOperand") { 555 Properties |= 1 << SDNPMemOperand; 556 } else if (PropList[i]->getName() == "SDNPVariadic") { 557 Properties |= 1 << SDNPVariadic; 558 } else if (PropList[i]->getName() == "SDNPWantRoot") { 559 Properties |= 1 << SDNPWantRoot; 560 } else if (PropList[i]->getName() == "SDNPWantParent") { 561 Properties |= 1 << SDNPWantParent; 562 } else { 563 PrintFatalError(R->getLoc(), "Unsupported SD Node property '" + 564 PropList[i]->getName() + 565 "' on ComplexPattern '" + R->getName() + 566 "'!"); 567 } 568 } 569 570 //===----------------------------------------------------------------------===// 571 // CodeGenIntrinsic Implementation 572 //===----------------------------------------------------------------------===// 573 574 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC, 575 bool TargetOnly) { 576 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 577 578 Intrinsics.reserve(Defs.size()); 579 580 for (unsigned I = 0, e = Defs.size(); I != e; ++I) { 581 bool isTarget = Defs[I]->getValueAsBit("isTarget"); 582 if (isTarget == TargetOnly) 583 Intrinsics.push_back(CodeGenIntrinsic(Defs[I])); 584 } 585 llvm::sort(Intrinsics, 586 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 587 return std::tie(LHS.TargetPrefix, LHS.Name) < 588 std::tie(RHS.TargetPrefix, RHS.Name); 589 }); 590 Targets.push_back({"", 0, 0}); 591 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 592 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 593 Targets.back().Count = I - Targets.back().Offset; 594 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 595 } 596 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 597 } 598 599 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 600 TheDef = R; 601 std::string DefName = R->getName(); 602 ArrayRef<SMLoc> DefLoc = R->getLoc(); 603 ModRef = ReadWriteMem; 604 Properties = 0; 605 isOverloaded = false; 606 isCommutative = false; 607 canThrow = false; 608 isNoReturn = false; 609 isWillReturn = false; 610 isCold = false; 611 isNoDuplicate = false; 612 isConvergent = false; 613 isSpeculatable = false; 614 hasSideEffects = false; 615 616 if (DefName.size() <= 4 || 617 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 618 PrintFatalError(DefLoc, 619 "Intrinsic '" + DefName + "' does not start with 'int_'!"); 620 621 EnumName = std::string(DefName.begin()+4, DefName.end()); 622 623 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 624 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 625 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 626 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 627 628 TargetPrefix = R->getValueAsString("TargetPrefix"); 629 Name = R->getValueAsString("LLVMName"); 630 631 if (Name == "") { 632 // If an explicit name isn't specified, derive one from the DefName. 633 Name = "llvm."; 634 635 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 636 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 637 } else { 638 // Verify it starts with "llvm.". 639 if (Name.size() <= 5 || 640 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 641 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 642 "'s name does not start with 'llvm.'!"); 643 } 644 645 // If TargetPrefix is specified, make sure that Name starts with 646 // "llvm.<targetprefix>.". 647 if (!TargetPrefix.empty()) { 648 if (Name.size() < 6+TargetPrefix.size() || 649 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 650 != (TargetPrefix + ".")) 651 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 652 "' does not start with 'llvm." + 653 TargetPrefix + ".'!"); 654 } 655 656 ListInit *RetTypes = R->getValueAsListInit("RetTypes"); 657 ListInit *ParamTypes = R->getValueAsListInit("ParamTypes"); 658 659 // First collate a list of overloaded types. 660 std::vector<MVT::SimpleValueType> OverloadedVTs; 661 for (ListInit *TypeList : {RetTypes, ParamTypes}) { 662 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 663 Record *TyEl = TypeList->getElementAsRecord(i); 664 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 665 666 if (TyEl->isSubClassOf("LLVMMatchType")) 667 continue; 668 669 MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT")); 670 if (MVT(VT).isOverloaded()) { 671 OverloadedVTs.push_back(VT); 672 isOverloaded = true; 673 } 674 } 675 } 676 677 // Parse the list of return types. 678 ListInit *TypeList = RetTypes; 679 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 680 Record *TyEl = TypeList->getElementAsRecord(i); 681 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 682 MVT::SimpleValueType VT; 683 if (TyEl->isSubClassOf("LLVMMatchType")) { 684 unsigned MatchTy = TyEl->getValueAsInt("Number"); 685 assert(MatchTy < OverloadedVTs.size() && 686 "Invalid matching number!"); 687 VT = OverloadedVTs[MatchTy]; 688 // It only makes sense to use the extended and truncated vector element 689 // variants with iAny types; otherwise, if the intrinsic is not 690 // overloaded, all the types can be specified directly. 691 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 692 !TyEl->isSubClassOf("LLVMTruncatedType")) || 693 VT == MVT::iAny || VT == MVT::vAny) && 694 "Expected iAny or vAny type"); 695 } else { 696 VT = getValueType(TyEl->getValueAsDef("VT")); 697 } 698 699 // Reject invalid types. 700 if (VT == MVT::isVoid) 701 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 702 " has void in result type list!"); 703 704 IS.RetVTs.push_back(VT); 705 IS.RetTypeDefs.push_back(TyEl); 706 } 707 708 // Parse the list of parameter types. 709 TypeList = ParamTypes; 710 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 711 Record *TyEl = TypeList->getElementAsRecord(i); 712 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 713 MVT::SimpleValueType VT; 714 if (TyEl->isSubClassOf("LLVMMatchType")) { 715 unsigned MatchTy = TyEl->getValueAsInt("Number"); 716 if (MatchTy >= OverloadedVTs.size()) { 717 PrintError(R->getLoc(), 718 "Parameter #" + Twine(i) + " has out of bounds matching " 719 "number " + Twine(MatchTy)); 720 PrintFatalError(DefLoc, 721 Twine("ParamTypes is ") + TypeList->getAsString()); 722 } 723 VT = OverloadedVTs[MatchTy]; 724 // It only makes sense to use the extended and truncated vector element 725 // variants with iAny types; otherwise, if the intrinsic is not 726 // overloaded, all the types can be specified directly. 727 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 728 !TyEl->isSubClassOf("LLVMTruncatedType") && 729 !TyEl->isSubClassOf("LLVMScalarOrSameVectorWidth")) || 730 VT == MVT::iAny || VT == MVT::vAny) && 731 "Expected iAny or vAny type"); 732 } else 733 VT = getValueType(TyEl->getValueAsDef("VT")); 734 735 // Reject invalid types. 736 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 737 PrintFatalError(DefLoc, "Intrinsic '" + DefName + 738 " has void in result type list!"); 739 740 IS.ParamVTs.push_back(VT); 741 IS.ParamTypeDefs.push_back(TyEl); 742 } 743 744 // Parse the intrinsic properties. 745 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 746 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 747 Record *Property = PropList->getElementAsRecord(i); 748 assert(Property->isSubClassOf("IntrinsicProperty") && 749 "Expected a property!"); 750 751 if (Property->getName() == "IntrNoMem") 752 ModRef = NoMem; 753 else if (Property->getName() == "IntrReadMem") 754 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 755 else if (Property->getName() == "IntrWriteMem") 756 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 757 else if (Property->getName() == "IntrArgMemOnly") 758 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 759 else if (Property->getName() == "IntrInaccessibleMemOnly") 760 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 761 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly") 762 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 763 MR_InaccessibleMem); 764 else if (Property->getName() == "Commutative") 765 isCommutative = true; 766 else if (Property->getName() == "Throws") 767 canThrow = true; 768 else if (Property->getName() == "IntrNoDuplicate") 769 isNoDuplicate = true; 770 else if (Property->getName() == "IntrConvergent") 771 isConvergent = true; 772 else if (Property->getName() == "IntrNoReturn") 773 isNoReturn = true; 774 else if (Property->getName() == "IntrWillReturn") 775 isWillReturn = true; 776 else if (Property->getName() == "IntrCold") 777 isCold = true; 778 else if (Property->getName() == "IntrSpeculatable") 779 isSpeculatable = true; 780 else if (Property->getName() == "IntrHasSideEffects") 781 hasSideEffects = true; 782 else if (Property->isSubClassOf("NoCapture")) { 783 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 784 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 785 } else if (Property->isSubClassOf("NoAlias")) { 786 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 787 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoAlias)); 788 } else if (Property->isSubClassOf("Returned")) { 789 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 790 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned)); 791 } else if (Property->isSubClassOf("ReadOnly")) { 792 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 793 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 794 } else if (Property->isSubClassOf("WriteOnly")) { 795 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 796 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly)); 797 } else if (Property->isSubClassOf("ReadNone")) { 798 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 799 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 800 } else if (Property->isSubClassOf("ImmArg")) { 801 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 802 ArgumentAttributes.push_back(std::make_pair(ArgNo, ImmArg)); 803 } else 804 llvm_unreachable("Unknown property!"); 805 } 806 807 // Also record the SDPatternOperator Properties. 808 Properties = parseSDPatternOperatorProperties(R); 809 810 // Sort the argument attributes for later benefit. 811 llvm::sort(ArgumentAttributes); 812 } 813 814 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const { 815 if (ParamIdx >= IS.ParamVTs.size()) 816 return false; 817 MVT ParamType = MVT(IS.ParamVTs[ParamIdx]); 818 return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny; 819 } 820