1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenRegisters.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IntEqClasses.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <iterator>
34 #include <map>
35 #include <queue>
36 #include <set>
37 #include <string>
38 #include <tuple>
39 #include <utility>
40 #include <vector>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "regalloc-emitter"
45 
46 //===----------------------------------------------------------------------===//
47 //                             CodeGenSubRegIndex
48 //===----------------------------------------------------------------------===//
49 
50 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
51   : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
52   Name = std::string(R->getName());
53   if (R->getValue("Namespace"))
54     Namespace = std::string(R->getValueAsString("Namespace"));
55   Size = R->getValueAsInt("Size");
56   Offset = R->getValueAsInt("Offset");
57 }
58 
59 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
60                                        unsigned Enum)
61     : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
62       Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
63       Artificial(true) {}
64 
65 std::string CodeGenSubRegIndex::getQualifiedName() const {
66   std::string N = getNamespace();
67   if (!N.empty())
68     N += "::";
69   N += getName();
70   return N;
71 }
72 
73 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
74   if (!TheDef)
75     return;
76 
77   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
78   if (!Comps.empty()) {
79     if (Comps.size() != 2)
80       PrintFatalError(TheDef->getLoc(),
81                       "ComposedOf must have exactly two entries");
82     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
83     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
84     CodeGenSubRegIndex *X = A->addComposite(B, this);
85     if (X)
86       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
87   }
88 
89   std::vector<Record*> Parts =
90     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
91   if (!Parts.empty()) {
92     if (Parts.size() < 2)
93       PrintFatalError(TheDef->getLoc(),
94                       "CoveredBySubRegs must have two or more entries");
95     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
96     for (Record *Part : Parts)
97       IdxParts.push_back(RegBank.getSubRegIdx(Part));
98     setConcatenationOf(IdxParts);
99   }
100 }
101 
102 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
103   // Already computed?
104   if (LaneMask.any())
105     return LaneMask;
106 
107   // Recursion guard, shouldn't be required.
108   LaneMask = LaneBitmask::getAll();
109 
110   // The lane mask is simply the union of all sub-indices.
111   LaneBitmask M;
112   for (const auto &C : Composed)
113     M |= C.second->computeLaneMask();
114   assert(M.any() && "Missing lane mask, sub-register cycle?");
115   LaneMask = M;
116   return LaneMask;
117 }
118 
119 void CodeGenSubRegIndex::setConcatenationOf(
120     ArrayRef<CodeGenSubRegIndex*> Parts) {
121   if (ConcatenationOf.empty())
122     ConcatenationOf.assign(Parts.begin(), Parts.end());
123   else
124     assert(std::equal(Parts.begin(), Parts.end(),
125                       ConcatenationOf.begin()) && "parts consistent");
126 }
127 
128 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
129   for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
130        I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
131     CodeGenSubRegIndex *SubIdx = *I;
132     SubIdx->computeConcatTransitiveClosure();
133 #ifndef NDEBUG
134     for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
135       assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
136 #endif
137 
138     if (SubIdx->ConcatenationOf.empty()) {
139       ++I;
140     } else {
141       I = ConcatenationOf.erase(I);
142       I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
143                                  SubIdx->ConcatenationOf.end());
144       I += SubIdx->ConcatenationOf.size();
145     }
146   }
147 }
148 
149 //===----------------------------------------------------------------------===//
150 //                              CodeGenRegister
151 //===----------------------------------------------------------------------===//
152 
153 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
154     : TheDef(R), EnumValue(Enum),
155       CostPerUse(R->getValueAsListOfInts("CostPerUse")),
156       CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
157       HasDisjunctSubRegs(false), SubRegsComplete(false),
158       SuperRegsComplete(false), TopoSig(~0u) {
159   Artificial = R->getValueAsBit("isArtificial");
160 }
161 
162 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
163   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
164   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
165 
166   if (SRIs.size() != SRs.size())
167     PrintFatalError(TheDef->getLoc(),
168                     "SubRegs and SubRegIndices must have the same size");
169 
170   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
171     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
172     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
173   }
174 
175   // Also compute leading super-registers. Each register has a list of
176   // covered-by-subregs super-registers where it appears as the first explicit
177   // sub-register.
178   //
179   // This is used by computeSecondarySubRegs() to find candidates.
180   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
181     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
182 
183   // Add ad hoc alias links. This is a symmetric relationship between two
184   // registers, so build a symmetric graph by adding links in both ends.
185   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
186   for (Record *Alias : Aliases) {
187     CodeGenRegister *Reg = RegBank.getReg(Alias);
188     ExplicitAliases.push_back(Reg);
189     Reg->ExplicitAliases.push_back(this);
190   }
191 }
192 
193 StringRef CodeGenRegister::getName() const {
194   assert(TheDef && "no def");
195   return TheDef->getName();
196 }
197 
198 namespace {
199 
200 // Iterate over all register units in a set of registers.
201 class RegUnitIterator {
202   CodeGenRegister::Vec::const_iterator RegI, RegE;
203   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
204   static CodeGenRegister::RegUnitList Sentinel;
205 
206 public:
207   RegUnitIterator(const CodeGenRegister::Vec &Regs):
208     RegI(Regs.begin()), RegE(Regs.end()) {
209 
210     if (RegI == RegE) {
211       UnitI = Sentinel.end();
212       UnitE = Sentinel.end();
213     } else {
214       UnitI = (*RegI)->getRegUnits().begin();
215       UnitE = (*RegI)->getRegUnits().end();
216       advance();
217     }
218   }
219 
220   bool isValid() const { return UnitI != UnitE; }
221 
222   unsigned operator* () const { assert(isValid()); return *UnitI; }
223 
224   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
225 
226   /// Preincrement.  Move to the next unit.
227   void operator++() {
228     assert(isValid() && "Cannot advance beyond the last operand");
229     ++UnitI;
230     advance();
231   }
232 
233 protected:
234   void advance() {
235     while (UnitI == UnitE) {
236       if (++RegI == RegE)
237         break;
238       UnitI = (*RegI)->getRegUnits().begin();
239       UnitE = (*RegI)->getRegUnits().end();
240     }
241   }
242 };
243 
244 CodeGenRegister::RegUnitList RegUnitIterator::Sentinel;
245 
246 } // end anonymous namespace
247 
248 // Return true of this unit appears in RegUnits.
249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250   return RegUnits.test(Unit);
251 }
252 
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256   bool changed = false;
257   for (const auto &SubReg : SubRegs) {
258     CodeGenRegister *SR = SubReg.second;
259     // Merge the subregister's units into this register's RegUnits.
260     changed |= (RegUnits |= SR->RegUnits);
261   }
262 
263   return changed;
264 }
265 
266 const CodeGenRegister::SubRegMap &
267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268   // Only compute this map once.
269   if (SubRegsComplete)
270     return SubRegs;
271   SubRegsComplete = true;
272 
273   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
274 
275   // First insert the explicit subregs and make sure they are fully indexed.
276   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277     CodeGenRegister *SR = ExplicitSubRegs[i];
278     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279     if (!SR->Artificial)
280       Idx->Artificial = false;
281     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283                       " appears twice in Register " + getName());
284     // Map explicit sub-registers first, so the names take precedence.
285     // The inherited sub-registers are mapped below.
286     SubReg2Idx.insert(std::make_pair(SR, Idx));
287   }
288 
289   // Keep track of inherited subregs and how they can be reached.
290   SmallPtrSet<CodeGenRegister*, 8> Orphans;
291 
292   // Clone inherited subregs and place duplicate entries in Orphans.
293   // Here the order is important - earlier subregs take precedence.
294   for (CodeGenRegister *ESR : ExplicitSubRegs) {
295     const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296     HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
297 
298     for (const auto &SR : Map) {
299       if (!SubRegs.insert(SR).second)
300         Orphans.insert(SR.second);
301     }
302   }
303 
304   // Expand any composed subreg indices.
305   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
307   // expanded subreg indices recursively.
308   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309   for (unsigned i = 0; i != Indices.size(); ++i) {
310     CodeGenSubRegIndex *Idx = Indices[i];
311     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312     CodeGenRegister *SR = SubRegs[Idx];
313     const SubRegMap &Map = SR->computeSubRegs(RegBank);
314 
315     // Look at the possible compositions of Idx.
316     // They may not all be supported by SR.
317     for (auto Comp : Comps) {
318       SubRegMap::const_iterator SRI = Map.find(Comp.first);
319       if (SRI == Map.end())
320         continue; // Idx + I->first doesn't exist in SR.
321       // Add I->second as a name for the subreg SRI->second, assuming it is
322       // orphaned, and the name isn't already used for something else.
323       if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
324         continue;
325       // We found a new name for the orphaned sub-register.
326       SubRegs.insert(std::make_pair(Comp.second, SRI->second));
327       Indices.push_back(Comp.second);
328     }
329   }
330 
331   // Now Orphans contains the inherited subregisters without a direct index.
332   // Create inferred indexes for all missing entries.
333   // Work backwards in the Indices vector in order to compose subregs bottom-up.
334   // Consider this subreg sequence:
335   //
336   //   qsub_1 -> dsub_0 -> ssub_0
337   //
338   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
339   // can be reached in two different ways:
340   //
341   //   qsub_1 -> ssub_0
342   //   dsub_2 -> ssub_0
343   //
344   // We pick the latter composition because another register may have [dsub_0,
345   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
346   // dsub_2 -> ssub_0 composition can be shared.
347   while (!Indices.empty() && !Orphans.empty()) {
348     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
349     CodeGenRegister *SR = SubRegs[Idx];
350     const SubRegMap &Map = SR->computeSubRegs(RegBank);
351     for (const auto &SubReg : Map)
352       if (Orphans.erase(SubReg.second))
353         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
354   }
355 
356   // Compute the inverse SubReg -> Idx map.
357   for (const auto &SubReg : SubRegs) {
358     if (SubReg.second == this) {
359       ArrayRef<SMLoc> Loc;
360       if (TheDef)
361         Loc = TheDef->getLoc();
362       PrintFatalError(Loc, "Register " + getName() +
363                       " has itself as a sub-register");
364     }
365 
366     // Compute AllSuperRegsCovered.
367     if (!CoveredBySubRegs)
368       SubReg.first->AllSuperRegsCovered = false;
369 
370     // Ensure that every sub-register has a unique name.
371     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
372       SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
373     if (Ins->second == SubReg.first)
374       continue;
375     // Trouble: Two different names for SubReg.second.
376     ArrayRef<SMLoc> Loc;
377     if (TheDef)
378       Loc = TheDef->getLoc();
379     PrintFatalError(Loc, "Sub-register can't have two names: " +
380                   SubReg.second->getName() + " available as " +
381                   SubReg.first->getName() + " and " + Ins->second->getName());
382   }
383 
384   // Derive possible names for sub-register concatenations from any explicit
385   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
386   // that getConcatSubRegIndex() won't invent any concatenated indices that the
387   // user already specified.
388   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
389     CodeGenRegister *SR = ExplicitSubRegs[i];
390     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
391         SR->Artificial)
392       continue;
393 
394     // SR is composed of multiple sub-regs. Find their names in this register.
395     SmallVector<CodeGenSubRegIndex*, 8> Parts;
396     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
397       CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
398       if (!I.Artificial)
399         Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
400     }
401 
402     // Offer this as an existing spelling for the concatenation of Parts.
403     CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
404     Idx.setConcatenationOf(Parts);
405   }
406 
407   // Initialize RegUnitList. Because getSubRegs is called recursively, this
408   // processes the register hierarchy in postorder.
409   //
410   // Inherit all sub-register units. It is good enough to look at the explicit
411   // sub-registers, the other registers won't contribute any more units.
412   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
413     CodeGenRegister *SR = ExplicitSubRegs[i];
414     RegUnits |= SR->RegUnits;
415   }
416 
417   // Absent any ad hoc aliasing, we create one register unit per leaf register.
418   // These units correspond to the maximal cliques in the register overlap
419   // graph which is optimal.
420   //
421   // When there is ad hoc aliasing, we simply create one unit per edge in the
422   // undirected ad hoc aliasing graph. Technically, we could do better by
423   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
424   // are extremely rare anyway (I've never seen one), so we don't bother with
425   // the added complexity.
426   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
427     CodeGenRegister *AR = ExplicitAliases[i];
428     // Only visit each edge once.
429     if (AR->SubRegsComplete)
430       continue;
431     // Create a RegUnit representing this alias edge, and add it to both
432     // registers.
433     unsigned Unit = RegBank.newRegUnit(this, AR);
434     RegUnits.set(Unit);
435     AR->RegUnits.set(Unit);
436   }
437 
438   // Finally, create units for leaf registers without ad hoc aliases. Note that
439   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
440   // necessary. This means the aliasing leaf registers can share a single unit.
441   if (RegUnits.empty())
442     RegUnits.set(RegBank.newRegUnit(this));
443 
444   // We have now computed the native register units. More may be adopted later
445   // for balancing purposes.
446   NativeRegUnits = RegUnits;
447 
448   return SubRegs;
449 }
450 
451 // In a register that is covered by its sub-registers, try to find redundant
452 // sub-registers. For example:
453 //
454 //   QQ0 = {Q0, Q1}
455 //   Q0 = {D0, D1}
456 //   Q1 = {D2, D3}
457 //
458 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
459 // the register definition.
460 //
461 // The explicitly specified registers form a tree. This function discovers
462 // sub-register relationships that would force a DAG.
463 //
464 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
465   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
466 
467   std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
468   for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
469     SubRegQueue.push(P);
470 
471   // Look at the leading super-registers of each sub-register. Those are the
472   // candidates for new sub-registers, assuming they are fully contained in
473   // this register.
474   while (!SubRegQueue.empty()) {
475     CodeGenSubRegIndex *SubRegIdx;
476     const CodeGenRegister *SubReg;
477     std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
478     SubRegQueue.pop();
479 
480     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
481     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
482       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
483       // Already got this sub-register?
484       if (Cand == this || getSubRegIndex(Cand))
485         continue;
486       // Check if each component of Cand is already a sub-register.
487       assert(!Cand->ExplicitSubRegs.empty() &&
488              "Super-register has no sub-registers");
489       if (Cand->ExplicitSubRegs.size() == 1)
490         continue;
491       SmallVector<CodeGenSubRegIndex*, 8> Parts;
492       // We know that the first component is (SubRegIdx,SubReg). However we
493       // may still need to split it into smaller subregister parts.
494       assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
495       assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
496       for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
497         if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
498           if (SubRegIdx->ConcatenationOf.empty())
499             Parts.push_back(SubRegIdx);
500           else
501             append_range(Parts, SubRegIdx->ConcatenationOf);
502         } else {
503           // Sub-register doesn't exist.
504           Parts.clear();
505           break;
506         }
507       }
508       // There is nothing to do if some Cand sub-register is not part of this
509       // register.
510       if (Parts.empty())
511         continue;
512 
513       // Each part of Cand is a sub-register of this. Make the full Cand also
514       // a sub-register with a concatenated sub-register index.
515       CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
516       std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
517           std::make_pair(Concat, Cand);
518 
519       if (!SubRegs.insert(NewSubReg).second)
520         continue;
521 
522       // We inserted a new subregister.
523       NewSubRegs.push_back(NewSubReg);
524       SubRegQueue.push(NewSubReg);
525       SubReg2Idx.insert(std::make_pair(Cand, Concat));
526     }
527   }
528 
529   // Create sub-register index composition maps for the synthesized indices.
530   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
531     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
532     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
533     for (auto SubReg : NewSubReg->SubRegs) {
534       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
535       if (!SubIdx)
536         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
537                                               SubReg.second->getName() +
538                                               " in " + getName());
539       NewIdx->addComposite(SubReg.first, SubIdx);
540     }
541   }
542 }
543 
544 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
545   // Only visit each register once.
546   if (SuperRegsComplete)
547     return;
548   SuperRegsComplete = true;
549 
550   // Make sure all sub-registers have been visited first, so the super-reg
551   // lists will be topologically ordered.
552   for (auto SubReg : SubRegs)
553     SubReg.second->computeSuperRegs(RegBank);
554 
555   // Now add this as a super-register on all sub-registers.
556   // Also compute the TopoSigId in post-order.
557   TopoSigId Id;
558   for (auto SubReg : SubRegs) {
559     // Topological signature computed from SubIdx, TopoId(SubReg).
560     // Loops and idempotent indices have TopoSig = ~0u.
561     Id.push_back(SubReg.first->EnumValue);
562     Id.push_back(SubReg.second->TopoSig);
563 
564     // Don't add duplicate entries.
565     if (!SubReg.second->SuperRegs.empty() &&
566         SubReg.second->SuperRegs.back() == this)
567       continue;
568     SubReg.second->SuperRegs.push_back(this);
569   }
570   TopoSig = RegBank.getTopoSig(Id);
571 }
572 
573 void
574 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
575                                     CodeGenRegBank &RegBank) const {
576   assert(SubRegsComplete && "Must precompute sub-registers");
577   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
578     CodeGenRegister *SR = ExplicitSubRegs[i];
579     if (OSet.insert(SR))
580       SR->addSubRegsPreOrder(OSet, RegBank);
581   }
582   // Add any secondary sub-registers that weren't part of the explicit tree.
583   for (auto SubReg : SubRegs)
584     OSet.insert(SubReg.second);
585 }
586 
587 // Get the sum of this register's unit weights.
588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
589   unsigned Weight = 0;
590   for (unsigned RegUnit : RegUnits) {
591     Weight += RegBank.getRegUnit(RegUnit).Weight;
592   }
593   return Weight;
594 }
595 
596 //===----------------------------------------------------------------------===//
597 //                               RegisterTuples
598 //===----------------------------------------------------------------------===//
599 
600 // A RegisterTuples def is used to generate pseudo-registers from lists of
601 // sub-registers. We provide a SetTheory expander class that returns the new
602 // registers.
603 namespace {
604 
605 struct TupleExpander : SetTheory::Expander {
606   // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
607   // the synthesized definitions for their lifetime.
608   std::vector<std::unique_ptr<Record>> &SynthDefs;
609 
610   TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
611       : SynthDefs(SynthDefs) {}
612 
613   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
614     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
615     unsigned Dim = Indices.size();
616     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
617     if (Dim != SubRegs->size())
618       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
619     if (Dim < 2)
620       PrintFatalError(Def->getLoc(),
621                       "Tuples must have at least 2 sub-registers");
622 
623     // Evaluate the sub-register lists to be zipped.
624     unsigned Length = ~0u;
625     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
626     for (unsigned i = 0; i != Dim; ++i) {
627       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
628       Length = std::min(Length, unsigned(Lists[i].size()));
629     }
630 
631     if (Length == 0)
632       return;
633 
634     // Precompute some types.
635     Record *RegisterCl = Def->getRecords().getClass("Register");
636     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
637     std::vector<StringRef> RegNames =
638       Def->getValueAsListOfStrings("RegAsmNames");
639 
640     // Zip them up.
641     RecordKeeper &RK = Def->getRecords();
642     for (unsigned n = 0; n != Length; ++n) {
643       std::string Name;
644       Record *Proto = Lists[0][n];
645       std::vector<Init*> Tuple;
646       for (unsigned i = 0; i != Dim; ++i) {
647         Record *Reg = Lists[i][n];
648         if (i) Name += '_';
649         Name += Reg->getName();
650         Tuple.push_back(DefInit::get(Reg));
651       }
652 
653       // Take the cost list of the first register in the tuple.
654       ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
655       SmallVector<Init *, 2> CostPerUse;
656       CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
657 
658       StringInit *AsmName = StringInit::get(RK, "");
659       if (!RegNames.empty()) {
660         if (RegNames.size() <= n)
661           PrintFatalError(Def->getLoc(),
662                           "Register tuple definition missing name for '" +
663                             Name + "'.");
664         AsmName = StringInit::get(RK, RegNames[n]);
665       }
666 
667       // Create a new Record representing the synthesized register. This record
668       // is only for consumption by CodeGenRegister, it is not added to the
669       // RecordKeeper.
670       SynthDefs.emplace_back(
671           std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
672       Record *NewReg = SynthDefs.back().get();
673       Elts.insert(NewReg);
674 
675       // Copy Proto super-classes.
676       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
677       for (const auto &SuperPair : Supers)
678         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
679 
680       // Copy Proto fields.
681       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
682         RecordVal RV = Proto->getValues()[i];
683 
684         // Skip existing fields, like NAME.
685         if (NewReg->getValue(RV.getNameInit()))
686           continue;
687 
688         StringRef Field = RV.getName();
689 
690         // Replace the sub-register list with Tuple.
691         if (Field == "SubRegs")
692           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
693 
694         if (Field == "AsmName")
695           RV.setValue(AsmName);
696 
697         // CostPerUse is aggregated from all Tuple members.
698         if (Field == "CostPerUse")
699           RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
700 
701         // Composite registers are always covered by sub-registers.
702         if (Field == "CoveredBySubRegs")
703           RV.setValue(BitInit::get(RK, true));
704 
705         // Copy fields from the RegisterTuples def.
706         if (Field == "SubRegIndices" ||
707             Field == "CompositeIndices") {
708           NewReg->addValue(*Def->getValue(Field));
709           continue;
710         }
711 
712         // Some fields get their default uninitialized value.
713         if (Field == "DwarfNumbers" ||
714             Field == "DwarfAlias" ||
715             Field == "Aliases") {
716           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
717             NewReg->addValue(*DefRV);
718           continue;
719         }
720 
721         // Everything else is copied from Proto.
722         NewReg->addValue(RV);
723       }
724     }
725   }
726 };
727 
728 } // end anonymous namespace
729 
730 //===----------------------------------------------------------------------===//
731 //                            CodeGenRegisterClass
732 //===----------------------------------------------------------------------===//
733 
734 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
735   llvm::sort(M, deref<std::less<>>());
736   M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
737 }
738 
739 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
740     : TheDef(R), Name(std::string(R->getName())),
741       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) {
742   GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
743   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
744   if (TypeList.empty())
745     PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
746   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
747     Record *Type = TypeList[i];
748     if (!Type->isSubClassOf("ValueType"))
749       PrintFatalError(R->getLoc(),
750                       "RegTypes list member '" + Type->getName() +
751                           "' does not derive from the ValueType class!");
752     VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
753   }
754 
755   // Allocation order 0 is the full set. AltOrders provides others.
756   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
757   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
758   Orders.resize(1 + AltOrders->size());
759 
760   // Default allocation order always contains all registers.
761   Artificial = true;
762   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
763     Orders[0].push_back((*Elements)[i]);
764     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
765     Members.push_back(Reg);
766     Artificial &= Reg->Artificial;
767     TopoSigs.set(Reg->getTopoSig());
768   }
769   sortAndUniqueRegisters(Members);
770 
771   // Alternative allocation orders may be subsets.
772   SetTheory::RecSet Order;
773   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
774     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
775     Orders[1 + i].append(Order.begin(), Order.end());
776     // Verify that all altorder members are regclass members.
777     while (!Order.empty()) {
778       CodeGenRegister *Reg = RegBank.getReg(Order.back());
779       Order.pop_back();
780       if (!contains(Reg))
781         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
782                       " is not a class member");
783     }
784   }
785 
786   Namespace = R->getValueAsString("Namespace");
787 
788   if (const RecordVal *RV = R->getValue("RegInfos"))
789     if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
790       RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
791   unsigned Size = R->getValueAsInt("Size");
792   assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
793          "Impossible to determine register size");
794   if (!RSI.hasDefault()) {
795     RegSizeInfo RI;
796     RI.RegSize = RI.SpillSize = Size ? Size
797                                      : VTs[0].getSimple().getSizeInBits();
798     RI.SpillAlignment = R->getValueAsInt("Alignment");
799     RSI.insertRegSizeForMode(DefaultMode, RI);
800   }
801 
802   CopyCost = R->getValueAsInt("CopyCost");
803   Allocatable = R->getValueAsBit("isAllocatable");
804   AltOrderSelect = R->getValueAsString("AltOrderSelect");
805   int AllocationPriority = R->getValueAsInt("AllocationPriority");
806   if (AllocationPriority < 0 || AllocationPriority > 63)
807     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
808   this->AllocationPriority = AllocationPriority;
809 
810   BitsInit *TSF = R->getValueAsBitsInit("TSFlags");
811   for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) {
812     BitInit *Bit = cast<BitInit>(TSF->getBit(I));
813     TSFlags |= uint8_t(Bit->getValue()) << I;
814   }
815 }
816 
817 // Create an inferred register class that was missing from the .td files.
818 // Most properties will be inherited from the closest super-class after the
819 // class structure has been computed.
820 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
821                                            StringRef Name, Key Props)
822     : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
823       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
824       CopyCost(0), Allocatable(true), AllocationPriority(0), TSFlags(0) {
825   Artificial = true;
826   GeneratePressureSet = false;
827   for (const auto R : Members) {
828     TopoSigs.set(R->getTopoSig());
829     Artificial &= R->Artificial;
830   }
831 }
832 
833 // Compute inherited propertied for a synthesized register class.
834 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
835   assert(!getDef() && "Only synthesized classes can inherit properties");
836   assert(!SuperClasses.empty() && "Synthesized class without super class");
837 
838   // The last super-class is the smallest one.
839   CodeGenRegisterClass &Super = *SuperClasses.back();
840 
841   // Most properties are copied directly.
842   // Exceptions are members, size, and alignment
843   Namespace = Super.Namespace;
844   VTs = Super.VTs;
845   CopyCost = Super.CopyCost;
846   // Check for allocatable superclasses.
847   Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) {
848     return S->Allocatable;
849   });
850   AltOrderSelect = Super.AltOrderSelect;
851   AllocationPriority = Super.AllocationPriority;
852   TSFlags = Super.TSFlags;
853   GeneratePressureSet |= Super.GeneratePressureSet;
854 
855   // Copy all allocation orders, filter out foreign registers from the larger
856   // super-class.
857   Orders.resize(Super.Orders.size());
858   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
859     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
860       if (contains(RegBank.getReg(Super.Orders[i][j])))
861         Orders[i].push_back(Super.Orders[i][j]);
862 }
863 
864 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
865   return std::binary_search(Members.begin(), Members.end(), Reg,
866                             deref<std::less<>>());
867 }
868 
869 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
870   if (TheDef && !TheDef->isValueUnset("Weight"))
871     return TheDef->getValueAsInt("Weight");
872 
873   if (Members.empty() || Artificial)
874     return 0;
875 
876   return (*Members.begin())->getWeight(RegBank);
877 }
878 
879 namespace llvm {
880 
881   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
882     OS << "{ " << K.RSI;
883     for (const auto R : *K.Members)
884       OS << ", " << R->getName();
885     return OS << " }";
886   }
887 
888 } // end namespace llvm
889 
890 // This is a simple lexicographical order that can be used to search for sets.
891 // It is not the same as the topological order provided by TopoOrderRC.
892 bool CodeGenRegisterClass::Key::
893 operator<(const CodeGenRegisterClass::Key &B) const {
894   assert(Members && B.Members);
895   return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
896 }
897 
898 // Returns true if RC is a strict subclass.
899 // RC is a sub-class of this class if it is a valid replacement for any
900 // instruction operand where a register of this classis required. It must
901 // satisfy these conditions:
902 //
903 // 1. All RC registers are also in this.
904 // 2. The RC spill size must not be smaller than our spill size.
905 // 3. RC spill alignment must be compatible with ours.
906 //
907 static bool testSubClass(const CodeGenRegisterClass *A,
908                          const CodeGenRegisterClass *B) {
909   return A->RSI.isSubClassOf(B->RSI) &&
910          std::includes(A->getMembers().begin(), A->getMembers().end(),
911                        B->getMembers().begin(), B->getMembers().end(),
912                        deref<std::less<>>());
913 }
914 
915 /// Sorting predicate for register classes.  This provides a topological
916 /// ordering that arranges all register classes before their sub-classes.
917 ///
918 /// Register classes with the same registers, spill size, and alignment form a
919 /// clique.  They will be ordered alphabetically.
920 ///
921 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
922                         const CodeGenRegisterClass &PB) {
923   auto *A = &PA;
924   auto *B = &PB;
925   if (A == B)
926     return false;
927 
928   if (A->RSI < B->RSI)
929     return true;
930   if (A->RSI != B->RSI)
931     return false;
932 
933   // Order by descending set size.  Note that the classes' allocation order may
934   // not have been computed yet.  The Members set is always vaild.
935   if (A->getMembers().size() > B->getMembers().size())
936     return true;
937   if (A->getMembers().size() < B->getMembers().size())
938     return false;
939 
940   // Finally order by name as a tie breaker.
941   return StringRef(A->getName()) < B->getName();
942 }
943 
944 std::string CodeGenRegisterClass::getQualifiedName() const {
945   if (Namespace.empty())
946     return getName();
947   else
948     return (Namespace + "::" + getName()).str();
949 }
950 
951 // Compute sub-classes of all register classes.
952 // Assume the classes are ordered topologically.
953 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
954   auto &RegClasses = RegBank.getRegClasses();
955 
956   // Visit backwards so sub-classes are seen first.
957   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
958     CodeGenRegisterClass &RC = *I;
959     RC.SubClasses.resize(RegClasses.size());
960     RC.SubClasses.set(RC.EnumValue);
961     if (RC.Artificial)
962       continue;
963 
964     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
965     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
966       CodeGenRegisterClass &SubRC = *I2;
967       if (RC.SubClasses.test(SubRC.EnumValue))
968         continue;
969       if (!testSubClass(&RC, &SubRC))
970         continue;
971       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
972       // check them again.
973       RC.SubClasses |= SubRC.SubClasses;
974     }
975 
976     // Sweep up missed clique members.  They will be immediately preceding RC.
977     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
978       RC.SubClasses.set(I2->EnumValue);
979   }
980 
981   // Compute the SuperClasses lists from the SubClasses vectors.
982   for (auto &RC : RegClasses) {
983     const BitVector &SC = RC.getSubClasses();
984     auto I = RegClasses.begin();
985     for (int s = 0, next_s = SC.find_first(); next_s != -1;
986          next_s = SC.find_next(s)) {
987       std::advance(I, next_s - s);
988       s = next_s;
989       if (&*I == &RC)
990         continue;
991       I->SuperClasses.push_back(&RC);
992     }
993   }
994 
995   // With the class hierarchy in place, let synthesized register classes inherit
996   // properties from their closest super-class. The iteration order here can
997   // propagate properties down multiple levels.
998   for (auto &RC : RegClasses)
999     if (!RC.getDef())
1000       RC.inheritProperties(RegBank);
1001 }
1002 
1003 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
1004 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
1005     CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
1006   auto SizeOrder = [this](const CodeGenRegisterClass *A,
1007                       const CodeGenRegisterClass *B) {
1008     // If there are multiple, identical register classes, prefer the original
1009     // register class.
1010     if (A == B)
1011       return false;
1012     if (A->getMembers().size() == B->getMembers().size())
1013       return A == this;
1014     return A->getMembers().size() > B->getMembers().size();
1015   };
1016 
1017   auto &RegClasses = RegBank.getRegClasses();
1018 
1019   // Find all the subclasses of this one that fully support the sub-register
1020   // index and order them by size. BiggestSuperRC should always be first.
1021   CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1022   if (!BiggestSuperRegRC)
1023     return None;
1024   BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1025   std::vector<CodeGenRegisterClass *> SuperRegRCs;
1026   for (auto &RC : RegClasses)
1027     if (SuperRegRCsBV[RC.EnumValue])
1028       SuperRegRCs.emplace_back(&RC);
1029   llvm::stable_sort(SuperRegRCs, SizeOrder);
1030 
1031   assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1032          "Biggest class wasn't first");
1033 
1034   // Find all the subreg classes and order them by size too.
1035   std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1036   for (auto &RC: RegClasses) {
1037     BitVector SuperRegClassesBV(RegClasses.size());
1038     RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1039     if (SuperRegClassesBV.any())
1040       SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1041   }
1042   llvm::sort(SuperRegClasses,
1043              [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1044                  const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1045                return SizeOrder(A.first, B.first);
1046              });
1047 
1048   // Find the biggest subclass and subreg class such that R:subidx is in the
1049   // subreg class for all R in subclass.
1050   //
1051   // For example:
1052   // All registers in X86's GR64 have a sub_32bit subregister but no class
1053   // exists that contains all the 32-bit subregisters because GR64 contains RIP
1054   // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1055   // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1056   // having excluded RIP, we are able to find a SubRegRC (GR32).
1057   CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1058   CodeGenRegisterClass *SubRegRC = nullptr;
1059   for (auto *SuperRegRC : SuperRegRCs) {
1060     for (const auto &SuperRegClassPair : SuperRegClasses) {
1061       const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1062       if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1063         SubRegRC = SuperRegClassPair.first;
1064         ChosenSuperRegClass = SuperRegRC;
1065 
1066         // If SubRegRC is bigger than SuperRegRC then there are members of
1067         // SubRegRC that don't have super registers via SubIdx. Keep looking to
1068         // find a better fit and fall back on this one if there isn't one.
1069         //
1070         // This is intended to prevent X86 from making odd choices such as
1071         // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1072         // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1073         // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1074         // mapping.
1075         if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1076           return std::make_pair(ChosenSuperRegClass, SubRegRC);
1077       }
1078     }
1079 
1080     // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1081     // registers, then we're done.
1082     if (ChosenSuperRegClass)
1083       return std::make_pair(ChosenSuperRegClass, SubRegRC);
1084   }
1085 
1086   return None;
1087 }
1088 
1089 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1090                                               BitVector &Out) const {
1091   auto FindI = SuperRegClasses.find(SubIdx);
1092   if (FindI == SuperRegClasses.end())
1093     return;
1094   for (CodeGenRegisterClass *RC : FindI->second)
1095     Out.set(RC->EnumValue);
1096 }
1097 
1098 // Populate a unique sorted list of units from a register set.
1099 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1100   std::vector<unsigned> &RegUnits) const {
1101   std::vector<unsigned> TmpUnits;
1102   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1103     const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1104     if (!RU.Artificial)
1105       TmpUnits.push_back(*UnitI);
1106   }
1107   llvm::sort(TmpUnits);
1108   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1109                    std::back_inserter(RegUnits));
1110 }
1111 
1112 //===----------------------------------------------------------------------===//
1113 //                           CodeGenRegisterCategory
1114 //===----------------------------------------------------------------------===//
1115 
1116 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank,
1117                                                  Record *R)
1118     : TheDef(R), Name(std::string(R->getName())) {
1119   for (Record *RegClass : R->getValueAsListOfDefs("Classes"))
1120     Classes.push_back(RegBank.getRegClass(RegClass));
1121 }
1122 
1123 //===----------------------------------------------------------------------===//
1124 //                               CodeGenRegBank
1125 //===----------------------------------------------------------------------===//
1126 
1127 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1128                                const CodeGenHwModes &Modes) : CGH(Modes) {
1129   // Configure register Sets to understand register classes and tuples.
1130   Sets.addFieldExpander("RegisterClass", "MemberList");
1131   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1132   Sets.addExpander("RegisterTuples",
1133                    std::make_unique<TupleExpander>(SynthDefs));
1134 
1135   // Read in the user-defined (named) sub-register indices.
1136   // More indices will be synthesized later.
1137   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1138   llvm::sort(SRIs, LessRecord());
1139   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1140     getSubRegIdx(SRIs[i]);
1141   // Build composite maps from ComposedOf fields.
1142   for (auto &Idx : SubRegIndices)
1143     Idx.updateComponents(*this);
1144 
1145   // Read in the register definitions.
1146   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1147   llvm::sort(Regs, LessRecordRegister());
1148   // Assign the enumeration values.
1149   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1150     getReg(Regs[i]);
1151 
1152   // Expand tuples and number the new registers.
1153   std::vector<Record*> Tups =
1154     Records.getAllDerivedDefinitions("RegisterTuples");
1155 
1156   for (Record *R : Tups) {
1157     std::vector<Record *> TupRegs = *Sets.expand(R);
1158     llvm::sort(TupRegs, LessRecordRegister());
1159     for (Record *RC : TupRegs)
1160       getReg(RC);
1161   }
1162 
1163   // Now all the registers are known. Build the object graph of explicit
1164   // register-register references.
1165   for (auto &Reg : Registers)
1166     Reg.buildObjectGraph(*this);
1167 
1168   // Compute register name map.
1169   for (auto &Reg : Registers)
1170     // FIXME: This could just be RegistersByName[name] = register, except that
1171     // causes some failures in MIPS - perhaps they have duplicate register name
1172     // entries? (or maybe there's a reason for it - I don't know much about this
1173     // code, just drive-by refactoring)
1174     RegistersByName.insert(
1175         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1176 
1177   // Precompute all sub-register maps.
1178   // This will create Composite entries for all inferred sub-register indices.
1179   for (auto &Reg : Registers)
1180     Reg.computeSubRegs(*this);
1181 
1182   // Compute transitive closure of subregister index ConcatenationOf vectors
1183   // and initialize ConcatIdx map.
1184   for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1185     SRI.computeConcatTransitiveClosure();
1186     if (!SRI.ConcatenationOf.empty())
1187       ConcatIdx.insert(std::make_pair(
1188           SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1189                                              SRI.ConcatenationOf.end()), &SRI));
1190   }
1191 
1192   // Infer even more sub-registers by combining leading super-registers.
1193   for (auto &Reg : Registers)
1194     if (Reg.CoveredBySubRegs)
1195       Reg.computeSecondarySubRegs(*this);
1196 
1197   // After the sub-register graph is complete, compute the topologically
1198   // ordered SuperRegs list.
1199   for (auto &Reg : Registers)
1200     Reg.computeSuperRegs(*this);
1201 
1202   // For each pair of Reg:SR, if both are non-artificial, mark the
1203   // corresponding sub-register index as non-artificial.
1204   for (auto &Reg : Registers) {
1205     if (Reg.Artificial)
1206       continue;
1207     for (auto P : Reg.getSubRegs()) {
1208       const CodeGenRegister *SR = P.second;
1209       if (!SR->Artificial)
1210         P.first->Artificial = false;
1211     }
1212   }
1213 
1214   // Native register units are associated with a leaf register. They've all been
1215   // discovered now.
1216   NumNativeRegUnits = RegUnits.size();
1217 
1218   // Read in register class definitions.
1219   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1220   if (RCs.empty())
1221     PrintFatalError("No 'RegisterClass' subclasses defined!");
1222 
1223   // Allocate user-defined register classes.
1224   for (auto *R : RCs) {
1225     RegClasses.emplace_back(*this, R);
1226     CodeGenRegisterClass &RC = RegClasses.back();
1227     if (!RC.Artificial)
1228       addToMaps(&RC);
1229   }
1230 
1231   // Infer missing classes to create a full algebra.
1232   computeInferredRegisterClasses();
1233 
1234   // Order register classes topologically and assign enum values.
1235   RegClasses.sort(TopoOrderRC);
1236   unsigned i = 0;
1237   for (auto &RC : RegClasses)
1238     RC.EnumValue = i++;
1239   CodeGenRegisterClass::computeSubClasses(*this);
1240 
1241   // Read in the register category definitions.
1242   std::vector<Record *> RCats =
1243       Records.getAllDerivedDefinitions("RegisterCategory");
1244   for (auto *R : RCats)
1245     RegCategories.emplace_back(*this, R);
1246 }
1247 
1248 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1249 CodeGenSubRegIndex*
1250 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1251   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1252   return &SubRegIndices.back();
1253 }
1254 
1255 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1256   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1257   if (Idx)
1258     return Idx;
1259   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1260   Idx = &SubRegIndices.back();
1261   return Idx;
1262 }
1263 
1264 const CodeGenSubRegIndex *
1265 CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1266   return Def2SubRegIdx.lookup(Def);
1267 }
1268 
1269 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1270   CodeGenRegister *&Reg = Def2Reg[Def];
1271   if (Reg)
1272     return Reg;
1273   Registers.emplace_back(Def, Registers.size() + 1);
1274   Reg = &Registers.back();
1275   return Reg;
1276 }
1277 
1278 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1279   if (Record *Def = RC->getDef())
1280     Def2RC.insert(std::make_pair(Def, RC));
1281 
1282   // Duplicate classes are rejected by insert().
1283   // That's OK, we only care about the properties handled by CGRC::Key.
1284   CodeGenRegisterClass::Key K(*RC);
1285   Key2RC.insert(std::make_pair(K, RC));
1286 }
1287 
1288 // Create a synthetic sub-class if it is missing.
1289 CodeGenRegisterClass*
1290 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1291                                     const CodeGenRegister::Vec *Members,
1292                                     StringRef Name) {
1293   // Synthetic sub-class has the same size and alignment as RC.
1294   CodeGenRegisterClass::Key K(Members, RC->RSI);
1295   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1296   if (FoundI != Key2RC.end())
1297     return FoundI->second;
1298 
1299   // Sub-class doesn't exist, create a new one.
1300   RegClasses.emplace_back(*this, Name, K);
1301   addToMaps(&RegClasses.back());
1302   return &RegClasses.back();
1303 }
1304 
1305 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1306   if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1307     return RC;
1308 
1309   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1310 }
1311 
1312 CodeGenSubRegIndex*
1313 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1314                                         CodeGenSubRegIndex *B) {
1315   // Look for an existing entry.
1316   CodeGenSubRegIndex *Comp = A->compose(B);
1317   if (Comp)
1318     return Comp;
1319 
1320   // None exists, synthesize one.
1321   std::string Name = A->getName() + "_then_" + B->getName();
1322   Comp = createSubRegIndex(Name, A->getNamespace());
1323   A->addComposite(B, Comp);
1324   return Comp;
1325 }
1326 
1327 CodeGenSubRegIndex *CodeGenRegBank::
1328 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1329   assert(Parts.size() > 1 && "Need two parts to concatenate");
1330 #ifndef NDEBUG
1331   for (CodeGenSubRegIndex *Idx : Parts) {
1332     assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1333   }
1334 #endif
1335 
1336   // Look for an existing entry.
1337   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1338   if (Idx)
1339     return Idx;
1340 
1341   // None exists, synthesize one.
1342   std::string Name = Parts.front()->getName();
1343   // Determine whether all parts are contiguous.
1344   bool isContinuous = true;
1345   unsigned Size = Parts.front()->Size;
1346   unsigned LastOffset = Parts.front()->Offset;
1347   unsigned LastSize = Parts.front()->Size;
1348   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1349     Name += '_';
1350     Name += Parts[i]->getName();
1351     Size += Parts[i]->Size;
1352     if (Parts[i]->Offset != (LastOffset + LastSize))
1353       isContinuous = false;
1354     LastOffset = Parts[i]->Offset;
1355     LastSize = Parts[i]->Size;
1356   }
1357   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1358   Idx->Size = Size;
1359   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1360   Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1361   return Idx;
1362 }
1363 
1364 void CodeGenRegBank::computeComposites() {
1365   using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1366 
1367   // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1368   // register to (sub)register associated with the action of the left-hand
1369   // side subregister.
1370   std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1371   for (const CodeGenRegister &R : Registers) {
1372     const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1373     for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1374       SubRegAction[P.first].insert({&R, P.second});
1375   }
1376 
1377   // Calculate the composition of two subregisters as compositions of their
1378   // associated actions.
1379   auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1380                                   const CodeGenSubRegIndex *Sub2) {
1381     RegMap C;
1382     const RegMap &Img1 = SubRegAction.at(Sub1);
1383     const RegMap &Img2 = SubRegAction.at(Sub2);
1384     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1385       auto F = Img2.find(P.second);
1386       if (F != Img2.end())
1387         C.insert({P.first, F->second});
1388     }
1389     return C;
1390   };
1391 
1392   // Check if the two maps agree on the intersection of their domains.
1393   auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1394     // Technically speaking, an empty map agrees with any other map, but
1395     // this could flag false positives. We're interested in non-vacuous
1396     // agreements.
1397     if (Map1.empty() || Map2.empty())
1398       return false;
1399     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1400       auto F = Map2.find(P.first);
1401       if (F == Map2.end() || P.second != F->second)
1402         return false;
1403     }
1404     return true;
1405   };
1406 
1407   using CompositePair = std::pair<const CodeGenSubRegIndex*,
1408                                   const CodeGenSubRegIndex*>;
1409   SmallSet<CompositePair,4> UserDefined;
1410   for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1411     for (auto P : Idx.getComposites())
1412       UserDefined.insert(std::make_pair(&Idx, P.first));
1413 
1414   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1415   // and many registers will share TopoSigs on regular architectures.
1416   BitVector TopoSigs(getNumTopoSigs());
1417 
1418   for (const auto &Reg1 : Registers) {
1419     // Skip identical subreg structures already processed.
1420     if (TopoSigs.test(Reg1.getTopoSig()))
1421       continue;
1422     TopoSigs.set(Reg1.getTopoSig());
1423 
1424     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1425     for (auto I1 : SRM1) {
1426       CodeGenSubRegIndex *Idx1 = I1.first;
1427       CodeGenRegister *Reg2 = I1.second;
1428       // Ignore identity compositions.
1429       if (&Reg1 == Reg2)
1430         continue;
1431       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1432       // Try composing Idx1 with another SubRegIndex.
1433       for (auto I2 : SRM2) {
1434         CodeGenSubRegIndex *Idx2 = I2.first;
1435         CodeGenRegister *Reg3 = I2.second;
1436         // Ignore identity compositions.
1437         if (Reg2 == Reg3)
1438           continue;
1439         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1440         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1441         assert(Idx3 && "Sub-register doesn't have an index");
1442 
1443         // Conflicting composition? Emit a warning but allow it.
1444         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1445           // If the composition was not user-defined, always emit a warning.
1446           if (!UserDefined.count({Idx1, Idx2}) ||
1447               agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1448             PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1449                          " and " + Idx2->getQualifiedName() +
1450                          " compose ambiguously as " + Prev->getQualifiedName() +
1451                          " or " + Idx3->getQualifiedName());
1452         }
1453       }
1454     }
1455   }
1456 }
1457 
1458 // Compute lane masks. This is similar to register units, but at the
1459 // sub-register index level. Each bit in the lane mask is like a register unit
1460 // class, and two lane masks will have a bit in common if two sub-register
1461 // indices overlap in some register.
1462 //
1463 // Conservatively share a lane mask bit if two sub-register indices overlap in
1464 // some registers, but not in others. That shouldn't happen a lot.
1465 void CodeGenRegBank::computeSubRegLaneMasks() {
1466   // First assign individual bits to all the leaf indices.
1467   unsigned Bit = 0;
1468   // Determine mask of lanes that cover their registers.
1469   CoveringLanes = LaneBitmask::getAll();
1470   for (auto &Idx : SubRegIndices) {
1471     if (Idx.getComposites().empty()) {
1472       if (Bit > LaneBitmask::BitWidth) {
1473         PrintFatalError(
1474           Twine("Ran out of lanemask bits to represent subregister ")
1475           + Idx.getName());
1476       }
1477       Idx.LaneMask = LaneBitmask::getLane(Bit);
1478       ++Bit;
1479     } else {
1480       Idx.LaneMask = LaneBitmask::getNone();
1481     }
1482   }
1483 
1484   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1485   // here is that for each possible target subregister we look at the leafs
1486   // in the subregister graph that compose for this target and create
1487   // transformation sequences for the lanemasks. Each step in the sequence
1488   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1489   // are usually the same for many subregisters we can easily combine the steps
1490   // by combining the masks.
1491   for (const auto &Idx : SubRegIndices) {
1492     const auto &Composites = Idx.getComposites();
1493     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1494 
1495     if (Composites.empty()) {
1496       // Moving from a class with no subregisters we just had a single lane:
1497       // The subregister must be a leaf subregister and only occupies 1 bit.
1498       // Move the bit from the class without subregisters into that position.
1499       unsigned DstBit = Idx.LaneMask.getHighestLane();
1500       assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1501              "Must be a leaf subregister");
1502       MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1503       LaneTransforms.push_back(MaskRol);
1504     } else {
1505       // Go through all leaf subregisters and find the ones that compose with
1506       // Idx. These make out all possible valid bits in the lane mask we want to
1507       // transform. Looking only at the leafs ensure that only a single bit in
1508       // the mask is set.
1509       unsigned NextBit = 0;
1510       for (auto &Idx2 : SubRegIndices) {
1511         // Skip non-leaf subregisters.
1512         if (!Idx2.getComposites().empty())
1513           continue;
1514         // Replicate the behaviour from the lane mask generation loop above.
1515         unsigned SrcBit = NextBit;
1516         LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1517         if (NextBit < LaneBitmask::BitWidth-1)
1518           ++NextBit;
1519         assert(Idx2.LaneMask == SrcMask);
1520 
1521         // Get the composed subregister if there is any.
1522         auto C = Composites.find(&Idx2);
1523         if (C == Composites.end())
1524           continue;
1525         const CodeGenSubRegIndex *Composite = C->second;
1526         // The Composed subreg should be a leaf subreg too
1527         assert(Composite->getComposites().empty());
1528 
1529         // Create Mask+Rotate operation and merge with existing ops if possible.
1530         unsigned DstBit = Composite->LaneMask.getHighestLane();
1531         int Shift = DstBit - SrcBit;
1532         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1533                                         : LaneBitmask::BitWidth + Shift;
1534         for (auto &I : LaneTransforms) {
1535           if (I.RotateLeft == RotateLeft) {
1536             I.Mask |= SrcMask;
1537             SrcMask = LaneBitmask::getNone();
1538           }
1539         }
1540         if (SrcMask.any()) {
1541           MaskRolPair MaskRol = { SrcMask, RotateLeft };
1542           LaneTransforms.push_back(MaskRol);
1543         }
1544       }
1545     }
1546 
1547     // Optimize if the transformation consists of one step only: Set mask to
1548     // 0xffffffff (including some irrelevant invalid bits) so that it should
1549     // merge with more entries later while compressing the table.
1550     if (LaneTransforms.size() == 1)
1551       LaneTransforms[0].Mask = LaneBitmask::getAll();
1552 
1553     // Further compression optimization: For invalid compositions resulting
1554     // in a sequence with 0 entries we can just pick any other. Choose
1555     // Mask 0xffffffff with Rotation 0.
1556     if (LaneTransforms.size() == 0) {
1557       MaskRolPair P = { LaneBitmask::getAll(), 0 };
1558       LaneTransforms.push_back(P);
1559     }
1560   }
1561 
1562   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1563   // by the sub-register graph? This doesn't occur in any known targets.
1564 
1565   // Inherit lanes from composites.
1566   for (const auto &Idx : SubRegIndices) {
1567     LaneBitmask Mask = Idx.computeLaneMask();
1568     // If some super-registers without CoveredBySubRegs use this index, we can
1569     // no longer assume that the lanes are covering their registers.
1570     if (!Idx.AllSuperRegsCovered)
1571       CoveringLanes &= ~Mask;
1572   }
1573 
1574   // Compute lane mask combinations for register classes.
1575   for (auto &RegClass : RegClasses) {
1576     LaneBitmask LaneMask;
1577     for (const auto &SubRegIndex : SubRegIndices) {
1578       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1579         continue;
1580       LaneMask |= SubRegIndex.LaneMask;
1581     }
1582 
1583     // For classes without any subregisters set LaneMask to 1 instead of 0.
1584     // This makes it easier for client code to handle classes uniformly.
1585     if (LaneMask.none())
1586       LaneMask = LaneBitmask::getLane(0);
1587 
1588     RegClass.LaneMask = LaneMask;
1589   }
1590 }
1591 
1592 namespace {
1593 
1594 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1595 // the transitive closure of the union of overlapping register
1596 // classes. Together, the UberRegSets form a partition of the registers. If we
1597 // consider overlapping register classes to be connected, then each UberRegSet
1598 // is a set of connected components.
1599 //
1600 // An UberRegSet will likely be a horizontal slice of register names of
1601 // the same width. Nontrivial subregisters should then be in a separate
1602 // UberRegSet. But this property isn't required for valid computation of
1603 // register unit weights.
1604 //
1605 // A Weight field caches the max per-register unit weight in each UberRegSet.
1606 //
1607 // A set of SingularDeterminants flags single units of some register in this set
1608 // for which the unit weight equals the set weight. These units should not have
1609 // their weight increased.
1610 struct UberRegSet {
1611   CodeGenRegister::Vec Regs;
1612   unsigned Weight = 0;
1613   CodeGenRegister::RegUnitList SingularDeterminants;
1614 
1615   UberRegSet() = default;
1616 };
1617 
1618 } // end anonymous namespace
1619 
1620 // Partition registers into UberRegSets, where each set is the transitive
1621 // closure of the union of overlapping register classes.
1622 //
1623 // UberRegSets[0] is a special non-allocatable set.
1624 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1625                             std::vector<UberRegSet*> &RegSets,
1626                             CodeGenRegBank &RegBank) {
1627   const auto &Registers = RegBank.getRegisters();
1628 
1629   // The Register EnumValue is one greater than its index into Registers.
1630   assert(Registers.size() == Registers.back().EnumValue &&
1631          "register enum value mismatch");
1632 
1633   // For simplicitly make the SetID the same as EnumValue.
1634   IntEqClasses UberSetIDs(Registers.size()+1);
1635   std::set<unsigned> AllocatableRegs;
1636   for (auto &RegClass : RegBank.getRegClasses()) {
1637     if (!RegClass.Allocatable)
1638       continue;
1639 
1640     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1641     if (Regs.empty())
1642       continue;
1643 
1644     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1645     assert(USetID && "register number 0 is invalid");
1646 
1647     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1648     for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) {
1649       AllocatableRegs.insert(CGR->EnumValue);
1650       UberSetIDs.join(USetID, CGR->EnumValue);
1651     }
1652   }
1653   // Combine non-allocatable regs.
1654   for (const auto &Reg : Registers) {
1655     unsigned RegNum = Reg.EnumValue;
1656     if (AllocatableRegs.count(RegNum))
1657       continue;
1658 
1659     UberSetIDs.join(0, RegNum);
1660   }
1661   UberSetIDs.compress();
1662 
1663   // Make the first UberSet a special unallocatable set.
1664   unsigned ZeroID = UberSetIDs[0];
1665 
1666   // Insert Registers into the UberSets formed by union-find.
1667   // Do not resize after this.
1668   UberSets.resize(UberSetIDs.getNumClasses());
1669   unsigned i = 0;
1670   for (const CodeGenRegister &Reg : Registers) {
1671     unsigned USetID = UberSetIDs[Reg.EnumValue];
1672     if (!USetID)
1673       USetID = ZeroID;
1674     else if (USetID == ZeroID)
1675       USetID = 0;
1676 
1677     UberRegSet *USet = &UberSets[USetID];
1678     USet->Regs.push_back(&Reg);
1679     sortAndUniqueRegisters(USet->Regs);
1680     RegSets[i++] = USet;
1681   }
1682 }
1683 
1684 // Recompute each UberSet weight after changing unit weights.
1685 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1686                                CodeGenRegBank &RegBank) {
1687   // Skip the first unallocatable set.
1688   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1689          E = UberSets.end(); I != E; ++I) {
1690 
1691     // Initialize all unit weights in this set, and remember the max units/reg.
1692     const CodeGenRegister *Reg = nullptr;
1693     unsigned MaxWeight = 0, Weight = 0;
1694     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1695       if (Reg != UnitI.getReg()) {
1696         if (Weight > MaxWeight)
1697           MaxWeight = Weight;
1698         Reg = UnitI.getReg();
1699         Weight = 0;
1700       }
1701       if (!RegBank.getRegUnit(*UnitI).Artificial) {
1702         unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1703         if (!UWeight) {
1704           UWeight = 1;
1705           RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1706         }
1707         Weight += UWeight;
1708       }
1709     }
1710     if (Weight > MaxWeight)
1711       MaxWeight = Weight;
1712     if (I->Weight != MaxWeight) {
1713       LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1714                         << MaxWeight;
1715                  for (auto &Unit
1716                       : I->Regs) dbgs()
1717                  << " " << Unit->getName();
1718                  dbgs() << "\n");
1719       // Update the set weight.
1720       I->Weight = MaxWeight;
1721     }
1722 
1723     // Find singular determinants.
1724     for (const auto R : I->Regs) {
1725       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1726         I->SingularDeterminants |= R->getRegUnits();
1727       }
1728     }
1729   }
1730 }
1731 
1732 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1733 // a register and its subregisters so that they have the same weight as their
1734 // UberSet. Self-recursion processes the subregister tree in postorder so
1735 // subregisters are normalized first.
1736 //
1737 // Side effects:
1738 // - creates new adopted register units
1739 // - causes superregisters to inherit adopted units
1740 // - increases the weight of "singular" units
1741 // - induces recomputation of UberWeights.
1742 static bool normalizeWeight(CodeGenRegister *Reg,
1743                             std::vector<UberRegSet> &UberSets,
1744                             std::vector<UberRegSet*> &RegSets,
1745                             BitVector &NormalRegs,
1746                             CodeGenRegister::RegUnitList &NormalUnits,
1747                             CodeGenRegBank &RegBank) {
1748   NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1749   if (NormalRegs.test(Reg->EnumValue))
1750     return false;
1751   NormalRegs.set(Reg->EnumValue);
1752 
1753   bool Changed = false;
1754   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1755   for (auto SRI : SRM) {
1756     if (SRI.second == Reg)
1757       continue; // self-cycles happen
1758 
1759     Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1760                                NormalUnits, RegBank);
1761   }
1762   // Postorder register normalization.
1763 
1764   // Inherit register units newly adopted by subregisters.
1765   if (Reg->inheritRegUnits(RegBank))
1766     computeUberWeights(UberSets, RegBank);
1767 
1768   // Check if this register is too skinny for its UberRegSet.
1769   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1770 
1771   unsigned RegWeight = Reg->getWeight(RegBank);
1772   if (UberSet->Weight > RegWeight) {
1773     // A register unit's weight can be adjusted only if it is the singular unit
1774     // for this register, has not been used to normalize a subregister's set,
1775     // and has not already been used to singularly determine this UberRegSet.
1776     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1777     if (Reg->getRegUnits().count() != 1
1778         || hasRegUnit(NormalUnits, AdjustUnit)
1779         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1780       // We don't have an adjustable unit, so adopt a new one.
1781       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1782       Reg->adoptRegUnit(AdjustUnit);
1783       // Adopting a unit does not immediately require recomputing set weights.
1784     }
1785     else {
1786       // Adjust the existing single unit.
1787       if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1788         RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1789       // The unit may be shared among sets and registers within this set.
1790       computeUberWeights(UberSets, RegBank);
1791     }
1792     Changed = true;
1793   }
1794 
1795   // Mark these units normalized so superregisters can't change their weights.
1796   NormalUnits |= Reg->getRegUnits();
1797 
1798   return Changed;
1799 }
1800 
1801 // Compute a weight for each register unit created during getSubRegs.
1802 //
1803 // The goal is that two registers in the same class will have the same weight,
1804 // where each register's weight is defined as sum of its units' weights.
1805 void CodeGenRegBank::computeRegUnitWeights() {
1806   std::vector<UberRegSet> UberSets;
1807   std::vector<UberRegSet*> RegSets(Registers.size());
1808   computeUberSets(UberSets, RegSets, *this);
1809   // UberSets and RegSets are now immutable.
1810 
1811   computeUberWeights(UberSets, *this);
1812 
1813   // Iterate over each Register, normalizing the unit weights until reaching
1814   // a fix point.
1815   unsigned NumIters = 0;
1816   for (bool Changed = true; Changed; ++NumIters) {
1817     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1818     (void) NumIters;
1819     Changed = false;
1820     for (auto &Reg : Registers) {
1821       CodeGenRegister::RegUnitList NormalUnits;
1822       BitVector NormalRegs;
1823       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1824                                  NormalUnits, *this);
1825     }
1826   }
1827 }
1828 
1829 // Find a set in UniqueSets with the same elements as Set.
1830 // Return an iterator into UniqueSets.
1831 static std::vector<RegUnitSet>::const_iterator
1832 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1833                const RegUnitSet &Set) {
1834   std::vector<RegUnitSet>::const_iterator
1835     I = UniqueSets.begin(), E = UniqueSets.end();
1836   for(;I != E; ++I) {
1837     if (I->Units == Set.Units)
1838       break;
1839   }
1840   return I;
1841 }
1842 
1843 // Return true if the RUSubSet is a subset of RUSuperSet.
1844 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1845                             const std::vector<unsigned> &RUSuperSet) {
1846   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1847                        RUSubSet.begin(), RUSubSet.end());
1848 }
1849 
1850 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1851 /// but with one or two registers removed. We occasionally have registers like
1852 /// APSR and PC thrown in with the general registers. We also see many
1853 /// special-purpose register subsets, such as tail-call and Thumb
1854 /// encodings. Generating all possible overlapping sets is combinatorial and
1855 /// overkill for modeling pressure. Ideally we could fix this statically in
1856 /// tablegen by (1) having the target define register classes that only include
1857 /// the allocatable registers and marking other classes as non-allocatable and
1858 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1859 /// the purpose of pressure.  However, we make an attempt to handle targets that
1860 /// are not nicely defined by merging nearly identical register unit sets
1861 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1862 /// set limit by filtering the reserved registers.
1863 ///
1864 /// Merge sets only if the units have the same weight. For example, on ARM,
1865 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1866 /// should not expand the S set to include D regs.
1867 void CodeGenRegBank::pruneUnitSets() {
1868   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1869 
1870   // Form an equivalence class of UnitSets with no significant difference.
1871   std::vector<unsigned> SuperSetIDs;
1872   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1873        SubIdx != EndIdx; ++SubIdx) {
1874     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1875     unsigned SuperIdx = 0;
1876     for (; SuperIdx != EndIdx; ++SuperIdx) {
1877       if (SuperIdx == SubIdx)
1878         continue;
1879 
1880       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1881       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1882       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1883           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1884           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1885           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1886         LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1887                           << "\n");
1888         // We can pick any of the set names for the merged set. Go for the
1889         // shortest one to avoid picking the name of one of the classes that are
1890         // artificially created by tablegen. So "FPR128_lo" instead of
1891         // "QQQQ_with_qsub3_in_FPR128_lo".
1892         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1893           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1894         break;
1895       }
1896     }
1897     if (SuperIdx == EndIdx)
1898       SuperSetIDs.push_back(SubIdx);
1899   }
1900   // Populate PrunedUnitSets with each equivalence class's superset.
1901   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1902   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1903     unsigned SuperIdx = SuperSetIDs[i];
1904     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1905     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1906   }
1907   RegUnitSets.swap(PrunedUnitSets);
1908 }
1909 
1910 // Create a RegUnitSet for each RegClass that contains all units in the class
1911 // including adopted units that are necessary to model register pressure. Then
1912 // iteratively compute RegUnitSets such that the union of any two overlapping
1913 // RegUnitSets is repreresented.
1914 //
1915 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1916 // RegUnitSet that is a superset of that RegUnitClass.
1917 void CodeGenRegBank::computeRegUnitSets() {
1918   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1919 
1920   // Compute a unique RegUnitSet for each RegClass.
1921   auto &RegClasses = getRegClasses();
1922   for (auto &RC : RegClasses) {
1923     if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
1924       continue;
1925 
1926     // Speculatively grow the RegUnitSets to hold the new set.
1927     RegUnitSets.resize(RegUnitSets.size() + 1);
1928     RegUnitSets.back().Name = RC.getName();
1929 
1930     // Compute a sorted list of units in this class.
1931     RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1932 
1933     // Find an existing RegUnitSet.
1934     std::vector<RegUnitSet>::const_iterator SetI =
1935       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1936     if (SetI != std::prev(RegUnitSets.end()))
1937       RegUnitSets.pop_back();
1938   }
1939 
1940   if (RegUnitSets.empty())
1941     PrintFatalError("RegUnitSets cannot be empty!");
1942 
1943   LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1944                                                    USEnd = RegUnitSets.size();
1945                                                    USIdx < USEnd; ++USIdx) {
1946     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1947     for (auto &U : RegUnitSets[USIdx].Units)
1948       printRegUnitName(U);
1949     dbgs() << "\n";
1950   });
1951 
1952   // Iteratively prune unit sets.
1953   pruneUnitSets();
1954 
1955   LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1956                                                  USEnd = RegUnitSets.size();
1957                                                  USIdx < USEnd; ++USIdx) {
1958     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1959     for (auto &U : RegUnitSets[USIdx].Units)
1960       printRegUnitName(U);
1961     dbgs() << "\n";
1962   } dbgs() << "\nUnion sets:\n");
1963 
1964   // Iterate over all unit sets, including new ones added by this loop.
1965   unsigned NumRegUnitSubSets = RegUnitSets.size();
1966   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1967     // In theory, this is combinatorial. In practice, it needs to be bounded
1968     // by a small number of sets for regpressure to be efficient.
1969     // If the assert is hit, we need to implement pruning.
1970     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1971 
1972     // Compare new sets with all original classes.
1973     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1974          SearchIdx != EndIdx; ++SearchIdx) {
1975       std::set<unsigned> Intersection;
1976       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1977                             RegUnitSets[Idx].Units.end(),
1978                             RegUnitSets[SearchIdx].Units.begin(),
1979                             RegUnitSets[SearchIdx].Units.end(),
1980                             std::inserter(Intersection, Intersection.begin()));
1981       if (Intersection.empty())
1982         continue;
1983 
1984       // Speculatively grow the RegUnitSets to hold the new set.
1985       RegUnitSets.resize(RegUnitSets.size() + 1);
1986       RegUnitSets.back().Name =
1987         RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;
1988 
1989       std::set_union(RegUnitSets[Idx].Units.begin(),
1990                      RegUnitSets[Idx].Units.end(),
1991                      RegUnitSets[SearchIdx].Units.begin(),
1992                      RegUnitSets[SearchIdx].Units.end(),
1993                      std::inserter(RegUnitSets.back().Units,
1994                                    RegUnitSets.back().Units.begin()));
1995 
1996       // Find an existing RegUnitSet, or add the union to the unique sets.
1997       std::vector<RegUnitSet>::const_iterator SetI =
1998         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1999       if (SetI != std::prev(RegUnitSets.end()))
2000         RegUnitSets.pop_back();
2001       else {
2002         LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
2003                           << RegUnitSets.back().Name << ":";
2004                    for (auto &U
2005                         : RegUnitSets.back().Units) printRegUnitName(U);
2006                    dbgs() << "\n";);
2007       }
2008     }
2009   }
2010 
2011   // Iteratively prune unit sets after inferring supersets.
2012   pruneUnitSets();
2013 
2014   LLVM_DEBUG(
2015       dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2016                            USIdx < USEnd; ++USIdx) {
2017         dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2018         for (auto &U : RegUnitSets[USIdx].Units)
2019           printRegUnitName(U);
2020         dbgs() << "\n";
2021       });
2022 
2023   // For each register class, list the UnitSets that are supersets.
2024   RegClassUnitSets.resize(RegClasses.size());
2025   int RCIdx = -1;
2026   for (auto &RC : RegClasses) {
2027     ++RCIdx;
2028     if (!RC.Allocatable)
2029       continue;
2030 
2031     // Recompute the sorted list of units in this class.
2032     std::vector<unsigned> RCRegUnits;
2033     RC.buildRegUnitSet(*this, RCRegUnits);
2034 
2035     // Don't increase pressure for unallocatable regclasses.
2036     if (RCRegUnits.empty())
2037       continue;
2038 
2039     LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2040                for (auto U
2041                     : RCRegUnits) printRegUnitName(U);
2042                dbgs() << "\n  UnitSetIDs:");
2043 
2044     // Find all supersets.
2045     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2046          USIdx != USEnd; ++USIdx) {
2047       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2048         LLVM_DEBUG(dbgs() << " " << USIdx);
2049         RegClassUnitSets[RCIdx].push_back(USIdx);
2050       }
2051     }
2052     LLVM_DEBUG(dbgs() << "\n");
2053     assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) &&
2054            "missing unit set for regclass");
2055   }
2056 
2057   // For each register unit, ensure that we have the list of UnitSets that
2058   // contain the unit. Normally, this matches an existing list of UnitSets for a
2059   // register class. If not, we create a new entry in RegClassUnitSets as a
2060   // "fake" register class.
2061   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2062        UnitIdx < UnitEnd; ++UnitIdx) {
2063     std::vector<unsigned> RUSets;
2064     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2065       RegUnitSet &RUSet = RegUnitSets[i];
2066       if (!is_contained(RUSet.Units, UnitIdx))
2067         continue;
2068       RUSets.push_back(i);
2069     }
2070     unsigned RCUnitSetsIdx = 0;
2071     for (unsigned e = RegClassUnitSets.size();
2072          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2073       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2074         break;
2075       }
2076     }
2077     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2078     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2079       // Create a new list of UnitSets as a "fake" register class.
2080       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2081       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2082     }
2083   }
2084 }
2085 
2086 void CodeGenRegBank::computeRegUnitLaneMasks() {
2087   for (auto &Register : Registers) {
2088     // Create an initial lane mask for all register units.
2089     const auto &RegUnits = Register.getRegUnits();
2090     CodeGenRegister::RegUnitLaneMaskList
2091         RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2092     // Iterate through SubRegisters.
2093     typedef CodeGenRegister::SubRegMap SubRegMap;
2094     const SubRegMap &SubRegs = Register.getSubRegs();
2095     for (auto S : SubRegs) {
2096       CodeGenRegister *SubReg = S.second;
2097       // Ignore non-leaf subregisters, their lane masks are fully covered by
2098       // the leaf subregisters anyway.
2099       if (!SubReg->getSubRegs().empty())
2100         continue;
2101       CodeGenSubRegIndex *SubRegIndex = S.first;
2102       const CodeGenRegister *SubRegister = S.second;
2103       LaneBitmask LaneMask = SubRegIndex->LaneMask;
2104       // Distribute LaneMask to Register Units touched.
2105       for (unsigned SUI : SubRegister->getRegUnits()) {
2106         bool Found = false;
2107         unsigned u = 0;
2108         for (unsigned RU : RegUnits) {
2109           if (SUI == RU) {
2110             RegUnitLaneMasks[u] |= LaneMask;
2111             assert(!Found);
2112             Found = true;
2113           }
2114           ++u;
2115         }
2116         (void)Found;
2117         assert(Found);
2118       }
2119     }
2120     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2121   }
2122 }
2123 
2124 void CodeGenRegBank::computeDerivedInfo() {
2125   computeComposites();
2126   computeSubRegLaneMasks();
2127 
2128   // Compute a weight for each register unit created during getSubRegs.
2129   // This may create adopted register units (with unit # >= NumNativeRegUnits).
2130   computeRegUnitWeights();
2131 
2132   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2133   // supersets for the union of overlapping sets.
2134   computeRegUnitSets();
2135 
2136   computeRegUnitLaneMasks();
2137 
2138   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2139   for (CodeGenRegisterClass &RC : RegClasses) {
2140     RC.HasDisjunctSubRegs = false;
2141     RC.CoveredBySubRegs = true;
2142     for (const CodeGenRegister *Reg : RC.getMembers()) {
2143       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2144       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2145     }
2146   }
2147 
2148   // Get the weight of each set.
2149   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2150     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2151 
2152   // Find the order of each set.
2153   RegUnitSetOrder.reserve(RegUnitSets.size());
2154   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2155     RegUnitSetOrder.push_back(Idx);
2156 
2157   llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2158     return getRegPressureSet(ID1).Units.size() <
2159            getRegPressureSet(ID2).Units.size();
2160   });
2161   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2162     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2163   }
2164 }
2165 
2166 //
2167 // Synthesize missing register class intersections.
2168 //
2169 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2170 // returns a maximal register class for all X.
2171 //
2172 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2173   assert(!RegClasses.empty());
2174   // Stash the iterator to the last element so that this loop doesn't visit
2175   // elements added by the getOrCreateSubClass call within it.
2176   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2177        I != std::next(E); ++I) {
2178     CodeGenRegisterClass *RC1 = RC;
2179     CodeGenRegisterClass *RC2 = &*I;
2180     if (RC1 == RC2)
2181       continue;
2182 
2183     // Compute the set intersection of RC1 and RC2.
2184     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2185     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2186     CodeGenRegister::Vec Intersection;
2187     std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2188                           Memb2.end(),
2189                           std::inserter(Intersection, Intersection.begin()),
2190                           deref<std::less<>>());
2191 
2192     // Skip disjoint class pairs.
2193     if (Intersection.empty())
2194       continue;
2195 
2196     // If RC1 and RC2 have different spill sizes or alignments, use the
2197     // stricter one for sub-classing.  If they are equal, prefer RC1.
2198     if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2199       std::swap(RC1, RC2);
2200 
2201     getOrCreateSubClass(RC1, &Intersection,
2202                         RC1->getName() + "_and_" + RC2->getName());
2203   }
2204 }
2205 
2206 //
2207 // Synthesize missing sub-classes for getSubClassWithSubReg().
2208 //
2209 // Make sure that the set of registers in RC with a given SubIdx sub-register
2210 // form a register class.  Update RC->SubClassWithSubReg.
2211 //
2212 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2213   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2214   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2215                    deref<std::less<>>>
2216       SubReg2SetMap;
2217 
2218   // Compute the set of registers supporting each SubRegIndex.
2219   SubReg2SetMap SRSets;
2220   for (const auto R : RC->getMembers()) {
2221     if (R->Artificial)
2222       continue;
2223     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2224     for (auto I : SRM) {
2225       if (!I.first->Artificial)
2226         SRSets[I.first].push_back(R);
2227     }
2228   }
2229 
2230   for (auto I : SRSets)
2231     sortAndUniqueRegisters(I.second);
2232 
2233   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2234   // numerical order to visit synthetic indices last.
2235   for (const auto &SubIdx : SubRegIndices) {
2236     if (SubIdx.Artificial)
2237       continue;
2238     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2239     // Unsupported SubRegIndex. Skip it.
2240     if (I == SRSets.end())
2241       continue;
2242     // In most cases, all RC registers support the SubRegIndex.
2243     if (I->second.size() == RC->getMembers().size()) {
2244       RC->setSubClassWithSubReg(&SubIdx, RC);
2245       continue;
2246     }
2247     // This is a real subset.  See if we have a matching class.
2248     CodeGenRegisterClass *SubRC =
2249       getOrCreateSubClass(RC, &I->second,
2250                           RC->getName() + "_with_" + I->first->getName());
2251     RC->setSubClassWithSubReg(&SubIdx, SubRC);
2252   }
2253 }
2254 
2255 //
2256 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2257 //
2258 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2259 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2260 //
2261 
2262 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2263                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2264   SmallVector<std::pair<const CodeGenRegister*,
2265                         const CodeGenRegister*>, 16> SSPairs;
2266   BitVector TopoSigs(getNumTopoSigs());
2267 
2268   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2269   for (auto &SubIdx : SubRegIndices) {
2270     // Skip indexes that aren't fully supported by RC's registers. This was
2271     // computed by inferSubClassWithSubReg() above which should have been
2272     // called first.
2273     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2274       continue;
2275 
2276     // Build list of (Super, Sub) pairs for this SubIdx.
2277     SSPairs.clear();
2278     TopoSigs.reset();
2279     for (const auto Super : RC->getMembers()) {
2280       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2281       assert(Sub && "Missing sub-register");
2282       SSPairs.push_back(std::make_pair(Super, Sub));
2283       TopoSigs.set(Sub->getTopoSig());
2284     }
2285 
2286     // Iterate over sub-register class candidates.  Ignore classes created by
2287     // this loop. They will never be useful.
2288     // Store an iterator to the last element (not end) so that this loop doesn't
2289     // visit newly inserted elements.
2290     assert(!RegClasses.empty());
2291     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2292          I != std::next(E); ++I) {
2293       CodeGenRegisterClass &SubRC = *I;
2294       if (SubRC.Artificial)
2295         continue;
2296       // Topological shortcut: SubRC members have the wrong shape.
2297       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2298         continue;
2299       // Compute the subset of RC that maps into SubRC.
2300       CodeGenRegister::Vec SubSetVec;
2301       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2302         if (SubRC.contains(SSPairs[i].second))
2303           SubSetVec.push_back(SSPairs[i].first);
2304 
2305       if (SubSetVec.empty())
2306         continue;
2307 
2308       // RC injects completely into SubRC.
2309       sortAndUniqueRegisters(SubSetVec);
2310       if (SubSetVec.size() == SSPairs.size()) {
2311         SubRC.addSuperRegClass(&SubIdx, RC);
2312         continue;
2313       }
2314 
2315       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2316       // class.
2317       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2318                                           SubIdx.getName() + "_in_" +
2319                                           SubRC.getName());
2320     }
2321   }
2322 }
2323 
2324 //
2325 // Infer missing register classes.
2326 //
2327 void CodeGenRegBank::computeInferredRegisterClasses() {
2328   assert(!RegClasses.empty());
2329   // When this function is called, the register classes have not been sorted
2330   // and assigned EnumValues yet.  That means getSubClasses(),
2331   // getSuperClasses(), and hasSubClass() functions are defunct.
2332 
2333   // Use one-before-the-end so it doesn't move forward when new elements are
2334   // added.
2335   auto FirstNewRC = std::prev(RegClasses.end());
2336 
2337   // Visit all register classes, including the ones being added by the loop.
2338   // Watch out for iterator invalidation here.
2339   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2340     CodeGenRegisterClass *RC = &*I;
2341     if (RC->Artificial)
2342       continue;
2343 
2344     // Synthesize answers for getSubClassWithSubReg().
2345     inferSubClassWithSubReg(RC);
2346 
2347     // Synthesize answers for getCommonSubClass().
2348     inferCommonSubClass(RC);
2349 
2350     // Synthesize answers for getMatchingSuperRegClass().
2351     inferMatchingSuperRegClass(RC);
2352 
2353     // New register classes are created while this loop is running, and we need
2354     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2355     // to match old super-register classes with sub-register classes created
2356     // after inferMatchingSuperRegClass was called.  At this point,
2357     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2358     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2359     if (I == FirstNewRC) {
2360       auto NextNewRC = std::prev(RegClasses.end());
2361       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2362            ++I2)
2363         inferMatchingSuperRegClass(&*I2, E2);
2364       FirstNewRC = NextNewRC;
2365     }
2366   }
2367 }
2368 
2369 /// getRegisterClassForRegister - Find the register class that contains the
2370 /// specified physical register.  If the register is not in a register class,
2371 /// return null. If the register is in multiple classes, and the classes have a
2372 /// superset-subset relationship and the same set of types, return the
2373 /// superclass.  Otherwise return null.
2374 const CodeGenRegisterClass*
2375 CodeGenRegBank::getRegClassForRegister(Record *R) {
2376   const CodeGenRegister *Reg = getReg(R);
2377   const CodeGenRegisterClass *FoundRC = nullptr;
2378   for (const auto &RC : getRegClasses()) {
2379     if (!RC.contains(Reg))
2380       continue;
2381 
2382     // If this is the first class that contains the register,
2383     // make a note of it and go on to the next class.
2384     if (!FoundRC) {
2385       FoundRC = &RC;
2386       continue;
2387     }
2388 
2389     // If a register's classes have different types, return null.
2390     if (RC.getValueTypes() != FoundRC->getValueTypes())
2391       return nullptr;
2392 
2393     // Check to see if the previously found class that contains
2394     // the register is a subclass of the current class. If so,
2395     // prefer the superclass.
2396     if (RC.hasSubClass(FoundRC)) {
2397       FoundRC = &RC;
2398       continue;
2399     }
2400 
2401     // Check to see if the previously found class that contains
2402     // the register is a superclass of the current class. If so,
2403     // prefer the superclass.
2404     if (FoundRC->hasSubClass(&RC))
2405       continue;
2406 
2407     // Multiple classes, and neither is a superclass of the other.
2408     // Return null.
2409     return nullptr;
2410   }
2411   return FoundRC;
2412 }
2413 
2414 const CodeGenRegisterClass *
2415 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2416                                        ValueTypeByHwMode *VT) {
2417   const CodeGenRegister *Reg = getReg(RegRecord);
2418   const CodeGenRegisterClass *BestRC = nullptr;
2419   for (const auto &RC : getRegClasses()) {
2420     if ((!VT || RC.hasType(*VT)) &&
2421         RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2422       BestRC = &RC;
2423   }
2424 
2425   assert(BestRC && "Couldn't find the register class");
2426   return BestRC;
2427 }
2428 
2429 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2430   SetVector<const CodeGenRegister*> Set;
2431 
2432   // First add Regs with all sub-registers.
2433   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2434     CodeGenRegister *Reg = getReg(Regs[i]);
2435     if (Set.insert(Reg))
2436       // Reg is new, add all sub-registers.
2437       // The pre-ordering is not important here.
2438       Reg->addSubRegsPreOrder(Set, *this);
2439   }
2440 
2441   // Second, find all super-registers that are completely covered by the set.
2442   for (unsigned i = 0; i != Set.size(); ++i) {
2443     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2444     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2445       const CodeGenRegister *Super = SR[j];
2446       if (!Super->CoveredBySubRegs || Set.count(Super))
2447         continue;
2448       // This new super-register is covered by its sub-registers.
2449       bool AllSubsInSet = true;
2450       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2451       for (auto I : SRM)
2452         if (!Set.count(I.second)) {
2453           AllSubsInSet = false;
2454           break;
2455         }
2456       // All sub-registers in Set, add Super as well.
2457       // We will visit Super later to recheck its super-registers.
2458       if (AllSubsInSet)
2459         Set.insert(Super);
2460     }
2461   }
2462 
2463   // Convert to BitVector.
2464   BitVector BV(Registers.size() + 1);
2465   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2466     BV.set(Set[i]->EnumValue);
2467   return BV;
2468 }
2469 
2470 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2471   if (Unit < NumNativeRegUnits)
2472     dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2473   else
2474     dbgs() << " #" << Unit;
2475 }
2476