1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines structures to encapsulate information gleaned from the 10 // target register and register class definitions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenRegisters.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IntEqClasses.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/TableGen/Error.h" 29 #include "llvm/TableGen/Record.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstdint> 33 #include <iterator> 34 #include <map> 35 #include <queue> 36 #include <set> 37 #include <string> 38 #include <tuple> 39 #include <utility> 40 #include <vector> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "regalloc-emitter" 45 46 //===----------------------------------------------------------------------===// 47 // CodeGenSubRegIndex 48 //===----------------------------------------------------------------------===// 49 50 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 51 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 52 Name = std::string(R->getName()); 53 if (R->getValue("Namespace")) 54 Namespace = std::string(R->getValueAsString("Namespace")); 55 Size = R->getValueAsInt("Size"); 56 Offset = R->getValueAsInt("Offset"); 57 } 58 59 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 60 unsigned Enum) 61 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)), 62 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true), 63 Artificial(true) {} 64 65 std::string CodeGenSubRegIndex::getQualifiedName() const { 66 std::string N = getNamespace(); 67 if (!N.empty()) 68 N += "::"; 69 N += getName(); 70 return N; 71 } 72 73 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 74 if (!TheDef) 75 return; 76 77 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 78 if (!Comps.empty()) { 79 if (Comps.size() != 2) 80 PrintFatalError(TheDef->getLoc(), 81 "ComposedOf must have exactly two entries"); 82 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 83 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 84 CodeGenSubRegIndex *X = A->addComposite(B, this); 85 if (X) 86 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 87 } 88 89 std::vector<Record*> Parts = 90 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 91 if (!Parts.empty()) { 92 if (Parts.size() < 2) 93 PrintFatalError(TheDef->getLoc(), 94 "CoveredBySubRegs must have two or more entries"); 95 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 96 for (Record *Part : Parts) 97 IdxParts.push_back(RegBank.getSubRegIdx(Part)); 98 setConcatenationOf(IdxParts); 99 } 100 } 101 102 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 103 // Already computed? 104 if (LaneMask.any()) 105 return LaneMask; 106 107 // Recursion guard, shouldn't be required. 108 LaneMask = LaneBitmask::getAll(); 109 110 // The lane mask is simply the union of all sub-indices. 111 LaneBitmask M; 112 for (const auto &C : Composed) 113 M |= C.second->computeLaneMask(); 114 assert(M.any() && "Missing lane mask, sub-register cycle?"); 115 LaneMask = M; 116 return LaneMask; 117 } 118 119 void CodeGenSubRegIndex::setConcatenationOf( 120 ArrayRef<CodeGenSubRegIndex*> Parts) { 121 if (ConcatenationOf.empty()) 122 ConcatenationOf.assign(Parts.begin(), Parts.end()); 123 else 124 assert(std::equal(Parts.begin(), Parts.end(), 125 ConcatenationOf.begin()) && "parts consistent"); 126 } 127 128 void CodeGenSubRegIndex::computeConcatTransitiveClosure() { 129 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator 130 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { 131 CodeGenSubRegIndex *SubIdx = *I; 132 SubIdx->computeConcatTransitiveClosure(); 133 #ifndef NDEBUG 134 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) 135 assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); 136 #endif 137 138 if (SubIdx->ConcatenationOf.empty()) { 139 ++I; 140 } else { 141 I = ConcatenationOf.erase(I); 142 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), 143 SubIdx->ConcatenationOf.end()); 144 I += SubIdx->ConcatenationOf.size(); 145 } 146 } 147 } 148 149 //===----------------------------------------------------------------------===// 150 // CodeGenRegister 151 //===----------------------------------------------------------------------===// 152 153 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 154 : TheDef(R), EnumValue(Enum), 155 CostPerUse(R->getValueAsListOfInts("CostPerUse")), 156 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 157 HasDisjunctSubRegs(false), SubRegsComplete(false), 158 SuperRegsComplete(false), TopoSig(~0u) { 159 Artificial = R->getValueAsBit("isArtificial"); 160 } 161 162 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 163 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 164 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 165 166 if (SRIs.size() != SRs.size()) 167 PrintFatalError(TheDef->getLoc(), 168 "SubRegs and SubRegIndices must have the same size"); 169 170 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 171 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 172 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 173 } 174 175 // Also compute leading super-registers. Each register has a list of 176 // covered-by-subregs super-registers where it appears as the first explicit 177 // sub-register. 178 // 179 // This is used by computeSecondarySubRegs() to find candidates. 180 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 181 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 182 183 // Add ad hoc alias links. This is a symmetric relationship between two 184 // registers, so build a symmetric graph by adding links in both ends. 185 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 186 for (Record *Alias : Aliases) { 187 CodeGenRegister *Reg = RegBank.getReg(Alias); 188 ExplicitAliases.push_back(Reg); 189 Reg->ExplicitAliases.push_back(this); 190 } 191 } 192 193 StringRef CodeGenRegister::getName() const { 194 assert(TheDef && "no def"); 195 return TheDef->getName(); 196 } 197 198 namespace { 199 200 // Iterate over all register units in a set of registers. 201 class RegUnitIterator { 202 CodeGenRegister::Vec::const_iterator RegI, RegE; 203 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 204 static CodeGenRegister::RegUnitList Sentinel; 205 206 public: 207 RegUnitIterator(const CodeGenRegister::Vec &Regs): 208 RegI(Regs.begin()), RegE(Regs.end()) { 209 210 if (RegI == RegE) { 211 UnitI = Sentinel.end(); 212 UnitE = Sentinel.end(); 213 } else { 214 UnitI = (*RegI)->getRegUnits().begin(); 215 UnitE = (*RegI)->getRegUnits().end(); 216 advance(); 217 } 218 } 219 220 bool isValid() const { return UnitI != UnitE; } 221 222 unsigned operator* () const { assert(isValid()); return *UnitI; } 223 224 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 225 226 /// Preincrement. Move to the next unit. 227 void operator++() { 228 assert(isValid() && "Cannot advance beyond the last operand"); 229 ++UnitI; 230 advance(); 231 } 232 233 protected: 234 void advance() { 235 while (UnitI == UnitE) { 236 if (++RegI == RegE) 237 break; 238 UnitI = (*RegI)->getRegUnits().begin(); 239 UnitE = (*RegI)->getRegUnits().end(); 240 } 241 } 242 }; 243 244 CodeGenRegister::RegUnitList RegUnitIterator::Sentinel; 245 246 } // end anonymous namespace 247 248 // Return true of this unit appears in RegUnits. 249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 250 return RegUnits.test(Unit); 251 } 252 253 // Inherit register units from subregisters. 254 // Return true if the RegUnits changed. 255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 256 bool changed = false; 257 for (const auto &SubReg : SubRegs) { 258 CodeGenRegister *SR = SubReg.second; 259 // Merge the subregister's units into this register's RegUnits. 260 changed |= (RegUnits |= SR->RegUnits); 261 } 262 263 return changed; 264 } 265 266 const CodeGenRegister::SubRegMap & 267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 268 // Only compute this map once. 269 if (SubRegsComplete) 270 return SubRegs; 271 SubRegsComplete = true; 272 273 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 274 275 // First insert the explicit subregs and make sure they are fully indexed. 276 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 277 CodeGenRegister *SR = ExplicitSubRegs[i]; 278 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 279 if (!SR->Artificial) 280 Idx->Artificial = false; 281 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 282 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 283 " appears twice in Register " + getName()); 284 // Map explicit sub-registers first, so the names take precedence. 285 // The inherited sub-registers are mapped below. 286 SubReg2Idx.insert(std::make_pair(SR, Idx)); 287 } 288 289 // Keep track of inherited subregs and how they can be reached. 290 SmallPtrSet<CodeGenRegister*, 8> Orphans; 291 292 // Clone inherited subregs and place duplicate entries in Orphans. 293 // Here the order is important - earlier subregs take precedence. 294 for (CodeGenRegister *ESR : ExplicitSubRegs) { 295 const SubRegMap &Map = ESR->computeSubRegs(RegBank); 296 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; 297 298 for (const auto &SR : Map) { 299 if (!SubRegs.insert(SR).second) 300 Orphans.insert(SR.second); 301 } 302 } 303 304 // Expand any composed subreg indices. 305 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 306 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 307 // expanded subreg indices recursively. 308 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 309 for (unsigned i = 0; i != Indices.size(); ++i) { 310 CodeGenSubRegIndex *Idx = Indices[i]; 311 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 312 CodeGenRegister *SR = SubRegs[Idx]; 313 const SubRegMap &Map = SR->computeSubRegs(RegBank); 314 315 // Look at the possible compositions of Idx. 316 // They may not all be supported by SR. 317 for (auto Comp : Comps) { 318 SubRegMap::const_iterator SRI = Map.find(Comp.first); 319 if (SRI == Map.end()) 320 continue; // Idx + I->first doesn't exist in SR. 321 // Add I->second as a name for the subreg SRI->second, assuming it is 322 // orphaned, and the name isn't already used for something else. 323 if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second)) 324 continue; 325 // We found a new name for the orphaned sub-register. 326 SubRegs.insert(std::make_pair(Comp.second, SRI->second)); 327 Indices.push_back(Comp.second); 328 } 329 } 330 331 // Now Orphans contains the inherited subregisters without a direct index. 332 // Create inferred indexes for all missing entries. 333 // Work backwards in the Indices vector in order to compose subregs bottom-up. 334 // Consider this subreg sequence: 335 // 336 // qsub_1 -> dsub_0 -> ssub_0 337 // 338 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 339 // can be reached in two different ways: 340 // 341 // qsub_1 -> ssub_0 342 // dsub_2 -> ssub_0 343 // 344 // We pick the latter composition because another register may have [dsub_0, 345 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 346 // dsub_2 -> ssub_0 composition can be shared. 347 while (!Indices.empty() && !Orphans.empty()) { 348 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 349 CodeGenRegister *SR = SubRegs[Idx]; 350 const SubRegMap &Map = SR->computeSubRegs(RegBank); 351 for (const auto &SubReg : Map) 352 if (Orphans.erase(SubReg.second)) 353 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; 354 } 355 356 // Compute the inverse SubReg -> Idx map. 357 for (const auto &SubReg : SubRegs) { 358 if (SubReg.second == this) { 359 ArrayRef<SMLoc> Loc; 360 if (TheDef) 361 Loc = TheDef->getLoc(); 362 PrintFatalError(Loc, "Register " + getName() + 363 " has itself as a sub-register"); 364 } 365 366 // Compute AllSuperRegsCovered. 367 if (!CoveredBySubRegs) 368 SubReg.first->AllSuperRegsCovered = false; 369 370 // Ensure that every sub-register has a unique name. 371 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 372 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; 373 if (Ins->second == SubReg.first) 374 continue; 375 // Trouble: Two different names for SubReg.second. 376 ArrayRef<SMLoc> Loc; 377 if (TheDef) 378 Loc = TheDef->getLoc(); 379 PrintFatalError(Loc, "Sub-register can't have two names: " + 380 SubReg.second->getName() + " available as " + 381 SubReg.first->getName() + " and " + Ins->second->getName()); 382 } 383 384 // Derive possible names for sub-register concatenations from any explicit 385 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 386 // that getConcatSubRegIndex() won't invent any concatenated indices that the 387 // user already specified. 388 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 389 CodeGenRegister *SR = ExplicitSubRegs[i]; 390 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 || 391 SR->Artificial) 392 continue; 393 394 // SR is composed of multiple sub-regs. Find their names in this register. 395 SmallVector<CodeGenSubRegIndex*, 8> Parts; 396 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) { 397 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j]; 398 if (!I.Artificial) 399 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 400 } 401 402 // Offer this as an existing spelling for the concatenation of Parts. 403 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; 404 Idx.setConcatenationOf(Parts); 405 } 406 407 // Initialize RegUnitList. Because getSubRegs is called recursively, this 408 // processes the register hierarchy in postorder. 409 // 410 // Inherit all sub-register units. It is good enough to look at the explicit 411 // sub-registers, the other registers won't contribute any more units. 412 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 413 CodeGenRegister *SR = ExplicitSubRegs[i]; 414 RegUnits |= SR->RegUnits; 415 } 416 417 // Absent any ad hoc aliasing, we create one register unit per leaf register. 418 // These units correspond to the maximal cliques in the register overlap 419 // graph which is optimal. 420 // 421 // When there is ad hoc aliasing, we simply create one unit per edge in the 422 // undirected ad hoc aliasing graph. Technically, we could do better by 423 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 424 // are extremely rare anyway (I've never seen one), so we don't bother with 425 // the added complexity. 426 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 427 CodeGenRegister *AR = ExplicitAliases[i]; 428 // Only visit each edge once. 429 if (AR->SubRegsComplete) 430 continue; 431 // Create a RegUnit representing this alias edge, and add it to both 432 // registers. 433 unsigned Unit = RegBank.newRegUnit(this, AR); 434 RegUnits.set(Unit); 435 AR->RegUnits.set(Unit); 436 } 437 438 // Finally, create units for leaf registers without ad hoc aliases. Note that 439 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 440 // necessary. This means the aliasing leaf registers can share a single unit. 441 if (RegUnits.empty()) 442 RegUnits.set(RegBank.newRegUnit(this)); 443 444 // We have now computed the native register units. More may be adopted later 445 // for balancing purposes. 446 NativeRegUnits = RegUnits; 447 448 return SubRegs; 449 } 450 451 // In a register that is covered by its sub-registers, try to find redundant 452 // sub-registers. For example: 453 // 454 // QQ0 = {Q0, Q1} 455 // Q0 = {D0, D1} 456 // Q1 = {D2, D3} 457 // 458 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 459 // the register definition. 460 // 461 // The explicitly specified registers form a tree. This function discovers 462 // sub-register relationships that would force a DAG. 463 // 464 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 465 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 466 467 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue; 468 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs) 469 SubRegQueue.push(P); 470 471 // Look at the leading super-registers of each sub-register. Those are the 472 // candidates for new sub-registers, assuming they are fully contained in 473 // this register. 474 while (!SubRegQueue.empty()) { 475 CodeGenSubRegIndex *SubRegIdx; 476 const CodeGenRegister *SubReg; 477 std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); 478 SubRegQueue.pop(); 479 480 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 481 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 482 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 483 // Already got this sub-register? 484 if (Cand == this || getSubRegIndex(Cand)) 485 continue; 486 // Check if each component of Cand is already a sub-register. 487 assert(!Cand->ExplicitSubRegs.empty() && 488 "Super-register has no sub-registers"); 489 if (Cand->ExplicitSubRegs.size() == 1) 490 continue; 491 SmallVector<CodeGenSubRegIndex*, 8> Parts; 492 // We know that the first component is (SubRegIdx,SubReg). However we 493 // may still need to split it into smaller subregister parts. 494 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); 495 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); 496 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { 497 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { 498 if (SubRegIdx->ConcatenationOf.empty()) 499 Parts.push_back(SubRegIdx); 500 else 501 append_range(Parts, SubRegIdx->ConcatenationOf); 502 } else { 503 // Sub-register doesn't exist. 504 Parts.clear(); 505 break; 506 } 507 } 508 // There is nothing to do if some Cand sub-register is not part of this 509 // register. 510 if (Parts.empty()) 511 continue; 512 513 // Each part of Cand is a sub-register of this. Make the full Cand also 514 // a sub-register with a concatenated sub-register index. 515 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); 516 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg = 517 std::make_pair(Concat, Cand); 518 519 if (!SubRegs.insert(NewSubReg).second) 520 continue; 521 522 // We inserted a new subregister. 523 NewSubRegs.push_back(NewSubReg); 524 SubRegQueue.push(NewSubReg); 525 SubReg2Idx.insert(std::make_pair(Cand, Concat)); 526 } 527 } 528 529 // Create sub-register index composition maps for the synthesized indices. 530 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 531 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 532 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 533 for (auto SubReg : NewSubReg->SubRegs) { 534 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second); 535 if (!SubIdx) 536 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 537 SubReg.second->getName() + 538 " in " + getName()); 539 NewIdx->addComposite(SubReg.first, SubIdx); 540 } 541 } 542 } 543 544 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 545 // Only visit each register once. 546 if (SuperRegsComplete) 547 return; 548 SuperRegsComplete = true; 549 550 // Make sure all sub-registers have been visited first, so the super-reg 551 // lists will be topologically ordered. 552 for (auto SubReg : SubRegs) 553 SubReg.second->computeSuperRegs(RegBank); 554 555 // Now add this as a super-register on all sub-registers. 556 // Also compute the TopoSigId in post-order. 557 TopoSigId Id; 558 for (auto SubReg : SubRegs) { 559 // Topological signature computed from SubIdx, TopoId(SubReg). 560 // Loops and idempotent indices have TopoSig = ~0u. 561 Id.push_back(SubReg.first->EnumValue); 562 Id.push_back(SubReg.second->TopoSig); 563 564 // Don't add duplicate entries. 565 if (!SubReg.second->SuperRegs.empty() && 566 SubReg.second->SuperRegs.back() == this) 567 continue; 568 SubReg.second->SuperRegs.push_back(this); 569 } 570 TopoSig = RegBank.getTopoSig(Id); 571 } 572 573 void 574 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 575 CodeGenRegBank &RegBank) const { 576 assert(SubRegsComplete && "Must precompute sub-registers"); 577 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 578 CodeGenRegister *SR = ExplicitSubRegs[i]; 579 if (OSet.insert(SR)) 580 SR->addSubRegsPreOrder(OSet, RegBank); 581 } 582 // Add any secondary sub-registers that weren't part of the explicit tree. 583 for (auto SubReg : SubRegs) 584 OSet.insert(SubReg.second); 585 } 586 587 // Get the sum of this register's unit weights. 588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 589 unsigned Weight = 0; 590 for (unsigned RegUnit : RegUnits) { 591 Weight += RegBank.getRegUnit(RegUnit).Weight; 592 } 593 return Weight; 594 } 595 596 //===----------------------------------------------------------------------===// 597 // RegisterTuples 598 //===----------------------------------------------------------------------===// 599 600 // A RegisterTuples def is used to generate pseudo-registers from lists of 601 // sub-registers. We provide a SetTheory expander class that returns the new 602 // registers. 603 namespace { 604 605 struct TupleExpander : SetTheory::Expander { 606 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of 607 // the synthesized definitions for their lifetime. 608 std::vector<std::unique_ptr<Record>> &SynthDefs; 609 610 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs) 611 : SynthDefs(SynthDefs) {} 612 613 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 614 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 615 unsigned Dim = Indices.size(); 616 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 617 if (Dim != SubRegs->size()) 618 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 619 if (Dim < 2) 620 PrintFatalError(Def->getLoc(), 621 "Tuples must have at least 2 sub-registers"); 622 623 // Evaluate the sub-register lists to be zipped. 624 unsigned Length = ~0u; 625 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 626 for (unsigned i = 0; i != Dim; ++i) { 627 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 628 Length = std::min(Length, unsigned(Lists[i].size())); 629 } 630 631 if (Length == 0) 632 return; 633 634 // Precompute some types. 635 Record *RegisterCl = Def->getRecords().getClass("Register"); 636 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 637 std::vector<StringRef> RegNames = 638 Def->getValueAsListOfStrings("RegAsmNames"); 639 640 // Zip them up. 641 RecordKeeper &RK = Def->getRecords(); 642 for (unsigned n = 0; n != Length; ++n) { 643 std::string Name; 644 Record *Proto = Lists[0][n]; 645 std::vector<Init*> Tuple; 646 for (unsigned i = 0; i != Dim; ++i) { 647 Record *Reg = Lists[i][n]; 648 if (i) Name += '_'; 649 Name += Reg->getName(); 650 Tuple.push_back(DefInit::get(Reg)); 651 } 652 653 // Take the cost list of the first register in the tuple. 654 ListInit *CostList = Proto->getValueAsListInit("CostPerUse"); 655 SmallVector<Init *, 2> CostPerUse; 656 CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end()); 657 658 StringInit *AsmName = StringInit::get(RK, ""); 659 if (!RegNames.empty()) { 660 if (RegNames.size() <= n) 661 PrintFatalError(Def->getLoc(), 662 "Register tuple definition missing name for '" + 663 Name + "'."); 664 AsmName = StringInit::get(RK, RegNames[n]); 665 } 666 667 // Create a new Record representing the synthesized register. This record 668 // is only for consumption by CodeGenRegister, it is not added to the 669 // RecordKeeper. 670 SynthDefs.emplace_back( 671 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords())); 672 Record *NewReg = SynthDefs.back().get(); 673 Elts.insert(NewReg); 674 675 // Copy Proto super-classes. 676 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 677 for (const auto &SuperPair : Supers) 678 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 679 680 // Copy Proto fields. 681 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 682 RecordVal RV = Proto->getValues()[i]; 683 684 // Skip existing fields, like NAME. 685 if (NewReg->getValue(RV.getNameInit())) 686 continue; 687 688 StringRef Field = RV.getName(); 689 690 // Replace the sub-register list with Tuple. 691 if (Field == "SubRegs") 692 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 693 694 if (Field == "AsmName") 695 RV.setValue(AsmName); 696 697 // CostPerUse is aggregated from all Tuple members. 698 if (Field == "CostPerUse") 699 RV.setValue(ListInit::get(CostPerUse, CostList->getElementType())); 700 701 // Composite registers are always covered by sub-registers. 702 if (Field == "CoveredBySubRegs") 703 RV.setValue(BitInit::get(RK, true)); 704 705 // Copy fields from the RegisterTuples def. 706 if (Field == "SubRegIndices" || 707 Field == "CompositeIndices") { 708 NewReg->addValue(*Def->getValue(Field)); 709 continue; 710 } 711 712 // Some fields get their default uninitialized value. 713 if (Field == "DwarfNumbers" || 714 Field == "DwarfAlias" || 715 Field == "Aliases") { 716 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 717 NewReg->addValue(*DefRV); 718 continue; 719 } 720 721 // Everything else is copied from Proto. 722 NewReg->addValue(RV); 723 } 724 } 725 } 726 }; 727 728 } // end anonymous namespace 729 730 //===----------------------------------------------------------------------===// 731 // CodeGenRegisterClass 732 //===----------------------------------------------------------------------===// 733 734 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 735 llvm::sort(M, deref<std::less<>>()); 736 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end()); 737 } 738 739 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 740 : TheDef(R), Name(std::string(R->getName())), 741 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) { 742 GeneratePressureSet = R->getValueAsBit("GeneratePressureSet"); 743 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 744 if (TypeList.empty()) 745 PrintFatalError(R->getLoc(), "RegTypes list must not be empty!"); 746 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 747 Record *Type = TypeList[i]; 748 if (!Type->isSubClassOf("ValueType")) 749 PrintFatalError(R->getLoc(), 750 "RegTypes list member '" + Type->getName() + 751 "' does not derive from the ValueType class!"); 752 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); 753 } 754 755 // Allocation order 0 is the full set. AltOrders provides others. 756 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 757 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 758 Orders.resize(1 + AltOrders->size()); 759 760 // Default allocation order always contains all registers. 761 Artificial = true; 762 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 763 Orders[0].push_back((*Elements)[i]); 764 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 765 Members.push_back(Reg); 766 Artificial &= Reg->Artificial; 767 TopoSigs.set(Reg->getTopoSig()); 768 } 769 sortAndUniqueRegisters(Members); 770 771 // Alternative allocation orders may be subsets. 772 SetTheory::RecSet Order; 773 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 774 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 775 Orders[1 + i].append(Order.begin(), Order.end()); 776 // Verify that all altorder members are regclass members. 777 while (!Order.empty()) { 778 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 779 Order.pop_back(); 780 if (!contains(Reg)) 781 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 782 " is not a class member"); 783 } 784 } 785 786 Namespace = R->getValueAsString("Namespace"); 787 788 if (const RecordVal *RV = R->getValue("RegInfos")) 789 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) 790 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); 791 unsigned Size = R->getValueAsInt("Size"); 792 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && 793 "Impossible to determine register size"); 794 if (!RSI.hasDefault()) { 795 RegSizeInfo RI; 796 RI.RegSize = RI.SpillSize = Size ? Size 797 : VTs[0].getSimple().getSizeInBits(); 798 RI.SpillAlignment = R->getValueAsInt("Alignment"); 799 RSI.insertRegSizeForMode(DefaultMode, RI); 800 } 801 802 CopyCost = R->getValueAsInt("CopyCost"); 803 Allocatable = R->getValueAsBit("isAllocatable"); 804 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 805 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 806 if (AllocationPriority < 0 || AllocationPriority > 63) 807 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 808 this->AllocationPriority = AllocationPriority; 809 810 BitsInit *TSF = R->getValueAsBitsInit("TSFlags"); 811 for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) { 812 BitInit *Bit = cast<BitInit>(TSF->getBit(I)); 813 TSFlags |= uint8_t(Bit->getValue()) << I; 814 } 815 } 816 817 // Create an inferred register class that was missing from the .td files. 818 // Most properties will be inherited from the closest super-class after the 819 // class structure has been computed. 820 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 821 StringRef Name, Key Props) 822 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)), 823 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI), 824 CopyCost(0), Allocatable(true), AllocationPriority(0), TSFlags(0) { 825 Artificial = true; 826 GeneratePressureSet = false; 827 for (const auto R : Members) { 828 TopoSigs.set(R->getTopoSig()); 829 Artificial &= R->Artificial; 830 } 831 } 832 833 // Compute inherited propertied for a synthesized register class. 834 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 835 assert(!getDef() && "Only synthesized classes can inherit properties"); 836 assert(!SuperClasses.empty() && "Synthesized class without super class"); 837 838 // The last super-class is the smallest one. 839 CodeGenRegisterClass &Super = *SuperClasses.back(); 840 841 // Most properties are copied directly. 842 // Exceptions are members, size, and alignment 843 Namespace = Super.Namespace; 844 VTs = Super.VTs; 845 CopyCost = Super.CopyCost; 846 // Check for allocatable superclasses. 847 Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) { 848 return S->Allocatable; 849 }); 850 AltOrderSelect = Super.AltOrderSelect; 851 AllocationPriority = Super.AllocationPriority; 852 TSFlags = Super.TSFlags; 853 GeneratePressureSet |= Super.GeneratePressureSet; 854 855 // Copy all allocation orders, filter out foreign registers from the larger 856 // super-class. 857 Orders.resize(Super.Orders.size()); 858 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 859 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 860 if (contains(RegBank.getReg(Super.Orders[i][j]))) 861 Orders[i].push_back(Super.Orders[i][j]); 862 } 863 864 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 865 return std::binary_search(Members.begin(), Members.end(), Reg, 866 deref<std::less<>>()); 867 } 868 869 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const { 870 if (TheDef && !TheDef->isValueUnset("Weight")) 871 return TheDef->getValueAsInt("Weight"); 872 873 if (Members.empty() || Artificial) 874 return 0; 875 876 return (*Members.begin())->getWeight(RegBank); 877 } 878 879 namespace llvm { 880 881 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 882 OS << "{ " << K.RSI; 883 for (const auto R : *K.Members) 884 OS << ", " << R->getName(); 885 return OS << " }"; 886 } 887 888 } // end namespace llvm 889 890 // This is a simple lexicographical order that can be used to search for sets. 891 // It is not the same as the topological order provided by TopoOrderRC. 892 bool CodeGenRegisterClass::Key:: 893 operator<(const CodeGenRegisterClass::Key &B) const { 894 assert(Members && B.Members); 895 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); 896 } 897 898 // Returns true if RC is a strict subclass. 899 // RC is a sub-class of this class if it is a valid replacement for any 900 // instruction operand where a register of this classis required. It must 901 // satisfy these conditions: 902 // 903 // 1. All RC registers are also in this. 904 // 2. The RC spill size must not be smaller than our spill size. 905 // 3. RC spill alignment must be compatible with ours. 906 // 907 static bool testSubClass(const CodeGenRegisterClass *A, 908 const CodeGenRegisterClass *B) { 909 return A->RSI.isSubClassOf(B->RSI) && 910 std::includes(A->getMembers().begin(), A->getMembers().end(), 911 B->getMembers().begin(), B->getMembers().end(), 912 deref<std::less<>>()); 913 } 914 915 /// Sorting predicate for register classes. This provides a topological 916 /// ordering that arranges all register classes before their sub-classes. 917 /// 918 /// Register classes with the same registers, spill size, and alignment form a 919 /// clique. They will be ordered alphabetically. 920 /// 921 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 922 const CodeGenRegisterClass &PB) { 923 auto *A = &PA; 924 auto *B = &PB; 925 if (A == B) 926 return false; 927 928 if (A->RSI < B->RSI) 929 return true; 930 if (A->RSI != B->RSI) 931 return false; 932 933 // Order by descending set size. Note that the classes' allocation order may 934 // not have been computed yet. The Members set is always vaild. 935 if (A->getMembers().size() > B->getMembers().size()) 936 return true; 937 if (A->getMembers().size() < B->getMembers().size()) 938 return false; 939 940 // Finally order by name as a tie breaker. 941 return StringRef(A->getName()) < B->getName(); 942 } 943 944 std::string CodeGenRegisterClass::getQualifiedName() const { 945 if (Namespace.empty()) 946 return getName(); 947 else 948 return (Namespace + "::" + getName()).str(); 949 } 950 951 // Compute sub-classes of all register classes. 952 // Assume the classes are ordered topologically. 953 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 954 auto &RegClasses = RegBank.getRegClasses(); 955 956 // Visit backwards so sub-classes are seen first. 957 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 958 CodeGenRegisterClass &RC = *I; 959 RC.SubClasses.resize(RegClasses.size()); 960 RC.SubClasses.set(RC.EnumValue); 961 if (RC.Artificial) 962 continue; 963 964 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 965 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 966 CodeGenRegisterClass &SubRC = *I2; 967 if (RC.SubClasses.test(SubRC.EnumValue)) 968 continue; 969 if (!testSubClass(&RC, &SubRC)) 970 continue; 971 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 972 // check them again. 973 RC.SubClasses |= SubRC.SubClasses; 974 } 975 976 // Sweep up missed clique members. They will be immediately preceding RC. 977 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 978 RC.SubClasses.set(I2->EnumValue); 979 } 980 981 // Compute the SuperClasses lists from the SubClasses vectors. 982 for (auto &RC : RegClasses) { 983 const BitVector &SC = RC.getSubClasses(); 984 auto I = RegClasses.begin(); 985 for (int s = 0, next_s = SC.find_first(); next_s != -1; 986 next_s = SC.find_next(s)) { 987 std::advance(I, next_s - s); 988 s = next_s; 989 if (&*I == &RC) 990 continue; 991 I->SuperClasses.push_back(&RC); 992 } 993 } 994 995 // With the class hierarchy in place, let synthesized register classes inherit 996 // properties from their closest super-class. The iteration order here can 997 // propagate properties down multiple levels. 998 for (auto &RC : RegClasses) 999 if (!RC.getDef()) 1000 RC.inheritProperties(RegBank); 1001 } 1002 1003 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>> 1004 CodeGenRegisterClass::getMatchingSubClassWithSubRegs( 1005 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { 1006 auto SizeOrder = [this](const CodeGenRegisterClass *A, 1007 const CodeGenRegisterClass *B) { 1008 // If there are multiple, identical register classes, prefer the original 1009 // register class. 1010 if (A == B) 1011 return false; 1012 if (A->getMembers().size() == B->getMembers().size()) 1013 return A == this; 1014 return A->getMembers().size() > B->getMembers().size(); 1015 }; 1016 1017 auto &RegClasses = RegBank.getRegClasses(); 1018 1019 // Find all the subclasses of this one that fully support the sub-register 1020 // index and order them by size. BiggestSuperRC should always be first. 1021 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); 1022 if (!BiggestSuperRegRC) 1023 return None; 1024 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); 1025 std::vector<CodeGenRegisterClass *> SuperRegRCs; 1026 for (auto &RC : RegClasses) 1027 if (SuperRegRCsBV[RC.EnumValue]) 1028 SuperRegRCs.emplace_back(&RC); 1029 llvm::stable_sort(SuperRegRCs, SizeOrder); 1030 1031 assert(SuperRegRCs.front() == BiggestSuperRegRC && 1032 "Biggest class wasn't first"); 1033 1034 // Find all the subreg classes and order them by size too. 1035 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses; 1036 for (auto &RC: RegClasses) { 1037 BitVector SuperRegClassesBV(RegClasses.size()); 1038 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); 1039 if (SuperRegClassesBV.any()) 1040 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); 1041 } 1042 llvm::sort(SuperRegClasses, 1043 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A, 1044 const std::pair<CodeGenRegisterClass *, BitVector> &B) { 1045 return SizeOrder(A.first, B.first); 1046 }); 1047 1048 // Find the biggest subclass and subreg class such that R:subidx is in the 1049 // subreg class for all R in subclass. 1050 // 1051 // For example: 1052 // All registers in X86's GR64 have a sub_32bit subregister but no class 1053 // exists that contains all the 32-bit subregisters because GR64 contains RIP 1054 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to 1055 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, 1056 // having excluded RIP, we are able to find a SubRegRC (GR32). 1057 CodeGenRegisterClass *ChosenSuperRegClass = nullptr; 1058 CodeGenRegisterClass *SubRegRC = nullptr; 1059 for (auto *SuperRegRC : SuperRegRCs) { 1060 for (const auto &SuperRegClassPair : SuperRegClasses) { 1061 const BitVector &SuperRegClassBV = SuperRegClassPair.second; 1062 if (SuperRegClassBV[SuperRegRC->EnumValue]) { 1063 SubRegRC = SuperRegClassPair.first; 1064 ChosenSuperRegClass = SuperRegRC; 1065 1066 // If SubRegRC is bigger than SuperRegRC then there are members of 1067 // SubRegRC that don't have super registers via SubIdx. Keep looking to 1068 // find a better fit and fall back on this one if there isn't one. 1069 // 1070 // This is intended to prevent X86 from making odd choices such as 1071 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. 1072 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that 1073 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 1074 // mapping. 1075 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) 1076 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1077 } 1078 } 1079 1080 // If we found a fit but it wasn't quite ideal because SubRegRC had excess 1081 // registers, then we're done. 1082 if (ChosenSuperRegClass) 1083 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1084 } 1085 1086 return None; 1087 } 1088 1089 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 1090 BitVector &Out) const { 1091 auto FindI = SuperRegClasses.find(SubIdx); 1092 if (FindI == SuperRegClasses.end()) 1093 return; 1094 for (CodeGenRegisterClass *RC : FindI->second) 1095 Out.set(RC->EnumValue); 1096 } 1097 1098 // Populate a unique sorted list of units from a register set. 1099 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, 1100 std::vector<unsigned> &RegUnits) const { 1101 std::vector<unsigned> TmpUnits; 1102 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { 1103 const RegUnit &RU = RegBank.getRegUnit(*UnitI); 1104 if (!RU.Artificial) 1105 TmpUnits.push_back(*UnitI); 1106 } 1107 llvm::sort(TmpUnits); 1108 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 1109 std::back_inserter(RegUnits)); 1110 } 1111 1112 //===----------------------------------------------------------------------===// 1113 // CodeGenRegisterCategory 1114 //===----------------------------------------------------------------------===// 1115 1116 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank, 1117 Record *R) 1118 : TheDef(R), Name(std::string(R->getName())) { 1119 for (Record *RegClass : R->getValueAsListOfDefs("Classes")) 1120 Classes.push_back(RegBank.getRegClass(RegClass)); 1121 } 1122 1123 //===----------------------------------------------------------------------===// 1124 // CodeGenRegBank 1125 //===----------------------------------------------------------------------===// 1126 1127 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, 1128 const CodeGenHwModes &Modes) : CGH(Modes) { 1129 // Configure register Sets to understand register classes and tuples. 1130 Sets.addFieldExpander("RegisterClass", "MemberList"); 1131 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 1132 Sets.addExpander("RegisterTuples", 1133 std::make_unique<TupleExpander>(SynthDefs)); 1134 1135 // Read in the user-defined (named) sub-register indices. 1136 // More indices will be synthesized later. 1137 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 1138 llvm::sort(SRIs, LessRecord()); 1139 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 1140 getSubRegIdx(SRIs[i]); 1141 // Build composite maps from ComposedOf fields. 1142 for (auto &Idx : SubRegIndices) 1143 Idx.updateComponents(*this); 1144 1145 // Read in the register definitions. 1146 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 1147 llvm::sort(Regs, LessRecordRegister()); 1148 // Assign the enumeration values. 1149 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 1150 getReg(Regs[i]); 1151 1152 // Expand tuples and number the new registers. 1153 std::vector<Record*> Tups = 1154 Records.getAllDerivedDefinitions("RegisterTuples"); 1155 1156 for (Record *R : Tups) { 1157 std::vector<Record *> TupRegs = *Sets.expand(R); 1158 llvm::sort(TupRegs, LessRecordRegister()); 1159 for (Record *RC : TupRegs) 1160 getReg(RC); 1161 } 1162 1163 // Now all the registers are known. Build the object graph of explicit 1164 // register-register references. 1165 for (auto &Reg : Registers) 1166 Reg.buildObjectGraph(*this); 1167 1168 // Compute register name map. 1169 for (auto &Reg : Registers) 1170 // FIXME: This could just be RegistersByName[name] = register, except that 1171 // causes some failures in MIPS - perhaps they have duplicate register name 1172 // entries? (or maybe there's a reason for it - I don't know much about this 1173 // code, just drive-by refactoring) 1174 RegistersByName.insert( 1175 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 1176 1177 // Precompute all sub-register maps. 1178 // This will create Composite entries for all inferred sub-register indices. 1179 for (auto &Reg : Registers) 1180 Reg.computeSubRegs(*this); 1181 1182 // Compute transitive closure of subregister index ConcatenationOf vectors 1183 // and initialize ConcatIdx map. 1184 for (CodeGenSubRegIndex &SRI : SubRegIndices) { 1185 SRI.computeConcatTransitiveClosure(); 1186 if (!SRI.ConcatenationOf.empty()) 1187 ConcatIdx.insert(std::make_pair( 1188 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(), 1189 SRI.ConcatenationOf.end()), &SRI)); 1190 } 1191 1192 // Infer even more sub-registers by combining leading super-registers. 1193 for (auto &Reg : Registers) 1194 if (Reg.CoveredBySubRegs) 1195 Reg.computeSecondarySubRegs(*this); 1196 1197 // After the sub-register graph is complete, compute the topologically 1198 // ordered SuperRegs list. 1199 for (auto &Reg : Registers) 1200 Reg.computeSuperRegs(*this); 1201 1202 // For each pair of Reg:SR, if both are non-artificial, mark the 1203 // corresponding sub-register index as non-artificial. 1204 for (auto &Reg : Registers) { 1205 if (Reg.Artificial) 1206 continue; 1207 for (auto P : Reg.getSubRegs()) { 1208 const CodeGenRegister *SR = P.second; 1209 if (!SR->Artificial) 1210 P.first->Artificial = false; 1211 } 1212 } 1213 1214 // Native register units are associated with a leaf register. They've all been 1215 // discovered now. 1216 NumNativeRegUnits = RegUnits.size(); 1217 1218 // Read in register class definitions. 1219 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1220 if (RCs.empty()) 1221 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1222 1223 // Allocate user-defined register classes. 1224 for (auto *R : RCs) { 1225 RegClasses.emplace_back(*this, R); 1226 CodeGenRegisterClass &RC = RegClasses.back(); 1227 if (!RC.Artificial) 1228 addToMaps(&RC); 1229 } 1230 1231 // Infer missing classes to create a full algebra. 1232 computeInferredRegisterClasses(); 1233 1234 // Order register classes topologically and assign enum values. 1235 RegClasses.sort(TopoOrderRC); 1236 unsigned i = 0; 1237 for (auto &RC : RegClasses) 1238 RC.EnumValue = i++; 1239 CodeGenRegisterClass::computeSubClasses(*this); 1240 1241 // Read in the register category definitions. 1242 std::vector<Record *> RCats = 1243 Records.getAllDerivedDefinitions("RegisterCategory"); 1244 for (auto *R : RCats) 1245 RegCategories.emplace_back(*this, R); 1246 } 1247 1248 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1249 CodeGenSubRegIndex* 1250 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1251 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1252 return &SubRegIndices.back(); 1253 } 1254 1255 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1256 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1257 if (Idx) 1258 return Idx; 1259 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1260 Idx = &SubRegIndices.back(); 1261 return Idx; 1262 } 1263 1264 const CodeGenSubRegIndex * 1265 CodeGenRegBank::findSubRegIdx(const Record* Def) const { 1266 return Def2SubRegIdx.lookup(Def); 1267 } 1268 1269 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1270 CodeGenRegister *&Reg = Def2Reg[Def]; 1271 if (Reg) 1272 return Reg; 1273 Registers.emplace_back(Def, Registers.size() + 1); 1274 Reg = &Registers.back(); 1275 return Reg; 1276 } 1277 1278 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1279 if (Record *Def = RC->getDef()) 1280 Def2RC.insert(std::make_pair(Def, RC)); 1281 1282 // Duplicate classes are rejected by insert(). 1283 // That's OK, we only care about the properties handled by CGRC::Key. 1284 CodeGenRegisterClass::Key K(*RC); 1285 Key2RC.insert(std::make_pair(K, RC)); 1286 } 1287 1288 // Create a synthetic sub-class if it is missing. 1289 CodeGenRegisterClass* 1290 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1291 const CodeGenRegister::Vec *Members, 1292 StringRef Name) { 1293 // Synthetic sub-class has the same size and alignment as RC. 1294 CodeGenRegisterClass::Key K(Members, RC->RSI); 1295 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1296 if (FoundI != Key2RC.end()) 1297 return FoundI->second; 1298 1299 // Sub-class doesn't exist, create a new one. 1300 RegClasses.emplace_back(*this, Name, K); 1301 addToMaps(&RegClasses.back()); 1302 return &RegClasses.back(); 1303 } 1304 1305 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const { 1306 if (CodeGenRegisterClass *RC = Def2RC.lookup(Def)) 1307 return RC; 1308 1309 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1310 } 1311 1312 CodeGenSubRegIndex* 1313 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1314 CodeGenSubRegIndex *B) { 1315 // Look for an existing entry. 1316 CodeGenSubRegIndex *Comp = A->compose(B); 1317 if (Comp) 1318 return Comp; 1319 1320 // None exists, synthesize one. 1321 std::string Name = A->getName() + "_then_" + B->getName(); 1322 Comp = createSubRegIndex(Name, A->getNamespace()); 1323 A->addComposite(B, Comp); 1324 return Comp; 1325 } 1326 1327 CodeGenSubRegIndex *CodeGenRegBank:: 1328 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1329 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1330 #ifndef NDEBUG 1331 for (CodeGenSubRegIndex *Idx : Parts) { 1332 assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); 1333 } 1334 #endif 1335 1336 // Look for an existing entry. 1337 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1338 if (Idx) 1339 return Idx; 1340 1341 // None exists, synthesize one. 1342 std::string Name = Parts.front()->getName(); 1343 // Determine whether all parts are contiguous. 1344 bool isContinuous = true; 1345 unsigned Size = Parts.front()->Size; 1346 unsigned LastOffset = Parts.front()->Offset; 1347 unsigned LastSize = Parts.front()->Size; 1348 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1349 Name += '_'; 1350 Name += Parts[i]->getName(); 1351 Size += Parts[i]->Size; 1352 if (Parts[i]->Offset != (LastOffset + LastSize)) 1353 isContinuous = false; 1354 LastOffset = Parts[i]->Offset; 1355 LastSize = Parts[i]->Size; 1356 } 1357 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1358 Idx->Size = Size; 1359 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1360 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); 1361 return Idx; 1362 } 1363 1364 void CodeGenRegBank::computeComposites() { 1365 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>; 1366 1367 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from 1368 // register to (sub)register associated with the action of the left-hand 1369 // side subregister. 1370 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction; 1371 for (const CodeGenRegister &R : Registers) { 1372 const CodeGenRegister::SubRegMap &SM = R.getSubRegs(); 1373 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM) 1374 SubRegAction[P.first].insert({&R, P.second}); 1375 } 1376 1377 // Calculate the composition of two subregisters as compositions of their 1378 // associated actions. 1379 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1, 1380 const CodeGenSubRegIndex *Sub2) { 1381 RegMap C; 1382 const RegMap &Img1 = SubRegAction.at(Sub1); 1383 const RegMap &Img2 = SubRegAction.at(Sub2); 1384 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) { 1385 auto F = Img2.find(P.second); 1386 if (F != Img2.end()) 1387 C.insert({P.first, F->second}); 1388 } 1389 return C; 1390 }; 1391 1392 // Check if the two maps agree on the intersection of their domains. 1393 auto agree = [] (const RegMap &Map1, const RegMap &Map2) { 1394 // Technically speaking, an empty map agrees with any other map, but 1395 // this could flag false positives. We're interested in non-vacuous 1396 // agreements. 1397 if (Map1.empty() || Map2.empty()) 1398 return false; 1399 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) { 1400 auto F = Map2.find(P.first); 1401 if (F == Map2.end() || P.second != F->second) 1402 return false; 1403 } 1404 return true; 1405 }; 1406 1407 using CompositePair = std::pair<const CodeGenSubRegIndex*, 1408 const CodeGenSubRegIndex*>; 1409 SmallSet<CompositePair,4> UserDefined; 1410 for (const CodeGenSubRegIndex &Idx : SubRegIndices) 1411 for (auto P : Idx.getComposites()) 1412 UserDefined.insert(std::make_pair(&Idx, P.first)); 1413 1414 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1415 // and many registers will share TopoSigs on regular architectures. 1416 BitVector TopoSigs(getNumTopoSigs()); 1417 1418 for (const auto &Reg1 : Registers) { 1419 // Skip identical subreg structures already processed. 1420 if (TopoSigs.test(Reg1.getTopoSig())) 1421 continue; 1422 TopoSigs.set(Reg1.getTopoSig()); 1423 1424 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1425 for (auto I1 : SRM1) { 1426 CodeGenSubRegIndex *Idx1 = I1.first; 1427 CodeGenRegister *Reg2 = I1.second; 1428 // Ignore identity compositions. 1429 if (&Reg1 == Reg2) 1430 continue; 1431 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1432 // Try composing Idx1 with another SubRegIndex. 1433 for (auto I2 : SRM2) { 1434 CodeGenSubRegIndex *Idx2 = I2.first; 1435 CodeGenRegister *Reg3 = I2.second; 1436 // Ignore identity compositions. 1437 if (Reg2 == Reg3) 1438 continue; 1439 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1440 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1441 assert(Idx3 && "Sub-register doesn't have an index"); 1442 1443 // Conflicting composition? Emit a warning but allow it. 1444 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) { 1445 // If the composition was not user-defined, always emit a warning. 1446 if (!UserDefined.count({Idx1, Idx2}) || 1447 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3))) 1448 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1449 " and " + Idx2->getQualifiedName() + 1450 " compose ambiguously as " + Prev->getQualifiedName() + 1451 " or " + Idx3->getQualifiedName()); 1452 } 1453 } 1454 } 1455 } 1456 } 1457 1458 // Compute lane masks. This is similar to register units, but at the 1459 // sub-register index level. Each bit in the lane mask is like a register unit 1460 // class, and two lane masks will have a bit in common if two sub-register 1461 // indices overlap in some register. 1462 // 1463 // Conservatively share a lane mask bit if two sub-register indices overlap in 1464 // some registers, but not in others. That shouldn't happen a lot. 1465 void CodeGenRegBank::computeSubRegLaneMasks() { 1466 // First assign individual bits to all the leaf indices. 1467 unsigned Bit = 0; 1468 // Determine mask of lanes that cover their registers. 1469 CoveringLanes = LaneBitmask::getAll(); 1470 for (auto &Idx : SubRegIndices) { 1471 if (Idx.getComposites().empty()) { 1472 if (Bit > LaneBitmask::BitWidth) { 1473 PrintFatalError( 1474 Twine("Ran out of lanemask bits to represent subregister ") 1475 + Idx.getName()); 1476 } 1477 Idx.LaneMask = LaneBitmask::getLane(Bit); 1478 ++Bit; 1479 } else { 1480 Idx.LaneMask = LaneBitmask::getNone(); 1481 } 1482 } 1483 1484 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1485 // here is that for each possible target subregister we look at the leafs 1486 // in the subregister graph that compose for this target and create 1487 // transformation sequences for the lanemasks. Each step in the sequence 1488 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1489 // are usually the same for many subregisters we can easily combine the steps 1490 // by combining the masks. 1491 for (const auto &Idx : SubRegIndices) { 1492 const auto &Composites = Idx.getComposites(); 1493 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1494 1495 if (Composites.empty()) { 1496 // Moving from a class with no subregisters we just had a single lane: 1497 // The subregister must be a leaf subregister and only occupies 1 bit. 1498 // Move the bit from the class without subregisters into that position. 1499 unsigned DstBit = Idx.LaneMask.getHighestLane(); 1500 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && 1501 "Must be a leaf subregister"); 1502 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; 1503 LaneTransforms.push_back(MaskRol); 1504 } else { 1505 // Go through all leaf subregisters and find the ones that compose with 1506 // Idx. These make out all possible valid bits in the lane mask we want to 1507 // transform. Looking only at the leafs ensure that only a single bit in 1508 // the mask is set. 1509 unsigned NextBit = 0; 1510 for (auto &Idx2 : SubRegIndices) { 1511 // Skip non-leaf subregisters. 1512 if (!Idx2.getComposites().empty()) 1513 continue; 1514 // Replicate the behaviour from the lane mask generation loop above. 1515 unsigned SrcBit = NextBit; 1516 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); 1517 if (NextBit < LaneBitmask::BitWidth-1) 1518 ++NextBit; 1519 assert(Idx2.LaneMask == SrcMask); 1520 1521 // Get the composed subregister if there is any. 1522 auto C = Composites.find(&Idx2); 1523 if (C == Composites.end()) 1524 continue; 1525 const CodeGenSubRegIndex *Composite = C->second; 1526 // The Composed subreg should be a leaf subreg too 1527 assert(Composite->getComposites().empty()); 1528 1529 // Create Mask+Rotate operation and merge with existing ops if possible. 1530 unsigned DstBit = Composite->LaneMask.getHighestLane(); 1531 int Shift = DstBit - SrcBit; 1532 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1533 : LaneBitmask::BitWidth + Shift; 1534 for (auto &I : LaneTransforms) { 1535 if (I.RotateLeft == RotateLeft) { 1536 I.Mask |= SrcMask; 1537 SrcMask = LaneBitmask::getNone(); 1538 } 1539 } 1540 if (SrcMask.any()) { 1541 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1542 LaneTransforms.push_back(MaskRol); 1543 } 1544 } 1545 } 1546 1547 // Optimize if the transformation consists of one step only: Set mask to 1548 // 0xffffffff (including some irrelevant invalid bits) so that it should 1549 // merge with more entries later while compressing the table. 1550 if (LaneTransforms.size() == 1) 1551 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1552 1553 // Further compression optimization: For invalid compositions resulting 1554 // in a sequence with 0 entries we can just pick any other. Choose 1555 // Mask 0xffffffff with Rotation 0. 1556 if (LaneTransforms.size() == 0) { 1557 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1558 LaneTransforms.push_back(P); 1559 } 1560 } 1561 1562 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1563 // by the sub-register graph? This doesn't occur in any known targets. 1564 1565 // Inherit lanes from composites. 1566 for (const auto &Idx : SubRegIndices) { 1567 LaneBitmask Mask = Idx.computeLaneMask(); 1568 // If some super-registers without CoveredBySubRegs use this index, we can 1569 // no longer assume that the lanes are covering their registers. 1570 if (!Idx.AllSuperRegsCovered) 1571 CoveringLanes &= ~Mask; 1572 } 1573 1574 // Compute lane mask combinations for register classes. 1575 for (auto &RegClass : RegClasses) { 1576 LaneBitmask LaneMask; 1577 for (const auto &SubRegIndex : SubRegIndices) { 1578 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1579 continue; 1580 LaneMask |= SubRegIndex.LaneMask; 1581 } 1582 1583 // For classes without any subregisters set LaneMask to 1 instead of 0. 1584 // This makes it easier for client code to handle classes uniformly. 1585 if (LaneMask.none()) 1586 LaneMask = LaneBitmask::getLane(0); 1587 1588 RegClass.LaneMask = LaneMask; 1589 } 1590 } 1591 1592 namespace { 1593 1594 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1595 // the transitive closure of the union of overlapping register 1596 // classes. Together, the UberRegSets form a partition of the registers. If we 1597 // consider overlapping register classes to be connected, then each UberRegSet 1598 // is a set of connected components. 1599 // 1600 // An UberRegSet will likely be a horizontal slice of register names of 1601 // the same width. Nontrivial subregisters should then be in a separate 1602 // UberRegSet. But this property isn't required for valid computation of 1603 // register unit weights. 1604 // 1605 // A Weight field caches the max per-register unit weight in each UberRegSet. 1606 // 1607 // A set of SingularDeterminants flags single units of some register in this set 1608 // for which the unit weight equals the set weight. These units should not have 1609 // their weight increased. 1610 struct UberRegSet { 1611 CodeGenRegister::Vec Regs; 1612 unsigned Weight = 0; 1613 CodeGenRegister::RegUnitList SingularDeterminants; 1614 1615 UberRegSet() = default; 1616 }; 1617 1618 } // end anonymous namespace 1619 1620 // Partition registers into UberRegSets, where each set is the transitive 1621 // closure of the union of overlapping register classes. 1622 // 1623 // UberRegSets[0] is a special non-allocatable set. 1624 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1625 std::vector<UberRegSet*> &RegSets, 1626 CodeGenRegBank &RegBank) { 1627 const auto &Registers = RegBank.getRegisters(); 1628 1629 // The Register EnumValue is one greater than its index into Registers. 1630 assert(Registers.size() == Registers.back().EnumValue && 1631 "register enum value mismatch"); 1632 1633 // For simplicitly make the SetID the same as EnumValue. 1634 IntEqClasses UberSetIDs(Registers.size()+1); 1635 std::set<unsigned> AllocatableRegs; 1636 for (auto &RegClass : RegBank.getRegClasses()) { 1637 if (!RegClass.Allocatable) 1638 continue; 1639 1640 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1641 if (Regs.empty()) 1642 continue; 1643 1644 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1645 assert(USetID && "register number 0 is invalid"); 1646 1647 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1648 for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) { 1649 AllocatableRegs.insert(CGR->EnumValue); 1650 UberSetIDs.join(USetID, CGR->EnumValue); 1651 } 1652 } 1653 // Combine non-allocatable regs. 1654 for (const auto &Reg : Registers) { 1655 unsigned RegNum = Reg.EnumValue; 1656 if (AllocatableRegs.count(RegNum)) 1657 continue; 1658 1659 UberSetIDs.join(0, RegNum); 1660 } 1661 UberSetIDs.compress(); 1662 1663 // Make the first UberSet a special unallocatable set. 1664 unsigned ZeroID = UberSetIDs[0]; 1665 1666 // Insert Registers into the UberSets formed by union-find. 1667 // Do not resize after this. 1668 UberSets.resize(UberSetIDs.getNumClasses()); 1669 unsigned i = 0; 1670 for (const CodeGenRegister &Reg : Registers) { 1671 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1672 if (!USetID) 1673 USetID = ZeroID; 1674 else if (USetID == ZeroID) 1675 USetID = 0; 1676 1677 UberRegSet *USet = &UberSets[USetID]; 1678 USet->Regs.push_back(&Reg); 1679 sortAndUniqueRegisters(USet->Regs); 1680 RegSets[i++] = USet; 1681 } 1682 } 1683 1684 // Recompute each UberSet weight after changing unit weights. 1685 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1686 CodeGenRegBank &RegBank) { 1687 // Skip the first unallocatable set. 1688 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1689 E = UberSets.end(); I != E; ++I) { 1690 1691 // Initialize all unit weights in this set, and remember the max units/reg. 1692 const CodeGenRegister *Reg = nullptr; 1693 unsigned MaxWeight = 0, Weight = 0; 1694 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1695 if (Reg != UnitI.getReg()) { 1696 if (Weight > MaxWeight) 1697 MaxWeight = Weight; 1698 Reg = UnitI.getReg(); 1699 Weight = 0; 1700 } 1701 if (!RegBank.getRegUnit(*UnitI).Artificial) { 1702 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1703 if (!UWeight) { 1704 UWeight = 1; 1705 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1706 } 1707 Weight += UWeight; 1708 } 1709 } 1710 if (Weight > MaxWeight) 1711 MaxWeight = Weight; 1712 if (I->Weight != MaxWeight) { 1713 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " 1714 << MaxWeight; 1715 for (auto &Unit 1716 : I->Regs) dbgs() 1717 << " " << Unit->getName(); 1718 dbgs() << "\n"); 1719 // Update the set weight. 1720 I->Weight = MaxWeight; 1721 } 1722 1723 // Find singular determinants. 1724 for (const auto R : I->Regs) { 1725 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1726 I->SingularDeterminants |= R->getRegUnits(); 1727 } 1728 } 1729 } 1730 } 1731 1732 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1733 // a register and its subregisters so that they have the same weight as their 1734 // UberSet. Self-recursion processes the subregister tree in postorder so 1735 // subregisters are normalized first. 1736 // 1737 // Side effects: 1738 // - creates new adopted register units 1739 // - causes superregisters to inherit adopted units 1740 // - increases the weight of "singular" units 1741 // - induces recomputation of UberWeights. 1742 static bool normalizeWeight(CodeGenRegister *Reg, 1743 std::vector<UberRegSet> &UberSets, 1744 std::vector<UberRegSet*> &RegSets, 1745 BitVector &NormalRegs, 1746 CodeGenRegister::RegUnitList &NormalUnits, 1747 CodeGenRegBank &RegBank) { 1748 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size())); 1749 if (NormalRegs.test(Reg->EnumValue)) 1750 return false; 1751 NormalRegs.set(Reg->EnumValue); 1752 1753 bool Changed = false; 1754 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1755 for (auto SRI : SRM) { 1756 if (SRI.second == Reg) 1757 continue; // self-cycles happen 1758 1759 Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs, 1760 NormalUnits, RegBank); 1761 } 1762 // Postorder register normalization. 1763 1764 // Inherit register units newly adopted by subregisters. 1765 if (Reg->inheritRegUnits(RegBank)) 1766 computeUberWeights(UberSets, RegBank); 1767 1768 // Check if this register is too skinny for its UberRegSet. 1769 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1770 1771 unsigned RegWeight = Reg->getWeight(RegBank); 1772 if (UberSet->Weight > RegWeight) { 1773 // A register unit's weight can be adjusted only if it is the singular unit 1774 // for this register, has not been used to normalize a subregister's set, 1775 // and has not already been used to singularly determine this UberRegSet. 1776 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1777 if (Reg->getRegUnits().count() != 1 1778 || hasRegUnit(NormalUnits, AdjustUnit) 1779 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1780 // We don't have an adjustable unit, so adopt a new one. 1781 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1782 Reg->adoptRegUnit(AdjustUnit); 1783 // Adopting a unit does not immediately require recomputing set weights. 1784 } 1785 else { 1786 // Adjust the existing single unit. 1787 if (!RegBank.getRegUnit(AdjustUnit).Artificial) 1788 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1789 // The unit may be shared among sets and registers within this set. 1790 computeUberWeights(UberSets, RegBank); 1791 } 1792 Changed = true; 1793 } 1794 1795 // Mark these units normalized so superregisters can't change their weights. 1796 NormalUnits |= Reg->getRegUnits(); 1797 1798 return Changed; 1799 } 1800 1801 // Compute a weight for each register unit created during getSubRegs. 1802 // 1803 // The goal is that two registers in the same class will have the same weight, 1804 // where each register's weight is defined as sum of its units' weights. 1805 void CodeGenRegBank::computeRegUnitWeights() { 1806 std::vector<UberRegSet> UberSets; 1807 std::vector<UberRegSet*> RegSets(Registers.size()); 1808 computeUberSets(UberSets, RegSets, *this); 1809 // UberSets and RegSets are now immutable. 1810 1811 computeUberWeights(UberSets, *this); 1812 1813 // Iterate over each Register, normalizing the unit weights until reaching 1814 // a fix point. 1815 unsigned NumIters = 0; 1816 for (bool Changed = true; Changed; ++NumIters) { 1817 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1818 (void) NumIters; 1819 Changed = false; 1820 for (auto &Reg : Registers) { 1821 CodeGenRegister::RegUnitList NormalUnits; 1822 BitVector NormalRegs; 1823 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1824 NormalUnits, *this); 1825 } 1826 } 1827 } 1828 1829 // Find a set in UniqueSets with the same elements as Set. 1830 // Return an iterator into UniqueSets. 1831 static std::vector<RegUnitSet>::const_iterator 1832 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1833 const RegUnitSet &Set) { 1834 std::vector<RegUnitSet>::const_iterator 1835 I = UniqueSets.begin(), E = UniqueSets.end(); 1836 for(;I != E; ++I) { 1837 if (I->Units == Set.Units) 1838 break; 1839 } 1840 return I; 1841 } 1842 1843 // Return true if the RUSubSet is a subset of RUSuperSet. 1844 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1845 const std::vector<unsigned> &RUSuperSet) { 1846 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1847 RUSubSet.begin(), RUSubSet.end()); 1848 } 1849 1850 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1851 /// but with one or two registers removed. We occasionally have registers like 1852 /// APSR and PC thrown in with the general registers. We also see many 1853 /// special-purpose register subsets, such as tail-call and Thumb 1854 /// encodings. Generating all possible overlapping sets is combinatorial and 1855 /// overkill for modeling pressure. Ideally we could fix this statically in 1856 /// tablegen by (1) having the target define register classes that only include 1857 /// the allocatable registers and marking other classes as non-allocatable and 1858 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1859 /// the purpose of pressure. However, we make an attempt to handle targets that 1860 /// are not nicely defined by merging nearly identical register unit sets 1861 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1862 /// set limit by filtering the reserved registers. 1863 /// 1864 /// Merge sets only if the units have the same weight. For example, on ARM, 1865 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1866 /// should not expand the S set to include D regs. 1867 void CodeGenRegBank::pruneUnitSets() { 1868 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1869 1870 // Form an equivalence class of UnitSets with no significant difference. 1871 std::vector<unsigned> SuperSetIDs; 1872 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1873 SubIdx != EndIdx; ++SubIdx) { 1874 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1875 unsigned SuperIdx = 0; 1876 for (; SuperIdx != EndIdx; ++SuperIdx) { 1877 if (SuperIdx == SubIdx) 1878 continue; 1879 1880 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1881 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1882 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1883 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1884 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1885 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1886 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1887 << "\n"); 1888 // We can pick any of the set names for the merged set. Go for the 1889 // shortest one to avoid picking the name of one of the classes that are 1890 // artificially created by tablegen. So "FPR128_lo" instead of 1891 // "QQQQ_with_qsub3_in_FPR128_lo". 1892 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1893 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1894 break; 1895 } 1896 } 1897 if (SuperIdx == EndIdx) 1898 SuperSetIDs.push_back(SubIdx); 1899 } 1900 // Populate PrunedUnitSets with each equivalence class's superset. 1901 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1902 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1903 unsigned SuperIdx = SuperSetIDs[i]; 1904 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1905 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1906 } 1907 RegUnitSets.swap(PrunedUnitSets); 1908 } 1909 1910 // Create a RegUnitSet for each RegClass that contains all units in the class 1911 // including adopted units that are necessary to model register pressure. Then 1912 // iteratively compute RegUnitSets such that the union of any two overlapping 1913 // RegUnitSets is repreresented. 1914 // 1915 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1916 // RegUnitSet that is a superset of that RegUnitClass. 1917 void CodeGenRegBank::computeRegUnitSets() { 1918 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1919 1920 // Compute a unique RegUnitSet for each RegClass. 1921 auto &RegClasses = getRegClasses(); 1922 for (auto &RC : RegClasses) { 1923 if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet) 1924 continue; 1925 1926 // Speculatively grow the RegUnitSets to hold the new set. 1927 RegUnitSets.resize(RegUnitSets.size() + 1); 1928 RegUnitSets.back().Name = RC.getName(); 1929 1930 // Compute a sorted list of units in this class. 1931 RC.buildRegUnitSet(*this, RegUnitSets.back().Units); 1932 1933 // Find an existing RegUnitSet. 1934 std::vector<RegUnitSet>::const_iterator SetI = 1935 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1936 if (SetI != std::prev(RegUnitSets.end())) 1937 RegUnitSets.pop_back(); 1938 } 1939 1940 if (RegUnitSets.empty()) 1941 PrintFatalError("RegUnitSets cannot be empty!"); 1942 1943 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, 1944 USEnd = RegUnitSets.size(); 1945 USIdx < USEnd; ++USIdx) { 1946 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1947 for (auto &U : RegUnitSets[USIdx].Units) 1948 printRegUnitName(U); 1949 dbgs() << "\n"; 1950 }); 1951 1952 // Iteratively prune unit sets. 1953 pruneUnitSets(); 1954 1955 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, 1956 USEnd = RegUnitSets.size(); 1957 USIdx < USEnd; ++USIdx) { 1958 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1959 for (auto &U : RegUnitSets[USIdx].Units) 1960 printRegUnitName(U); 1961 dbgs() << "\n"; 1962 } dbgs() << "\nUnion sets:\n"); 1963 1964 // Iterate over all unit sets, including new ones added by this loop. 1965 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1966 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1967 // In theory, this is combinatorial. In practice, it needs to be bounded 1968 // by a small number of sets for regpressure to be efficient. 1969 // If the assert is hit, we need to implement pruning. 1970 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1971 1972 // Compare new sets with all original classes. 1973 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1974 SearchIdx != EndIdx; ++SearchIdx) { 1975 std::set<unsigned> Intersection; 1976 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1977 RegUnitSets[Idx].Units.end(), 1978 RegUnitSets[SearchIdx].Units.begin(), 1979 RegUnitSets[SearchIdx].Units.end(), 1980 std::inserter(Intersection, Intersection.begin())); 1981 if (Intersection.empty()) 1982 continue; 1983 1984 // Speculatively grow the RegUnitSets to hold the new set. 1985 RegUnitSets.resize(RegUnitSets.size() + 1); 1986 RegUnitSets.back().Name = 1987 RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name; 1988 1989 std::set_union(RegUnitSets[Idx].Units.begin(), 1990 RegUnitSets[Idx].Units.end(), 1991 RegUnitSets[SearchIdx].Units.begin(), 1992 RegUnitSets[SearchIdx].Units.end(), 1993 std::inserter(RegUnitSets.back().Units, 1994 RegUnitSets.back().Units.begin())); 1995 1996 // Find an existing RegUnitSet, or add the union to the unique sets. 1997 std::vector<RegUnitSet>::const_iterator SetI = 1998 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1999 if (SetI != std::prev(RegUnitSets.end())) 2000 RegUnitSets.pop_back(); 2001 else { 2002 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " 2003 << RegUnitSets.back().Name << ":"; 2004 for (auto &U 2005 : RegUnitSets.back().Units) printRegUnitName(U); 2006 dbgs() << "\n";); 2007 } 2008 } 2009 } 2010 2011 // Iteratively prune unit sets after inferring supersets. 2012 pruneUnitSets(); 2013 2014 LLVM_DEBUG( 2015 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2016 USIdx < USEnd; ++USIdx) { 2017 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 2018 for (auto &U : RegUnitSets[USIdx].Units) 2019 printRegUnitName(U); 2020 dbgs() << "\n"; 2021 }); 2022 2023 // For each register class, list the UnitSets that are supersets. 2024 RegClassUnitSets.resize(RegClasses.size()); 2025 int RCIdx = -1; 2026 for (auto &RC : RegClasses) { 2027 ++RCIdx; 2028 if (!RC.Allocatable) 2029 continue; 2030 2031 // Recompute the sorted list of units in this class. 2032 std::vector<unsigned> RCRegUnits; 2033 RC.buildRegUnitSet(*this, RCRegUnits); 2034 2035 // Don't increase pressure for unallocatable regclasses. 2036 if (RCRegUnits.empty()) 2037 continue; 2038 2039 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n"; 2040 for (auto U 2041 : RCRegUnits) printRegUnitName(U); 2042 dbgs() << "\n UnitSetIDs:"); 2043 2044 // Find all supersets. 2045 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2046 USIdx != USEnd; ++USIdx) { 2047 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 2048 LLVM_DEBUG(dbgs() << " " << USIdx); 2049 RegClassUnitSets[RCIdx].push_back(USIdx); 2050 } 2051 } 2052 LLVM_DEBUG(dbgs() << "\n"); 2053 assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) && 2054 "missing unit set for regclass"); 2055 } 2056 2057 // For each register unit, ensure that we have the list of UnitSets that 2058 // contain the unit. Normally, this matches an existing list of UnitSets for a 2059 // register class. If not, we create a new entry in RegClassUnitSets as a 2060 // "fake" register class. 2061 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 2062 UnitIdx < UnitEnd; ++UnitIdx) { 2063 std::vector<unsigned> RUSets; 2064 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 2065 RegUnitSet &RUSet = RegUnitSets[i]; 2066 if (!is_contained(RUSet.Units, UnitIdx)) 2067 continue; 2068 RUSets.push_back(i); 2069 } 2070 unsigned RCUnitSetsIdx = 0; 2071 for (unsigned e = RegClassUnitSets.size(); 2072 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 2073 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 2074 break; 2075 } 2076 } 2077 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 2078 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 2079 // Create a new list of UnitSets as a "fake" register class. 2080 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 2081 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 2082 } 2083 } 2084 } 2085 2086 void CodeGenRegBank::computeRegUnitLaneMasks() { 2087 for (auto &Register : Registers) { 2088 // Create an initial lane mask for all register units. 2089 const auto &RegUnits = Register.getRegUnits(); 2090 CodeGenRegister::RegUnitLaneMaskList 2091 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 2092 // Iterate through SubRegisters. 2093 typedef CodeGenRegister::SubRegMap SubRegMap; 2094 const SubRegMap &SubRegs = Register.getSubRegs(); 2095 for (auto S : SubRegs) { 2096 CodeGenRegister *SubReg = S.second; 2097 // Ignore non-leaf subregisters, their lane masks are fully covered by 2098 // the leaf subregisters anyway. 2099 if (!SubReg->getSubRegs().empty()) 2100 continue; 2101 CodeGenSubRegIndex *SubRegIndex = S.first; 2102 const CodeGenRegister *SubRegister = S.second; 2103 LaneBitmask LaneMask = SubRegIndex->LaneMask; 2104 // Distribute LaneMask to Register Units touched. 2105 for (unsigned SUI : SubRegister->getRegUnits()) { 2106 bool Found = false; 2107 unsigned u = 0; 2108 for (unsigned RU : RegUnits) { 2109 if (SUI == RU) { 2110 RegUnitLaneMasks[u] |= LaneMask; 2111 assert(!Found); 2112 Found = true; 2113 } 2114 ++u; 2115 } 2116 (void)Found; 2117 assert(Found); 2118 } 2119 } 2120 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 2121 } 2122 } 2123 2124 void CodeGenRegBank::computeDerivedInfo() { 2125 computeComposites(); 2126 computeSubRegLaneMasks(); 2127 2128 // Compute a weight for each register unit created during getSubRegs. 2129 // This may create adopted register units (with unit # >= NumNativeRegUnits). 2130 computeRegUnitWeights(); 2131 2132 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 2133 // supersets for the union of overlapping sets. 2134 computeRegUnitSets(); 2135 2136 computeRegUnitLaneMasks(); 2137 2138 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 2139 for (CodeGenRegisterClass &RC : RegClasses) { 2140 RC.HasDisjunctSubRegs = false; 2141 RC.CoveredBySubRegs = true; 2142 for (const CodeGenRegister *Reg : RC.getMembers()) { 2143 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 2144 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 2145 } 2146 } 2147 2148 // Get the weight of each set. 2149 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2150 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 2151 2152 // Find the order of each set. 2153 RegUnitSetOrder.reserve(RegUnitSets.size()); 2154 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2155 RegUnitSetOrder.push_back(Idx); 2156 2157 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) { 2158 return getRegPressureSet(ID1).Units.size() < 2159 getRegPressureSet(ID2).Units.size(); 2160 }); 2161 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 2162 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 2163 } 2164 } 2165 2166 // 2167 // Synthesize missing register class intersections. 2168 // 2169 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 2170 // returns a maximal register class for all X. 2171 // 2172 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 2173 assert(!RegClasses.empty()); 2174 // Stash the iterator to the last element so that this loop doesn't visit 2175 // elements added by the getOrCreateSubClass call within it. 2176 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 2177 I != std::next(E); ++I) { 2178 CodeGenRegisterClass *RC1 = RC; 2179 CodeGenRegisterClass *RC2 = &*I; 2180 if (RC1 == RC2) 2181 continue; 2182 2183 // Compute the set intersection of RC1 and RC2. 2184 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 2185 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 2186 CodeGenRegister::Vec Intersection; 2187 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(), 2188 Memb2.end(), 2189 std::inserter(Intersection, Intersection.begin()), 2190 deref<std::less<>>()); 2191 2192 // Skip disjoint class pairs. 2193 if (Intersection.empty()) 2194 continue; 2195 2196 // If RC1 and RC2 have different spill sizes or alignments, use the 2197 // stricter one for sub-classing. If they are equal, prefer RC1. 2198 if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) 2199 std::swap(RC1, RC2); 2200 2201 getOrCreateSubClass(RC1, &Intersection, 2202 RC1->getName() + "_and_" + RC2->getName()); 2203 } 2204 } 2205 2206 // 2207 // Synthesize missing sub-classes for getSubClassWithSubReg(). 2208 // 2209 // Make sure that the set of registers in RC with a given SubIdx sub-register 2210 // form a register class. Update RC->SubClassWithSubReg. 2211 // 2212 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 2213 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 2214 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 2215 deref<std::less<>>> 2216 SubReg2SetMap; 2217 2218 // Compute the set of registers supporting each SubRegIndex. 2219 SubReg2SetMap SRSets; 2220 for (const auto R : RC->getMembers()) { 2221 if (R->Artificial) 2222 continue; 2223 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 2224 for (auto I : SRM) { 2225 if (!I.first->Artificial) 2226 SRSets[I.first].push_back(R); 2227 } 2228 } 2229 2230 for (auto I : SRSets) 2231 sortAndUniqueRegisters(I.second); 2232 2233 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 2234 // numerical order to visit synthetic indices last. 2235 for (const auto &SubIdx : SubRegIndices) { 2236 if (SubIdx.Artificial) 2237 continue; 2238 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 2239 // Unsupported SubRegIndex. Skip it. 2240 if (I == SRSets.end()) 2241 continue; 2242 // In most cases, all RC registers support the SubRegIndex. 2243 if (I->second.size() == RC->getMembers().size()) { 2244 RC->setSubClassWithSubReg(&SubIdx, RC); 2245 continue; 2246 } 2247 // This is a real subset. See if we have a matching class. 2248 CodeGenRegisterClass *SubRC = 2249 getOrCreateSubClass(RC, &I->second, 2250 RC->getName() + "_with_" + I->first->getName()); 2251 RC->setSubClassWithSubReg(&SubIdx, SubRC); 2252 } 2253 } 2254 2255 // 2256 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 2257 // 2258 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 2259 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 2260 // 2261 2262 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 2263 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 2264 SmallVector<std::pair<const CodeGenRegister*, 2265 const CodeGenRegister*>, 16> SSPairs; 2266 BitVector TopoSigs(getNumTopoSigs()); 2267 2268 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 2269 for (auto &SubIdx : SubRegIndices) { 2270 // Skip indexes that aren't fully supported by RC's registers. This was 2271 // computed by inferSubClassWithSubReg() above which should have been 2272 // called first. 2273 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 2274 continue; 2275 2276 // Build list of (Super, Sub) pairs for this SubIdx. 2277 SSPairs.clear(); 2278 TopoSigs.reset(); 2279 for (const auto Super : RC->getMembers()) { 2280 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 2281 assert(Sub && "Missing sub-register"); 2282 SSPairs.push_back(std::make_pair(Super, Sub)); 2283 TopoSigs.set(Sub->getTopoSig()); 2284 } 2285 2286 // Iterate over sub-register class candidates. Ignore classes created by 2287 // this loop. They will never be useful. 2288 // Store an iterator to the last element (not end) so that this loop doesn't 2289 // visit newly inserted elements. 2290 assert(!RegClasses.empty()); 2291 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2292 I != std::next(E); ++I) { 2293 CodeGenRegisterClass &SubRC = *I; 2294 if (SubRC.Artificial) 2295 continue; 2296 // Topological shortcut: SubRC members have the wrong shape. 2297 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2298 continue; 2299 // Compute the subset of RC that maps into SubRC. 2300 CodeGenRegister::Vec SubSetVec; 2301 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2302 if (SubRC.contains(SSPairs[i].second)) 2303 SubSetVec.push_back(SSPairs[i].first); 2304 2305 if (SubSetVec.empty()) 2306 continue; 2307 2308 // RC injects completely into SubRC. 2309 sortAndUniqueRegisters(SubSetVec); 2310 if (SubSetVec.size() == SSPairs.size()) { 2311 SubRC.addSuperRegClass(&SubIdx, RC); 2312 continue; 2313 } 2314 2315 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2316 // class. 2317 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2318 SubIdx.getName() + "_in_" + 2319 SubRC.getName()); 2320 } 2321 } 2322 } 2323 2324 // 2325 // Infer missing register classes. 2326 // 2327 void CodeGenRegBank::computeInferredRegisterClasses() { 2328 assert(!RegClasses.empty()); 2329 // When this function is called, the register classes have not been sorted 2330 // and assigned EnumValues yet. That means getSubClasses(), 2331 // getSuperClasses(), and hasSubClass() functions are defunct. 2332 2333 // Use one-before-the-end so it doesn't move forward when new elements are 2334 // added. 2335 auto FirstNewRC = std::prev(RegClasses.end()); 2336 2337 // Visit all register classes, including the ones being added by the loop. 2338 // Watch out for iterator invalidation here. 2339 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2340 CodeGenRegisterClass *RC = &*I; 2341 if (RC->Artificial) 2342 continue; 2343 2344 // Synthesize answers for getSubClassWithSubReg(). 2345 inferSubClassWithSubReg(RC); 2346 2347 // Synthesize answers for getCommonSubClass(). 2348 inferCommonSubClass(RC); 2349 2350 // Synthesize answers for getMatchingSuperRegClass(). 2351 inferMatchingSuperRegClass(RC); 2352 2353 // New register classes are created while this loop is running, and we need 2354 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2355 // to match old super-register classes with sub-register classes created 2356 // after inferMatchingSuperRegClass was called. At this point, 2357 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2358 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2359 if (I == FirstNewRC) { 2360 auto NextNewRC = std::prev(RegClasses.end()); 2361 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2362 ++I2) 2363 inferMatchingSuperRegClass(&*I2, E2); 2364 FirstNewRC = NextNewRC; 2365 } 2366 } 2367 } 2368 2369 /// getRegisterClassForRegister - Find the register class that contains the 2370 /// specified physical register. If the register is not in a register class, 2371 /// return null. If the register is in multiple classes, and the classes have a 2372 /// superset-subset relationship and the same set of types, return the 2373 /// superclass. Otherwise return null. 2374 const CodeGenRegisterClass* 2375 CodeGenRegBank::getRegClassForRegister(Record *R) { 2376 const CodeGenRegister *Reg = getReg(R); 2377 const CodeGenRegisterClass *FoundRC = nullptr; 2378 for (const auto &RC : getRegClasses()) { 2379 if (!RC.contains(Reg)) 2380 continue; 2381 2382 // If this is the first class that contains the register, 2383 // make a note of it and go on to the next class. 2384 if (!FoundRC) { 2385 FoundRC = &RC; 2386 continue; 2387 } 2388 2389 // If a register's classes have different types, return null. 2390 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2391 return nullptr; 2392 2393 // Check to see if the previously found class that contains 2394 // the register is a subclass of the current class. If so, 2395 // prefer the superclass. 2396 if (RC.hasSubClass(FoundRC)) { 2397 FoundRC = &RC; 2398 continue; 2399 } 2400 2401 // Check to see if the previously found class that contains 2402 // the register is a superclass of the current class. If so, 2403 // prefer the superclass. 2404 if (FoundRC->hasSubClass(&RC)) 2405 continue; 2406 2407 // Multiple classes, and neither is a superclass of the other. 2408 // Return null. 2409 return nullptr; 2410 } 2411 return FoundRC; 2412 } 2413 2414 const CodeGenRegisterClass * 2415 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord, 2416 ValueTypeByHwMode *VT) { 2417 const CodeGenRegister *Reg = getReg(RegRecord); 2418 const CodeGenRegisterClass *BestRC = nullptr; 2419 for (const auto &RC : getRegClasses()) { 2420 if ((!VT || RC.hasType(*VT)) && 2421 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC))) 2422 BestRC = &RC; 2423 } 2424 2425 assert(BestRC && "Couldn't find the register class"); 2426 return BestRC; 2427 } 2428 2429 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2430 SetVector<const CodeGenRegister*> Set; 2431 2432 // First add Regs with all sub-registers. 2433 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2434 CodeGenRegister *Reg = getReg(Regs[i]); 2435 if (Set.insert(Reg)) 2436 // Reg is new, add all sub-registers. 2437 // The pre-ordering is not important here. 2438 Reg->addSubRegsPreOrder(Set, *this); 2439 } 2440 2441 // Second, find all super-registers that are completely covered by the set. 2442 for (unsigned i = 0; i != Set.size(); ++i) { 2443 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2444 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2445 const CodeGenRegister *Super = SR[j]; 2446 if (!Super->CoveredBySubRegs || Set.count(Super)) 2447 continue; 2448 // This new super-register is covered by its sub-registers. 2449 bool AllSubsInSet = true; 2450 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2451 for (auto I : SRM) 2452 if (!Set.count(I.second)) { 2453 AllSubsInSet = false; 2454 break; 2455 } 2456 // All sub-registers in Set, add Super as well. 2457 // We will visit Super later to recheck its super-registers. 2458 if (AllSubsInSet) 2459 Set.insert(Super); 2460 } 2461 } 2462 2463 // Convert to BitVector. 2464 BitVector BV(Registers.size() + 1); 2465 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2466 BV.set(Set[i]->EnumValue); 2467 return BV; 2468 } 2469 2470 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2471 if (Unit < NumNativeRegUnits) 2472 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2473 else 2474 dbgs() << " #" << Unit; 2475 } 2476