1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenRegisters.h"
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/IntEqClasses.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Record.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <iterator>
37 #include <map>
38 #include <queue>
39 #include <set>
40 #include <string>
41 #include <tuple>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc-emitter"
48 
49 //===----------------------------------------------------------------------===//
50 //                             CodeGenSubRegIndex
51 //===----------------------------------------------------------------------===//
52 
53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54   : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
55   Name = std::string(R->getName());
56   if (R->getValue("Namespace"))
57     Namespace = std::string(R->getValueAsString("Namespace"));
58   Size = R->getValueAsInt("Size");
59   Offset = R->getValueAsInt("Offset");
60 }
61 
62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63                                        unsigned Enum)
64     : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
65       Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
66       Artificial(true) {}
67 
68 std::string CodeGenSubRegIndex::getQualifiedName() const {
69   std::string N = getNamespace();
70   if (!N.empty())
71     N += "::";
72   N += getName();
73   return N;
74 }
75 
76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77   if (!TheDef)
78     return;
79 
80   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81   if (!Comps.empty()) {
82     if (Comps.size() != 2)
83       PrintFatalError(TheDef->getLoc(),
84                       "ComposedOf must have exactly two entries");
85     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87     CodeGenSubRegIndex *X = A->addComposite(B, this);
88     if (X)
89       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
90   }
91 
92   std::vector<Record*> Parts =
93     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94   if (!Parts.empty()) {
95     if (Parts.size() < 2)
96       PrintFatalError(TheDef->getLoc(),
97                       "CoveredBySubRegs must have two or more entries");
98     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99     for (Record *Part : Parts)
100       IdxParts.push_back(RegBank.getSubRegIdx(Part));
101     setConcatenationOf(IdxParts);
102   }
103 }
104 
105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
106   // Already computed?
107   if (LaneMask.any())
108     return LaneMask;
109 
110   // Recursion guard, shouldn't be required.
111   LaneMask = LaneBitmask::getAll();
112 
113   // The lane mask is simply the union of all sub-indices.
114   LaneBitmask M;
115   for (const auto &C : Composed)
116     M |= C.second->computeLaneMask();
117   assert(M.any() && "Missing lane mask, sub-register cycle?");
118   LaneMask = M;
119   return LaneMask;
120 }
121 
122 void CodeGenSubRegIndex::setConcatenationOf(
123     ArrayRef<CodeGenSubRegIndex*> Parts) {
124   if (ConcatenationOf.empty())
125     ConcatenationOf.assign(Parts.begin(), Parts.end());
126   else
127     assert(std::equal(Parts.begin(), Parts.end(),
128                       ConcatenationOf.begin()) && "parts consistent");
129 }
130 
131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132   for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
133        I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
134     CodeGenSubRegIndex *SubIdx = *I;
135     SubIdx->computeConcatTransitiveClosure();
136 #ifndef NDEBUG
137     for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
138       assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
139 #endif
140 
141     if (SubIdx->ConcatenationOf.empty()) {
142       ++I;
143     } else {
144       I = ConcatenationOf.erase(I);
145       I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
146                                  SubIdx->ConcatenationOf.end());
147       I += SubIdx->ConcatenationOf.size();
148     }
149   }
150 }
151 
152 //===----------------------------------------------------------------------===//
153 //                              CodeGenRegister
154 //===----------------------------------------------------------------------===//
155 
156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
157   : TheDef(R),
158     EnumValue(Enum),
159     CostPerUse(R->getValueAsInt("CostPerUse")),
160     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
161     HasDisjunctSubRegs(false),
162     SubRegsComplete(false),
163     SuperRegsComplete(false),
164     TopoSig(~0u) {
165   Artificial = R->getValueAsBit("isArtificial");
166 }
167 
168 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
169   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
170   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
171 
172   if (SRIs.size() != SRs.size())
173     PrintFatalError(TheDef->getLoc(),
174                     "SubRegs and SubRegIndices must have the same size");
175 
176   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
177     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
178     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
179   }
180 
181   // Also compute leading super-registers. Each register has a list of
182   // covered-by-subregs super-registers where it appears as the first explicit
183   // sub-register.
184   //
185   // This is used by computeSecondarySubRegs() to find candidates.
186   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
187     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
188 
189   // Add ad hoc alias links. This is a symmetric relationship between two
190   // registers, so build a symmetric graph by adding links in both ends.
191   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
192   for (Record *Alias : Aliases) {
193     CodeGenRegister *Reg = RegBank.getReg(Alias);
194     ExplicitAliases.push_back(Reg);
195     Reg->ExplicitAliases.push_back(this);
196   }
197 }
198 
199 const StringRef CodeGenRegister::getName() const {
200   assert(TheDef && "no def");
201   return TheDef->getName();
202 }
203 
204 namespace {
205 
206 // Iterate over all register units in a set of registers.
207 class RegUnitIterator {
208   CodeGenRegister::Vec::const_iterator RegI, RegE;
209   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
210 
211 public:
212   RegUnitIterator(const CodeGenRegister::Vec &Regs):
213     RegI(Regs.begin()), RegE(Regs.end()) {
214 
215     if (RegI != RegE) {
216       UnitI = (*RegI)->getRegUnits().begin();
217       UnitE = (*RegI)->getRegUnits().end();
218       advance();
219     }
220   }
221 
222   bool isValid() const { return UnitI != UnitE; }
223 
224   unsigned operator* () const { assert(isValid()); return *UnitI; }
225 
226   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
227 
228   /// Preincrement.  Move to the next unit.
229   void operator++() {
230     assert(isValid() && "Cannot advance beyond the last operand");
231     ++UnitI;
232     advance();
233   }
234 
235 protected:
236   void advance() {
237     while (UnitI == UnitE) {
238       if (++RegI == RegE)
239         break;
240       UnitI = (*RegI)->getRegUnits().begin();
241       UnitE = (*RegI)->getRegUnits().end();
242     }
243   }
244 };
245 
246 } // end anonymous namespace
247 
248 // Return true of this unit appears in RegUnits.
249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250   return RegUnits.test(Unit);
251 }
252 
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256   bool changed = false;
257   for (const auto &SubReg : SubRegs) {
258     CodeGenRegister *SR = SubReg.second;
259     // Merge the subregister's units into this register's RegUnits.
260     changed |= (RegUnits |= SR->RegUnits);
261   }
262 
263   return changed;
264 }
265 
266 const CodeGenRegister::SubRegMap &
267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268   // Only compute this map once.
269   if (SubRegsComplete)
270     return SubRegs;
271   SubRegsComplete = true;
272 
273   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
274 
275   // First insert the explicit subregs and make sure they are fully indexed.
276   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277     CodeGenRegister *SR = ExplicitSubRegs[i];
278     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279     if (!SR->Artificial)
280       Idx->Artificial = false;
281     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283                       " appears twice in Register " + getName());
284     // Map explicit sub-registers first, so the names take precedence.
285     // The inherited sub-registers are mapped below.
286     SubReg2Idx.insert(std::make_pair(SR, Idx));
287   }
288 
289   // Keep track of inherited subregs and how they can be reached.
290   SmallPtrSet<CodeGenRegister*, 8> Orphans;
291 
292   // Clone inherited subregs and place duplicate entries in Orphans.
293   // Here the order is important - earlier subregs take precedence.
294   for (CodeGenRegister *ESR : ExplicitSubRegs) {
295     const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296     HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
297 
298     for (const auto &SR : Map) {
299       if (!SubRegs.insert(SR).second)
300         Orphans.insert(SR.second);
301     }
302   }
303 
304   // Expand any composed subreg indices.
305   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
307   // expanded subreg indices recursively.
308   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309   for (unsigned i = 0; i != Indices.size(); ++i) {
310     CodeGenSubRegIndex *Idx = Indices[i];
311     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312     CodeGenRegister *SR = SubRegs[Idx];
313     const SubRegMap &Map = SR->computeSubRegs(RegBank);
314 
315     // Look at the possible compositions of Idx.
316     // They may not all be supported by SR.
317     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
318            E = Comps.end(); I != E; ++I) {
319       SubRegMap::const_iterator SRI = Map.find(I->first);
320       if (SRI == Map.end())
321         continue; // Idx + I->first doesn't exist in SR.
322       // Add I->second as a name for the subreg SRI->second, assuming it is
323       // orphaned, and the name isn't already used for something else.
324       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
325         continue;
326       // We found a new name for the orphaned sub-register.
327       SubRegs.insert(std::make_pair(I->second, SRI->second));
328       Indices.push_back(I->second);
329     }
330   }
331 
332   // Now Orphans contains the inherited subregisters without a direct index.
333   // Create inferred indexes for all missing entries.
334   // Work backwards in the Indices vector in order to compose subregs bottom-up.
335   // Consider this subreg sequence:
336   //
337   //   qsub_1 -> dsub_0 -> ssub_0
338   //
339   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
340   // can be reached in two different ways:
341   //
342   //   qsub_1 -> ssub_0
343   //   dsub_2 -> ssub_0
344   //
345   // We pick the latter composition because another register may have [dsub_0,
346   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
347   // dsub_2 -> ssub_0 composition can be shared.
348   while (!Indices.empty() && !Orphans.empty()) {
349     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
350     CodeGenRegister *SR = SubRegs[Idx];
351     const SubRegMap &Map = SR->computeSubRegs(RegBank);
352     for (const auto &SubReg : Map)
353       if (Orphans.erase(SubReg.second))
354         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
355   }
356 
357   // Compute the inverse SubReg -> Idx map.
358   for (const auto &SubReg : SubRegs) {
359     if (SubReg.second == this) {
360       ArrayRef<SMLoc> Loc;
361       if (TheDef)
362         Loc = TheDef->getLoc();
363       PrintFatalError(Loc, "Register " + getName() +
364                       " has itself as a sub-register");
365     }
366 
367     // Compute AllSuperRegsCovered.
368     if (!CoveredBySubRegs)
369       SubReg.first->AllSuperRegsCovered = false;
370 
371     // Ensure that every sub-register has a unique name.
372     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
373       SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
374     if (Ins->second == SubReg.first)
375       continue;
376     // Trouble: Two different names for SubReg.second.
377     ArrayRef<SMLoc> Loc;
378     if (TheDef)
379       Loc = TheDef->getLoc();
380     PrintFatalError(Loc, "Sub-register can't have two names: " +
381                   SubReg.second->getName() + " available as " +
382                   SubReg.first->getName() + " and " + Ins->second->getName());
383   }
384 
385   // Derive possible names for sub-register concatenations from any explicit
386   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
387   // that getConcatSubRegIndex() won't invent any concatenated indices that the
388   // user already specified.
389   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
390     CodeGenRegister *SR = ExplicitSubRegs[i];
391     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
392         SR->Artificial)
393       continue;
394 
395     // SR is composed of multiple sub-regs. Find their names in this register.
396     SmallVector<CodeGenSubRegIndex*, 8> Parts;
397     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
398       CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
399       if (!I.Artificial)
400         Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
401     }
402 
403     // Offer this as an existing spelling for the concatenation of Parts.
404     CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
405     Idx.setConcatenationOf(Parts);
406   }
407 
408   // Initialize RegUnitList. Because getSubRegs is called recursively, this
409   // processes the register hierarchy in postorder.
410   //
411   // Inherit all sub-register units. It is good enough to look at the explicit
412   // sub-registers, the other registers won't contribute any more units.
413   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
414     CodeGenRegister *SR = ExplicitSubRegs[i];
415     RegUnits |= SR->RegUnits;
416   }
417 
418   // Absent any ad hoc aliasing, we create one register unit per leaf register.
419   // These units correspond to the maximal cliques in the register overlap
420   // graph which is optimal.
421   //
422   // When there is ad hoc aliasing, we simply create one unit per edge in the
423   // undirected ad hoc aliasing graph. Technically, we could do better by
424   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
425   // are extremely rare anyway (I've never seen one), so we don't bother with
426   // the added complexity.
427   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
428     CodeGenRegister *AR = ExplicitAliases[i];
429     // Only visit each edge once.
430     if (AR->SubRegsComplete)
431       continue;
432     // Create a RegUnit representing this alias edge, and add it to both
433     // registers.
434     unsigned Unit = RegBank.newRegUnit(this, AR);
435     RegUnits.set(Unit);
436     AR->RegUnits.set(Unit);
437   }
438 
439   // Finally, create units for leaf registers without ad hoc aliases. Note that
440   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
441   // necessary. This means the aliasing leaf registers can share a single unit.
442   if (RegUnits.empty())
443     RegUnits.set(RegBank.newRegUnit(this));
444 
445   // We have now computed the native register units. More may be adopted later
446   // for balancing purposes.
447   NativeRegUnits = RegUnits;
448 
449   return SubRegs;
450 }
451 
452 // In a register that is covered by its sub-registers, try to find redundant
453 // sub-registers. For example:
454 //
455 //   QQ0 = {Q0, Q1}
456 //   Q0 = {D0, D1}
457 //   Q1 = {D2, D3}
458 //
459 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
460 // the register definition.
461 //
462 // The explicitly specified registers form a tree. This function discovers
463 // sub-register relationships that would force a DAG.
464 //
465 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
466   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
467 
468   std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
469   for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
470     SubRegQueue.push(P);
471 
472   // Look at the leading super-registers of each sub-register. Those are the
473   // candidates for new sub-registers, assuming they are fully contained in
474   // this register.
475   while (!SubRegQueue.empty()) {
476     CodeGenSubRegIndex *SubRegIdx;
477     const CodeGenRegister *SubReg;
478     std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
479     SubRegQueue.pop();
480 
481     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
482     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
483       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
484       // Already got this sub-register?
485       if (Cand == this || getSubRegIndex(Cand))
486         continue;
487       // Check if each component of Cand is already a sub-register.
488       assert(!Cand->ExplicitSubRegs.empty() &&
489              "Super-register has no sub-registers");
490       if (Cand->ExplicitSubRegs.size() == 1)
491         continue;
492       SmallVector<CodeGenSubRegIndex*, 8> Parts;
493       // We know that the first component is (SubRegIdx,SubReg). However we
494       // may still need to split it into smaller subregister parts.
495       assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
496       assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
497       for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
498         if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
499           if (SubRegIdx->ConcatenationOf.empty()) {
500             Parts.push_back(SubRegIdx);
501           } else
502             for (CodeGenSubRegIndex *SubIdx : SubRegIdx->ConcatenationOf)
503               Parts.push_back(SubIdx);
504         } else {
505           // Sub-register doesn't exist.
506           Parts.clear();
507           break;
508         }
509       }
510       // There is nothing to do if some Cand sub-register is not part of this
511       // register.
512       if (Parts.empty())
513         continue;
514 
515       // Each part of Cand is a sub-register of this. Make the full Cand also
516       // a sub-register with a concatenated sub-register index.
517       CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
518       std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
519           std::make_pair(Concat, Cand);
520 
521       if (!SubRegs.insert(NewSubReg).second)
522         continue;
523 
524       // We inserted a new subregister.
525       NewSubRegs.push_back(NewSubReg);
526       SubRegQueue.push(NewSubReg);
527       SubReg2Idx.insert(std::make_pair(Cand, Concat));
528     }
529   }
530 
531   // Create sub-register index composition maps for the synthesized indices.
532   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
533     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
534     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
535     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
536            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
537       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
538       if (!SubIdx)
539         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
540                         SI->second->getName() + " in " + getName());
541       NewIdx->addComposite(SI->first, SubIdx);
542     }
543   }
544 }
545 
546 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
547   // Only visit each register once.
548   if (SuperRegsComplete)
549     return;
550   SuperRegsComplete = true;
551 
552   // Make sure all sub-registers have been visited first, so the super-reg
553   // lists will be topologically ordered.
554   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
555        I != E; ++I)
556     I->second->computeSuperRegs(RegBank);
557 
558   // Now add this as a super-register on all sub-registers.
559   // Also compute the TopoSigId in post-order.
560   TopoSigId Id;
561   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
562        I != E; ++I) {
563     // Topological signature computed from SubIdx, TopoId(SubReg).
564     // Loops and idempotent indices have TopoSig = ~0u.
565     Id.push_back(I->first->EnumValue);
566     Id.push_back(I->second->TopoSig);
567 
568     // Don't add duplicate entries.
569     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
570       continue;
571     I->second->SuperRegs.push_back(this);
572   }
573   TopoSig = RegBank.getTopoSig(Id);
574 }
575 
576 void
577 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
578                                     CodeGenRegBank &RegBank) const {
579   assert(SubRegsComplete && "Must precompute sub-registers");
580   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
581     CodeGenRegister *SR = ExplicitSubRegs[i];
582     if (OSet.insert(SR))
583       SR->addSubRegsPreOrder(OSet, RegBank);
584   }
585   // Add any secondary sub-registers that weren't part of the explicit tree.
586   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
587        I != E; ++I)
588     OSet.insert(I->second);
589 }
590 
591 // Get the sum of this register's unit weights.
592 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
593   unsigned Weight = 0;
594   for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
595        I != E; ++I) {
596     Weight += RegBank.getRegUnit(*I).Weight;
597   }
598   return Weight;
599 }
600 
601 //===----------------------------------------------------------------------===//
602 //                               RegisterTuples
603 //===----------------------------------------------------------------------===//
604 
605 // A RegisterTuples def is used to generate pseudo-registers from lists of
606 // sub-registers. We provide a SetTheory expander class that returns the new
607 // registers.
608 namespace {
609 
610 struct TupleExpander : SetTheory::Expander {
611   // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
612   // the synthesized definitions for their lifetime.
613   std::vector<std::unique_ptr<Record>> &SynthDefs;
614 
615   TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
616       : SynthDefs(SynthDefs) {}
617 
618   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
619     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
620     unsigned Dim = Indices.size();
621     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
622     if (Dim != SubRegs->size())
623       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
624     if (Dim < 2)
625       PrintFatalError(Def->getLoc(),
626                       "Tuples must have at least 2 sub-registers");
627 
628     // Evaluate the sub-register lists to be zipped.
629     unsigned Length = ~0u;
630     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
631     for (unsigned i = 0; i != Dim; ++i) {
632       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
633       Length = std::min(Length, unsigned(Lists[i].size()));
634     }
635 
636     if (Length == 0)
637       return;
638 
639     // Precompute some types.
640     Record *RegisterCl = Def->getRecords().getClass("Register");
641     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
642     std::vector<StringRef> RegNames =
643       Def->getValueAsListOfStrings("RegAsmNames");
644 
645     // Zip them up.
646     for (unsigned n = 0; n != Length; ++n) {
647       std::string Name;
648       Record *Proto = Lists[0][n];
649       std::vector<Init*> Tuple;
650       unsigned CostPerUse = 0;
651       for (unsigned i = 0; i != Dim; ++i) {
652         Record *Reg = Lists[i][n];
653         if (i) Name += '_';
654         Name += Reg->getName();
655         Tuple.push_back(DefInit::get(Reg));
656         CostPerUse = std::max(CostPerUse,
657                               unsigned(Reg->getValueAsInt("CostPerUse")));
658       }
659 
660       StringInit *AsmName = StringInit::get("");
661       if (!RegNames.empty()) {
662         if (RegNames.size() <= n)
663           PrintFatalError(Def->getLoc(),
664                           "Register tuple definition missing name for '" +
665                             Name + "'.");
666         AsmName = StringInit::get(RegNames[n]);
667       }
668 
669       // Create a new Record representing the synthesized register. This record
670       // is only for consumption by CodeGenRegister, it is not added to the
671       // RecordKeeper.
672       SynthDefs.emplace_back(
673           std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
674       Record *NewReg = SynthDefs.back().get();
675       Elts.insert(NewReg);
676 
677       // Copy Proto super-classes.
678       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
679       for (const auto &SuperPair : Supers)
680         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
681 
682       // Copy Proto fields.
683       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
684         RecordVal RV = Proto->getValues()[i];
685 
686         // Skip existing fields, like NAME.
687         if (NewReg->getValue(RV.getNameInit()))
688           continue;
689 
690         StringRef Field = RV.getName();
691 
692         // Replace the sub-register list with Tuple.
693         if (Field == "SubRegs")
694           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
695 
696         if (Field == "AsmName")
697           RV.setValue(AsmName);
698 
699         // CostPerUse is aggregated from all Tuple members.
700         if (Field == "CostPerUse")
701           RV.setValue(IntInit::get(CostPerUse));
702 
703         // Composite registers are always covered by sub-registers.
704         if (Field == "CoveredBySubRegs")
705           RV.setValue(BitInit::get(true));
706 
707         // Copy fields from the RegisterTuples def.
708         if (Field == "SubRegIndices" ||
709             Field == "CompositeIndices") {
710           NewReg->addValue(*Def->getValue(Field));
711           continue;
712         }
713 
714         // Some fields get their default uninitialized value.
715         if (Field == "DwarfNumbers" ||
716             Field == "DwarfAlias" ||
717             Field == "Aliases") {
718           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
719             NewReg->addValue(*DefRV);
720           continue;
721         }
722 
723         // Everything else is copied from Proto.
724         NewReg->addValue(RV);
725       }
726     }
727   }
728 };
729 
730 } // end anonymous namespace
731 
732 //===----------------------------------------------------------------------===//
733 //                            CodeGenRegisterClass
734 //===----------------------------------------------------------------------===//
735 
736 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
737   llvm::sort(M, deref<std::less<>>());
738   M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
739 }
740 
741 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
742     : TheDef(R), Name(std::string(R->getName())),
743       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1) {
744   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
745   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
746     Record *Type = TypeList[i];
747     if (!Type->isSubClassOf("ValueType"))
748       PrintFatalError(R->getLoc(),
749                       "RegTypes list member '" + Type->getName() +
750                           "' does not derive from the ValueType class!");
751     VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
752   }
753   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
754 
755   // Allocation order 0 is the full set. AltOrders provides others.
756   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
757   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
758   Orders.resize(1 + AltOrders->size());
759 
760   // Default allocation order always contains all registers.
761   Artificial = true;
762   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
763     Orders[0].push_back((*Elements)[i]);
764     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
765     Members.push_back(Reg);
766     Artificial &= Reg->Artificial;
767     TopoSigs.set(Reg->getTopoSig());
768   }
769   sortAndUniqueRegisters(Members);
770 
771   // Alternative allocation orders may be subsets.
772   SetTheory::RecSet Order;
773   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
774     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
775     Orders[1 + i].append(Order.begin(), Order.end());
776     // Verify that all altorder members are regclass members.
777     while (!Order.empty()) {
778       CodeGenRegister *Reg = RegBank.getReg(Order.back());
779       Order.pop_back();
780       if (!contains(Reg))
781         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
782                       " is not a class member");
783     }
784   }
785 
786   Namespace = R->getValueAsString("Namespace");
787 
788   if (const RecordVal *RV = R->getValue("RegInfos"))
789     if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
790       RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
791   unsigned Size = R->getValueAsInt("Size");
792   assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
793          "Impossible to determine register size");
794   if (!RSI.hasDefault()) {
795     RegSizeInfo RI;
796     RI.RegSize = RI.SpillSize = Size ? Size
797                                      : VTs[0].getSimple().getSizeInBits();
798     RI.SpillAlignment = R->getValueAsInt("Alignment");
799     RSI.Map.insert({DefaultMode, RI});
800   }
801 
802   CopyCost = R->getValueAsInt("CopyCost");
803   Allocatable = R->getValueAsBit("isAllocatable");
804   AltOrderSelect = R->getValueAsString("AltOrderSelect");
805   int AllocationPriority = R->getValueAsInt("AllocationPriority");
806   if (AllocationPriority < 0 || AllocationPriority > 63)
807     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
808   this->AllocationPriority = AllocationPriority;
809 }
810 
811 // Create an inferred register class that was missing from the .td files.
812 // Most properties will be inherited from the closest super-class after the
813 // class structure has been computed.
814 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
815                                            StringRef Name, Key Props)
816     : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
817       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
818       CopyCost(0), Allocatable(true), AllocationPriority(0) {
819   Artificial = true;
820   for (const auto R : Members) {
821     TopoSigs.set(R->getTopoSig());
822     Artificial &= R->Artificial;
823   }
824 }
825 
826 // Compute inherited propertied for a synthesized register class.
827 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
828   assert(!getDef() && "Only synthesized classes can inherit properties");
829   assert(!SuperClasses.empty() && "Synthesized class without super class");
830 
831   // The last super-class is the smallest one.
832   CodeGenRegisterClass &Super = *SuperClasses.back();
833 
834   // Most properties are copied directly.
835   // Exceptions are members, size, and alignment
836   Namespace = Super.Namespace;
837   VTs = Super.VTs;
838   CopyCost = Super.CopyCost;
839   Allocatable = Super.Allocatable;
840   AltOrderSelect = Super.AltOrderSelect;
841   AllocationPriority = Super.AllocationPriority;
842 
843   // Copy all allocation orders, filter out foreign registers from the larger
844   // super-class.
845   Orders.resize(Super.Orders.size());
846   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
847     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
848       if (contains(RegBank.getReg(Super.Orders[i][j])))
849         Orders[i].push_back(Super.Orders[i][j]);
850 }
851 
852 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
853   return std::binary_search(Members.begin(), Members.end(), Reg,
854                             deref<std::less<>>());
855 }
856 
857 namespace llvm {
858 
859   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
860     OS << "{ " << K.RSI;
861     for (const auto R : *K.Members)
862       OS << ", " << R->getName();
863     return OS << " }";
864   }
865 
866 } // end namespace llvm
867 
868 // This is a simple lexicographical order that can be used to search for sets.
869 // It is not the same as the topological order provided by TopoOrderRC.
870 bool CodeGenRegisterClass::Key::
871 operator<(const CodeGenRegisterClass::Key &B) const {
872   assert(Members && B.Members);
873   return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
874 }
875 
876 // Returns true if RC is a strict subclass.
877 // RC is a sub-class of this class if it is a valid replacement for any
878 // instruction operand where a register of this classis required. It must
879 // satisfy these conditions:
880 //
881 // 1. All RC registers are also in this.
882 // 2. The RC spill size must not be smaller than our spill size.
883 // 3. RC spill alignment must be compatible with ours.
884 //
885 static bool testSubClass(const CodeGenRegisterClass *A,
886                          const CodeGenRegisterClass *B) {
887   return A->RSI.isSubClassOf(B->RSI) &&
888          std::includes(A->getMembers().begin(), A->getMembers().end(),
889                        B->getMembers().begin(), B->getMembers().end(),
890                        deref<std::less<>>());
891 }
892 
893 /// Sorting predicate for register classes.  This provides a topological
894 /// ordering that arranges all register classes before their sub-classes.
895 ///
896 /// Register classes with the same registers, spill size, and alignment form a
897 /// clique.  They will be ordered alphabetically.
898 ///
899 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
900                         const CodeGenRegisterClass &PB) {
901   auto *A = &PA;
902   auto *B = &PB;
903   if (A == B)
904     return false;
905 
906   if (A->RSI < B->RSI)
907     return true;
908   if (A->RSI != B->RSI)
909     return false;
910 
911   // Order by descending set size.  Note that the classes' allocation order may
912   // not have been computed yet.  The Members set is always vaild.
913   if (A->getMembers().size() > B->getMembers().size())
914     return true;
915   if (A->getMembers().size() < B->getMembers().size())
916     return false;
917 
918   // Finally order by name as a tie breaker.
919   return StringRef(A->getName()) < B->getName();
920 }
921 
922 std::string CodeGenRegisterClass::getQualifiedName() const {
923   if (Namespace.empty())
924     return getName();
925   else
926     return (Namespace + "::" + getName()).str();
927 }
928 
929 // Compute sub-classes of all register classes.
930 // Assume the classes are ordered topologically.
931 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
932   auto &RegClasses = RegBank.getRegClasses();
933 
934   // Visit backwards so sub-classes are seen first.
935   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
936     CodeGenRegisterClass &RC = *I;
937     RC.SubClasses.resize(RegClasses.size());
938     RC.SubClasses.set(RC.EnumValue);
939     if (RC.Artificial)
940       continue;
941 
942     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
943     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
944       CodeGenRegisterClass &SubRC = *I2;
945       if (RC.SubClasses.test(SubRC.EnumValue))
946         continue;
947       if (!testSubClass(&RC, &SubRC))
948         continue;
949       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
950       // check them again.
951       RC.SubClasses |= SubRC.SubClasses;
952     }
953 
954     // Sweep up missed clique members.  They will be immediately preceding RC.
955     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
956       RC.SubClasses.set(I2->EnumValue);
957   }
958 
959   // Compute the SuperClasses lists from the SubClasses vectors.
960   for (auto &RC : RegClasses) {
961     const BitVector &SC = RC.getSubClasses();
962     auto I = RegClasses.begin();
963     for (int s = 0, next_s = SC.find_first(); next_s != -1;
964          next_s = SC.find_next(s)) {
965       std::advance(I, next_s - s);
966       s = next_s;
967       if (&*I == &RC)
968         continue;
969       I->SuperClasses.push_back(&RC);
970     }
971   }
972 
973   // With the class hierarchy in place, let synthesized register classes inherit
974   // properties from their closest super-class. The iteration order here can
975   // propagate properties down multiple levels.
976   for (auto &RC : RegClasses)
977     if (!RC.getDef())
978       RC.inheritProperties(RegBank);
979 }
980 
981 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
982 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
983     CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
984   auto SizeOrder = [this](const CodeGenRegisterClass *A,
985                       const CodeGenRegisterClass *B) {
986     // If there are multiple, identical register classes, prefer the original
987     // register class.
988     if (A->getMembers().size() == B->getMembers().size())
989       return A == this;
990     return A->getMembers().size() > B->getMembers().size();
991   };
992 
993   auto &RegClasses = RegBank.getRegClasses();
994 
995   // Find all the subclasses of this one that fully support the sub-register
996   // index and order them by size. BiggestSuperRC should always be first.
997   CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
998   if (!BiggestSuperRegRC)
999     return None;
1000   BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1001   std::vector<CodeGenRegisterClass *> SuperRegRCs;
1002   for (auto &RC : RegClasses)
1003     if (SuperRegRCsBV[RC.EnumValue])
1004       SuperRegRCs.emplace_back(&RC);
1005   llvm::stable_sort(SuperRegRCs, SizeOrder);
1006 
1007   assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1008          "Biggest class wasn't first");
1009 
1010   // Find all the subreg classes and order them by size too.
1011   std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1012   for (auto &RC: RegClasses) {
1013     BitVector SuperRegClassesBV(RegClasses.size());
1014     RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1015     if (SuperRegClassesBV.any())
1016       SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1017   }
1018   llvm::sort(SuperRegClasses,
1019              [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1020                  const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1021                return SizeOrder(A.first, B.first);
1022              });
1023 
1024   // Find the biggest subclass and subreg class such that R:subidx is in the
1025   // subreg class for all R in subclass.
1026   //
1027   // For example:
1028   // All registers in X86's GR64 have a sub_32bit subregister but no class
1029   // exists that contains all the 32-bit subregisters because GR64 contains RIP
1030   // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1031   // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1032   // having excluded RIP, we are able to find a SubRegRC (GR32).
1033   CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1034   CodeGenRegisterClass *SubRegRC = nullptr;
1035   for (auto *SuperRegRC : SuperRegRCs) {
1036     for (const auto &SuperRegClassPair : SuperRegClasses) {
1037       const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1038       if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1039         SubRegRC = SuperRegClassPair.first;
1040         ChosenSuperRegClass = SuperRegRC;
1041 
1042         // If SubRegRC is bigger than SuperRegRC then there are members of
1043         // SubRegRC that don't have super registers via SubIdx. Keep looking to
1044         // find a better fit and fall back on this one if there isn't one.
1045         //
1046         // This is intended to prevent X86 from making odd choices such as
1047         // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1048         // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1049         // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1050         // mapping.
1051         if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1052           return std::make_pair(ChosenSuperRegClass, SubRegRC);
1053       }
1054     }
1055 
1056     // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1057     // registers, then we're done.
1058     if (ChosenSuperRegClass)
1059       return std::make_pair(ChosenSuperRegClass, SubRegRC);
1060   }
1061 
1062   return None;
1063 }
1064 
1065 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1066                                               BitVector &Out) const {
1067   auto FindI = SuperRegClasses.find(SubIdx);
1068   if (FindI == SuperRegClasses.end())
1069     return;
1070   for (CodeGenRegisterClass *RC : FindI->second)
1071     Out.set(RC->EnumValue);
1072 }
1073 
1074 // Populate a unique sorted list of units from a register set.
1075 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1076   std::vector<unsigned> &RegUnits) const {
1077   std::vector<unsigned> TmpUnits;
1078   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1079     const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1080     if (!RU.Artificial)
1081       TmpUnits.push_back(*UnitI);
1082   }
1083   llvm::sort(TmpUnits);
1084   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1085                    std::back_inserter(RegUnits));
1086 }
1087 
1088 //===----------------------------------------------------------------------===//
1089 //                               CodeGenRegBank
1090 //===----------------------------------------------------------------------===//
1091 
1092 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1093                                const CodeGenHwModes &Modes) : CGH(Modes) {
1094   // Configure register Sets to understand register classes and tuples.
1095   Sets.addFieldExpander("RegisterClass", "MemberList");
1096   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1097   Sets.addExpander("RegisterTuples",
1098                    std::make_unique<TupleExpander>(SynthDefs));
1099 
1100   // Read in the user-defined (named) sub-register indices.
1101   // More indices will be synthesized later.
1102   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1103   llvm::sort(SRIs, LessRecord());
1104   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1105     getSubRegIdx(SRIs[i]);
1106   // Build composite maps from ComposedOf fields.
1107   for (auto &Idx : SubRegIndices)
1108     Idx.updateComponents(*this);
1109 
1110   // Read in the register definitions.
1111   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1112   llvm::sort(Regs, LessRecordRegister());
1113   // Assign the enumeration values.
1114   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1115     getReg(Regs[i]);
1116 
1117   // Expand tuples and number the new registers.
1118   std::vector<Record*> Tups =
1119     Records.getAllDerivedDefinitions("RegisterTuples");
1120 
1121   for (Record *R : Tups) {
1122     std::vector<Record *> TupRegs = *Sets.expand(R);
1123     llvm::sort(TupRegs, LessRecordRegister());
1124     for (Record *RC : TupRegs)
1125       getReg(RC);
1126   }
1127 
1128   // Now all the registers are known. Build the object graph of explicit
1129   // register-register references.
1130   for (auto &Reg : Registers)
1131     Reg.buildObjectGraph(*this);
1132 
1133   // Compute register name map.
1134   for (auto &Reg : Registers)
1135     // FIXME: This could just be RegistersByName[name] = register, except that
1136     // causes some failures in MIPS - perhaps they have duplicate register name
1137     // entries? (or maybe there's a reason for it - I don't know much about this
1138     // code, just drive-by refactoring)
1139     RegistersByName.insert(
1140         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1141 
1142   // Precompute all sub-register maps.
1143   // This will create Composite entries for all inferred sub-register indices.
1144   for (auto &Reg : Registers)
1145     Reg.computeSubRegs(*this);
1146 
1147   // Compute transitive closure of subregister index ConcatenationOf vectors
1148   // and initialize ConcatIdx map.
1149   for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1150     SRI.computeConcatTransitiveClosure();
1151     if (!SRI.ConcatenationOf.empty())
1152       ConcatIdx.insert(std::make_pair(
1153           SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1154                                              SRI.ConcatenationOf.end()), &SRI));
1155   }
1156 
1157   // Infer even more sub-registers by combining leading super-registers.
1158   for (auto &Reg : Registers)
1159     if (Reg.CoveredBySubRegs)
1160       Reg.computeSecondarySubRegs(*this);
1161 
1162   // After the sub-register graph is complete, compute the topologically
1163   // ordered SuperRegs list.
1164   for (auto &Reg : Registers)
1165     Reg.computeSuperRegs(*this);
1166 
1167   // For each pair of Reg:SR, if both are non-artificial, mark the
1168   // corresponding sub-register index as non-artificial.
1169   for (auto &Reg : Registers) {
1170     if (Reg.Artificial)
1171       continue;
1172     for (auto P : Reg.getSubRegs()) {
1173       const CodeGenRegister *SR = P.second;
1174       if (!SR->Artificial)
1175         P.first->Artificial = false;
1176     }
1177   }
1178 
1179   // Native register units are associated with a leaf register. They've all been
1180   // discovered now.
1181   NumNativeRegUnits = RegUnits.size();
1182 
1183   // Read in register class definitions.
1184   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1185   if (RCs.empty())
1186     PrintFatalError("No 'RegisterClass' subclasses defined!");
1187 
1188   // Allocate user-defined register classes.
1189   for (auto *R : RCs) {
1190     RegClasses.emplace_back(*this, R);
1191     CodeGenRegisterClass &RC = RegClasses.back();
1192     if (!RC.Artificial)
1193       addToMaps(&RC);
1194   }
1195 
1196   // Infer missing classes to create a full algebra.
1197   computeInferredRegisterClasses();
1198 
1199   // Order register classes topologically and assign enum values.
1200   RegClasses.sort(TopoOrderRC);
1201   unsigned i = 0;
1202   for (auto &RC : RegClasses)
1203     RC.EnumValue = i++;
1204   CodeGenRegisterClass::computeSubClasses(*this);
1205 }
1206 
1207 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1208 CodeGenSubRegIndex*
1209 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1210   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1211   return &SubRegIndices.back();
1212 }
1213 
1214 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1215   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1216   if (Idx)
1217     return Idx;
1218   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1219   Idx = &SubRegIndices.back();
1220   return Idx;
1221 }
1222 
1223 const CodeGenSubRegIndex *
1224 CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1225   auto I = Def2SubRegIdx.find(Def);
1226   return (I == Def2SubRegIdx.end()) ? nullptr : I->second;
1227 }
1228 
1229 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1230   CodeGenRegister *&Reg = Def2Reg[Def];
1231   if (Reg)
1232     return Reg;
1233   Registers.emplace_back(Def, Registers.size() + 1);
1234   Reg = &Registers.back();
1235   return Reg;
1236 }
1237 
1238 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1239   if (Record *Def = RC->getDef())
1240     Def2RC.insert(std::make_pair(Def, RC));
1241 
1242   // Duplicate classes are rejected by insert().
1243   // That's OK, we only care about the properties handled by CGRC::Key.
1244   CodeGenRegisterClass::Key K(*RC);
1245   Key2RC.insert(std::make_pair(K, RC));
1246 }
1247 
1248 // Create a synthetic sub-class if it is missing.
1249 CodeGenRegisterClass*
1250 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1251                                     const CodeGenRegister::Vec *Members,
1252                                     StringRef Name) {
1253   // Synthetic sub-class has the same size and alignment as RC.
1254   CodeGenRegisterClass::Key K(Members, RC->RSI);
1255   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1256   if (FoundI != Key2RC.end())
1257     return FoundI->second;
1258 
1259   // Sub-class doesn't exist, create a new one.
1260   RegClasses.emplace_back(*this, Name, K);
1261   addToMaps(&RegClasses.back());
1262   return &RegClasses.back();
1263 }
1264 
1265 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1266   if (CodeGenRegisterClass *RC = Def2RC[Def])
1267     return RC;
1268 
1269   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1270 }
1271 
1272 CodeGenSubRegIndex*
1273 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1274                                         CodeGenSubRegIndex *B) {
1275   // Look for an existing entry.
1276   CodeGenSubRegIndex *Comp = A->compose(B);
1277   if (Comp)
1278     return Comp;
1279 
1280   // None exists, synthesize one.
1281   std::string Name = A->getName() + "_then_" + B->getName();
1282   Comp = createSubRegIndex(Name, A->getNamespace());
1283   A->addComposite(B, Comp);
1284   return Comp;
1285 }
1286 
1287 CodeGenSubRegIndex *CodeGenRegBank::
1288 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1289   assert(Parts.size() > 1 && "Need two parts to concatenate");
1290 #ifndef NDEBUG
1291   for (CodeGenSubRegIndex *Idx : Parts) {
1292     assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1293   }
1294 #endif
1295 
1296   // Look for an existing entry.
1297   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1298   if (Idx)
1299     return Idx;
1300 
1301   // None exists, synthesize one.
1302   std::string Name = Parts.front()->getName();
1303   // Determine whether all parts are contiguous.
1304   bool isContinuous = true;
1305   unsigned Size = Parts.front()->Size;
1306   unsigned LastOffset = Parts.front()->Offset;
1307   unsigned LastSize = Parts.front()->Size;
1308   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1309     Name += '_';
1310     Name += Parts[i]->getName();
1311     Size += Parts[i]->Size;
1312     if (Parts[i]->Offset != (LastOffset + LastSize))
1313       isContinuous = false;
1314     LastOffset = Parts[i]->Offset;
1315     LastSize = Parts[i]->Size;
1316   }
1317   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1318   Idx->Size = Size;
1319   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1320   Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1321   return Idx;
1322 }
1323 
1324 void CodeGenRegBank::computeComposites() {
1325   using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1326 
1327   // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1328   // register to (sub)register associated with the action of the left-hand
1329   // side subregister.
1330   std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1331   for (const CodeGenRegister &R : Registers) {
1332     const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1333     for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1334       SubRegAction[P.first].insert({&R, P.second});
1335   }
1336 
1337   // Calculate the composition of two subregisters as compositions of their
1338   // associated actions.
1339   auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1340                                   const CodeGenSubRegIndex *Sub2) {
1341     RegMap C;
1342     const RegMap &Img1 = SubRegAction.at(Sub1);
1343     const RegMap &Img2 = SubRegAction.at(Sub2);
1344     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1345       auto F = Img2.find(P.second);
1346       if (F != Img2.end())
1347         C.insert({P.first, F->second});
1348     }
1349     return C;
1350   };
1351 
1352   // Check if the two maps agree on the intersection of their domains.
1353   auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1354     // Technically speaking, an empty map agrees with any other map, but
1355     // this could flag false positives. We're interested in non-vacuous
1356     // agreements.
1357     if (Map1.empty() || Map2.empty())
1358       return false;
1359     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1360       auto F = Map2.find(P.first);
1361       if (F == Map2.end() || P.second != F->second)
1362         return false;
1363     }
1364     return true;
1365   };
1366 
1367   using CompositePair = std::pair<const CodeGenSubRegIndex*,
1368                                   const CodeGenSubRegIndex*>;
1369   SmallSet<CompositePair,4> UserDefined;
1370   for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1371     for (auto P : Idx.getComposites())
1372       UserDefined.insert(std::make_pair(&Idx, P.first));
1373 
1374   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1375   // and many registers will share TopoSigs on regular architectures.
1376   BitVector TopoSigs(getNumTopoSigs());
1377 
1378   for (const auto &Reg1 : Registers) {
1379     // Skip identical subreg structures already processed.
1380     if (TopoSigs.test(Reg1.getTopoSig()))
1381       continue;
1382     TopoSigs.set(Reg1.getTopoSig());
1383 
1384     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1385     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1386          e1 = SRM1.end(); i1 != e1; ++i1) {
1387       CodeGenSubRegIndex *Idx1 = i1->first;
1388       CodeGenRegister *Reg2 = i1->second;
1389       // Ignore identity compositions.
1390       if (&Reg1 == Reg2)
1391         continue;
1392       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1393       // Try composing Idx1 with another SubRegIndex.
1394       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1395            e2 = SRM2.end(); i2 != e2; ++i2) {
1396         CodeGenSubRegIndex *Idx2 = i2->first;
1397         CodeGenRegister *Reg3 = i2->second;
1398         // Ignore identity compositions.
1399         if (Reg2 == Reg3)
1400           continue;
1401         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1402         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1403         assert(Idx3 && "Sub-register doesn't have an index");
1404 
1405         // Conflicting composition? Emit a warning but allow it.
1406         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1407           // If the composition was not user-defined, always emit a warning.
1408           if (!UserDefined.count({Idx1, Idx2}) ||
1409               agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1410             PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1411                          " and " + Idx2->getQualifiedName() +
1412                          " compose ambiguously as " + Prev->getQualifiedName() +
1413                          " or " + Idx3->getQualifiedName());
1414         }
1415       }
1416     }
1417   }
1418 }
1419 
1420 // Compute lane masks. This is similar to register units, but at the
1421 // sub-register index level. Each bit in the lane mask is like a register unit
1422 // class, and two lane masks will have a bit in common if two sub-register
1423 // indices overlap in some register.
1424 //
1425 // Conservatively share a lane mask bit if two sub-register indices overlap in
1426 // some registers, but not in others. That shouldn't happen a lot.
1427 void CodeGenRegBank::computeSubRegLaneMasks() {
1428   // First assign individual bits to all the leaf indices.
1429   unsigned Bit = 0;
1430   // Determine mask of lanes that cover their registers.
1431   CoveringLanes = LaneBitmask::getAll();
1432   for (auto &Idx : SubRegIndices) {
1433     if (Idx.getComposites().empty()) {
1434       if (Bit > LaneBitmask::BitWidth) {
1435         PrintFatalError(
1436           Twine("Ran out of lanemask bits to represent subregister ")
1437           + Idx.getName());
1438       }
1439       Idx.LaneMask = LaneBitmask::getLane(Bit);
1440       ++Bit;
1441     } else {
1442       Idx.LaneMask = LaneBitmask::getNone();
1443     }
1444   }
1445 
1446   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1447   // here is that for each possible target subregister we look at the leafs
1448   // in the subregister graph that compose for this target and create
1449   // transformation sequences for the lanemasks. Each step in the sequence
1450   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1451   // are usually the same for many subregisters we can easily combine the steps
1452   // by combining the masks.
1453   for (const auto &Idx : SubRegIndices) {
1454     const auto &Composites = Idx.getComposites();
1455     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1456 
1457     if (Composites.empty()) {
1458       // Moving from a class with no subregisters we just had a single lane:
1459       // The subregister must be a leaf subregister and only occupies 1 bit.
1460       // Move the bit from the class without subregisters into that position.
1461       unsigned DstBit = Idx.LaneMask.getHighestLane();
1462       assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1463              "Must be a leaf subregister");
1464       MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1465       LaneTransforms.push_back(MaskRol);
1466     } else {
1467       // Go through all leaf subregisters and find the ones that compose with
1468       // Idx. These make out all possible valid bits in the lane mask we want to
1469       // transform. Looking only at the leafs ensure that only a single bit in
1470       // the mask is set.
1471       unsigned NextBit = 0;
1472       for (auto &Idx2 : SubRegIndices) {
1473         // Skip non-leaf subregisters.
1474         if (!Idx2.getComposites().empty())
1475           continue;
1476         // Replicate the behaviour from the lane mask generation loop above.
1477         unsigned SrcBit = NextBit;
1478         LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1479         if (NextBit < LaneBitmask::BitWidth-1)
1480           ++NextBit;
1481         assert(Idx2.LaneMask == SrcMask);
1482 
1483         // Get the composed subregister if there is any.
1484         auto C = Composites.find(&Idx2);
1485         if (C == Composites.end())
1486           continue;
1487         const CodeGenSubRegIndex *Composite = C->second;
1488         // The Composed subreg should be a leaf subreg too
1489         assert(Composite->getComposites().empty());
1490 
1491         // Create Mask+Rotate operation and merge with existing ops if possible.
1492         unsigned DstBit = Composite->LaneMask.getHighestLane();
1493         int Shift = DstBit - SrcBit;
1494         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1495                                         : LaneBitmask::BitWidth + Shift;
1496         for (auto &I : LaneTransforms) {
1497           if (I.RotateLeft == RotateLeft) {
1498             I.Mask |= SrcMask;
1499             SrcMask = LaneBitmask::getNone();
1500           }
1501         }
1502         if (SrcMask.any()) {
1503           MaskRolPair MaskRol = { SrcMask, RotateLeft };
1504           LaneTransforms.push_back(MaskRol);
1505         }
1506       }
1507     }
1508 
1509     // Optimize if the transformation consists of one step only: Set mask to
1510     // 0xffffffff (including some irrelevant invalid bits) so that it should
1511     // merge with more entries later while compressing the table.
1512     if (LaneTransforms.size() == 1)
1513       LaneTransforms[0].Mask = LaneBitmask::getAll();
1514 
1515     // Further compression optimization: For invalid compositions resulting
1516     // in a sequence with 0 entries we can just pick any other. Choose
1517     // Mask 0xffffffff with Rotation 0.
1518     if (LaneTransforms.size() == 0) {
1519       MaskRolPair P = { LaneBitmask::getAll(), 0 };
1520       LaneTransforms.push_back(P);
1521     }
1522   }
1523 
1524   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1525   // by the sub-register graph? This doesn't occur in any known targets.
1526 
1527   // Inherit lanes from composites.
1528   for (const auto &Idx : SubRegIndices) {
1529     LaneBitmask Mask = Idx.computeLaneMask();
1530     // If some super-registers without CoveredBySubRegs use this index, we can
1531     // no longer assume that the lanes are covering their registers.
1532     if (!Idx.AllSuperRegsCovered)
1533       CoveringLanes &= ~Mask;
1534   }
1535 
1536   // Compute lane mask combinations for register classes.
1537   for (auto &RegClass : RegClasses) {
1538     LaneBitmask LaneMask;
1539     for (const auto &SubRegIndex : SubRegIndices) {
1540       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1541         continue;
1542       LaneMask |= SubRegIndex.LaneMask;
1543     }
1544 
1545     // For classes without any subregisters set LaneMask to 1 instead of 0.
1546     // This makes it easier for client code to handle classes uniformly.
1547     if (LaneMask.none())
1548       LaneMask = LaneBitmask::getLane(0);
1549 
1550     RegClass.LaneMask = LaneMask;
1551   }
1552 }
1553 
1554 namespace {
1555 
1556 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1557 // the transitive closure of the union of overlapping register
1558 // classes. Together, the UberRegSets form a partition of the registers. If we
1559 // consider overlapping register classes to be connected, then each UberRegSet
1560 // is a set of connected components.
1561 //
1562 // An UberRegSet will likely be a horizontal slice of register names of
1563 // the same width. Nontrivial subregisters should then be in a separate
1564 // UberRegSet. But this property isn't required for valid computation of
1565 // register unit weights.
1566 //
1567 // A Weight field caches the max per-register unit weight in each UberRegSet.
1568 //
1569 // A set of SingularDeterminants flags single units of some register in this set
1570 // for which the unit weight equals the set weight. These units should not have
1571 // their weight increased.
1572 struct UberRegSet {
1573   CodeGenRegister::Vec Regs;
1574   unsigned Weight = 0;
1575   CodeGenRegister::RegUnitList SingularDeterminants;
1576 
1577   UberRegSet() = default;
1578 };
1579 
1580 } // end anonymous namespace
1581 
1582 // Partition registers into UberRegSets, where each set is the transitive
1583 // closure of the union of overlapping register classes.
1584 //
1585 // UberRegSets[0] is a special non-allocatable set.
1586 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1587                             std::vector<UberRegSet*> &RegSets,
1588                             CodeGenRegBank &RegBank) {
1589   const auto &Registers = RegBank.getRegisters();
1590 
1591   // The Register EnumValue is one greater than its index into Registers.
1592   assert(Registers.size() == Registers.back().EnumValue &&
1593          "register enum value mismatch");
1594 
1595   // For simplicitly make the SetID the same as EnumValue.
1596   IntEqClasses UberSetIDs(Registers.size()+1);
1597   std::set<unsigned> AllocatableRegs;
1598   for (auto &RegClass : RegBank.getRegClasses()) {
1599     if (!RegClass.Allocatable)
1600       continue;
1601 
1602     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1603     if (Regs.empty())
1604       continue;
1605 
1606     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1607     assert(USetID && "register number 0 is invalid");
1608 
1609     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1610     for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1611       AllocatableRegs.insert((*I)->EnumValue);
1612       UberSetIDs.join(USetID, (*I)->EnumValue);
1613     }
1614   }
1615   // Combine non-allocatable regs.
1616   for (const auto &Reg : Registers) {
1617     unsigned RegNum = Reg.EnumValue;
1618     if (AllocatableRegs.count(RegNum))
1619       continue;
1620 
1621     UberSetIDs.join(0, RegNum);
1622   }
1623   UberSetIDs.compress();
1624 
1625   // Make the first UberSet a special unallocatable set.
1626   unsigned ZeroID = UberSetIDs[0];
1627 
1628   // Insert Registers into the UberSets formed by union-find.
1629   // Do not resize after this.
1630   UberSets.resize(UberSetIDs.getNumClasses());
1631   unsigned i = 0;
1632   for (const CodeGenRegister &Reg : Registers) {
1633     unsigned USetID = UberSetIDs[Reg.EnumValue];
1634     if (!USetID)
1635       USetID = ZeroID;
1636     else if (USetID == ZeroID)
1637       USetID = 0;
1638 
1639     UberRegSet *USet = &UberSets[USetID];
1640     USet->Regs.push_back(&Reg);
1641     sortAndUniqueRegisters(USet->Regs);
1642     RegSets[i++] = USet;
1643   }
1644 }
1645 
1646 // Recompute each UberSet weight after changing unit weights.
1647 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1648                                CodeGenRegBank &RegBank) {
1649   // Skip the first unallocatable set.
1650   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1651          E = UberSets.end(); I != E; ++I) {
1652 
1653     // Initialize all unit weights in this set, and remember the max units/reg.
1654     const CodeGenRegister *Reg = nullptr;
1655     unsigned MaxWeight = 0, Weight = 0;
1656     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1657       if (Reg != UnitI.getReg()) {
1658         if (Weight > MaxWeight)
1659           MaxWeight = Weight;
1660         Reg = UnitI.getReg();
1661         Weight = 0;
1662       }
1663       if (!RegBank.getRegUnit(*UnitI).Artificial) {
1664         unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1665         if (!UWeight) {
1666           UWeight = 1;
1667           RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1668         }
1669         Weight += UWeight;
1670       }
1671     }
1672     if (Weight > MaxWeight)
1673       MaxWeight = Weight;
1674     if (I->Weight != MaxWeight) {
1675       LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1676                         << MaxWeight;
1677                  for (auto &Unit
1678                       : I->Regs) dbgs()
1679                  << " " << Unit->getName();
1680                  dbgs() << "\n");
1681       // Update the set weight.
1682       I->Weight = MaxWeight;
1683     }
1684 
1685     // Find singular determinants.
1686     for (const auto R : I->Regs) {
1687       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1688         I->SingularDeterminants |= R->getRegUnits();
1689       }
1690     }
1691   }
1692 }
1693 
1694 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1695 // a register and its subregisters so that they have the same weight as their
1696 // UberSet. Self-recursion processes the subregister tree in postorder so
1697 // subregisters are normalized first.
1698 //
1699 // Side effects:
1700 // - creates new adopted register units
1701 // - causes superregisters to inherit adopted units
1702 // - increases the weight of "singular" units
1703 // - induces recomputation of UberWeights.
1704 static bool normalizeWeight(CodeGenRegister *Reg,
1705                             std::vector<UberRegSet> &UberSets,
1706                             std::vector<UberRegSet*> &RegSets,
1707                             BitVector &NormalRegs,
1708                             CodeGenRegister::RegUnitList &NormalUnits,
1709                             CodeGenRegBank &RegBank) {
1710   NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1711   if (NormalRegs.test(Reg->EnumValue))
1712     return false;
1713   NormalRegs.set(Reg->EnumValue);
1714 
1715   bool Changed = false;
1716   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1717   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1718          SRE = SRM.end(); SRI != SRE; ++SRI) {
1719     if (SRI->second == Reg)
1720       continue; // self-cycles happen
1721 
1722     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1723                                NormalRegs, NormalUnits, RegBank);
1724   }
1725   // Postorder register normalization.
1726 
1727   // Inherit register units newly adopted by subregisters.
1728   if (Reg->inheritRegUnits(RegBank))
1729     computeUberWeights(UberSets, RegBank);
1730 
1731   // Check if this register is too skinny for its UberRegSet.
1732   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1733 
1734   unsigned RegWeight = Reg->getWeight(RegBank);
1735   if (UberSet->Weight > RegWeight) {
1736     // A register unit's weight can be adjusted only if it is the singular unit
1737     // for this register, has not been used to normalize a subregister's set,
1738     // and has not already been used to singularly determine this UberRegSet.
1739     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1740     if (Reg->getRegUnits().count() != 1
1741         || hasRegUnit(NormalUnits, AdjustUnit)
1742         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1743       // We don't have an adjustable unit, so adopt a new one.
1744       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1745       Reg->adoptRegUnit(AdjustUnit);
1746       // Adopting a unit does not immediately require recomputing set weights.
1747     }
1748     else {
1749       // Adjust the existing single unit.
1750       if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1751         RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1752       // The unit may be shared among sets and registers within this set.
1753       computeUberWeights(UberSets, RegBank);
1754     }
1755     Changed = true;
1756   }
1757 
1758   // Mark these units normalized so superregisters can't change their weights.
1759   NormalUnits |= Reg->getRegUnits();
1760 
1761   return Changed;
1762 }
1763 
1764 // Compute a weight for each register unit created during getSubRegs.
1765 //
1766 // The goal is that two registers in the same class will have the same weight,
1767 // where each register's weight is defined as sum of its units' weights.
1768 void CodeGenRegBank::computeRegUnitWeights() {
1769   std::vector<UberRegSet> UberSets;
1770   std::vector<UberRegSet*> RegSets(Registers.size());
1771   computeUberSets(UberSets, RegSets, *this);
1772   // UberSets and RegSets are now immutable.
1773 
1774   computeUberWeights(UberSets, *this);
1775 
1776   // Iterate over each Register, normalizing the unit weights until reaching
1777   // a fix point.
1778   unsigned NumIters = 0;
1779   for (bool Changed = true; Changed; ++NumIters) {
1780     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1781     Changed = false;
1782     for (auto &Reg : Registers) {
1783       CodeGenRegister::RegUnitList NormalUnits;
1784       BitVector NormalRegs;
1785       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1786                                  NormalUnits, *this);
1787     }
1788   }
1789 }
1790 
1791 // Find a set in UniqueSets with the same elements as Set.
1792 // Return an iterator into UniqueSets.
1793 static std::vector<RegUnitSet>::const_iterator
1794 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1795                const RegUnitSet &Set) {
1796   std::vector<RegUnitSet>::const_iterator
1797     I = UniqueSets.begin(), E = UniqueSets.end();
1798   for(;I != E; ++I) {
1799     if (I->Units == Set.Units)
1800       break;
1801   }
1802   return I;
1803 }
1804 
1805 // Return true if the RUSubSet is a subset of RUSuperSet.
1806 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1807                             const std::vector<unsigned> &RUSuperSet) {
1808   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1809                        RUSubSet.begin(), RUSubSet.end());
1810 }
1811 
1812 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1813 /// but with one or two registers removed. We occasionally have registers like
1814 /// APSR and PC thrown in with the general registers. We also see many
1815 /// special-purpose register subsets, such as tail-call and Thumb
1816 /// encodings. Generating all possible overlapping sets is combinatorial and
1817 /// overkill for modeling pressure. Ideally we could fix this statically in
1818 /// tablegen by (1) having the target define register classes that only include
1819 /// the allocatable registers and marking other classes as non-allocatable and
1820 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1821 /// the purpose of pressure.  However, we make an attempt to handle targets that
1822 /// are not nicely defined by merging nearly identical register unit sets
1823 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1824 /// set limit by filtering the reserved registers.
1825 ///
1826 /// Merge sets only if the units have the same weight. For example, on ARM,
1827 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1828 /// should not expand the S set to include D regs.
1829 void CodeGenRegBank::pruneUnitSets() {
1830   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1831 
1832   // Form an equivalence class of UnitSets with no significant difference.
1833   std::vector<unsigned> SuperSetIDs;
1834   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1835        SubIdx != EndIdx; ++SubIdx) {
1836     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1837     unsigned SuperIdx = 0;
1838     for (; SuperIdx != EndIdx; ++SuperIdx) {
1839       if (SuperIdx == SubIdx)
1840         continue;
1841 
1842       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1843       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1844       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1845           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1846           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1847           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1848         LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1849                           << "\n");
1850         // We can pick any of the set names for the merged set. Go for the
1851         // shortest one to avoid picking the name of one of the classes that are
1852         // artificially created by tablegen. So "FPR128_lo" instead of
1853         // "QQQQ_with_qsub3_in_FPR128_lo".
1854         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1855           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1856         break;
1857       }
1858     }
1859     if (SuperIdx == EndIdx)
1860       SuperSetIDs.push_back(SubIdx);
1861   }
1862   // Populate PrunedUnitSets with each equivalence class's superset.
1863   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1864   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1865     unsigned SuperIdx = SuperSetIDs[i];
1866     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1867     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1868   }
1869   RegUnitSets.swap(PrunedUnitSets);
1870 }
1871 
1872 // Create a RegUnitSet for each RegClass that contains all units in the class
1873 // including adopted units that are necessary to model register pressure. Then
1874 // iteratively compute RegUnitSets such that the union of any two overlapping
1875 // RegUnitSets is repreresented.
1876 //
1877 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1878 // RegUnitSet that is a superset of that RegUnitClass.
1879 void CodeGenRegBank::computeRegUnitSets() {
1880   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1881 
1882   // Compute a unique RegUnitSet for each RegClass.
1883   auto &RegClasses = getRegClasses();
1884   for (auto &RC : RegClasses) {
1885     if (!RC.Allocatable || RC.Artificial)
1886       continue;
1887 
1888     // Speculatively grow the RegUnitSets to hold the new set.
1889     RegUnitSets.resize(RegUnitSets.size() + 1);
1890     RegUnitSets.back().Name = RC.getName();
1891 
1892     // Compute a sorted list of units in this class.
1893     RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1894 
1895     // Find an existing RegUnitSet.
1896     std::vector<RegUnitSet>::const_iterator SetI =
1897       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1898     if (SetI != std::prev(RegUnitSets.end()))
1899       RegUnitSets.pop_back();
1900   }
1901 
1902   LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1903                                                    USEnd = RegUnitSets.size();
1904                                                    USIdx < USEnd; ++USIdx) {
1905     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1906     for (auto &U : RegUnitSets[USIdx].Units)
1907       printRegUnitName(U);
1908     dbgs() << "\n";
1909   });
1910 
1911   // Iteratively prune unit sets.
1912   pruneUnitSets();
1913 
1914   LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1915                                                  USEnd = RegUnitSets.size();
1916                                                  USIdx < USEnd; ++USIdx) {
1917     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1918     for (auto &U : RegUnitSets[USIdx].Units)
1919       printRegUnitName(U);
1920     dbgs() << "\n";
1921   } dbgs() << "\nUnion sets:\n");
1922 
1923   // Iterate over all unit sets, including new ones added by this loop.
1924   unsigned NumRegUnitSubSets = RegUnitSets.size();
1925   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1926     // In theory, this is combinatorial. In practice, it needs to be bounded
1927     // by a small number of sets for regpressure to be efficient.
1928     // If the assert is hit, we need to implement pruning.
1929     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1930 
1931     // Compare new sets with all original classes.
1932     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1933          SearchIdx != EndIdx; ++SearchIdx) {
1934       std::set<unsigned> Intersection;
1935       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1936                             RegUnitSets[Idx].Units.end(),
1937                             RegUnitSets[SearchIdx].Units.begin(),
1938                             RegUnitSets[SearchIdx].Units.end(),
1939                             std::inserter(Intersection, Intersection.begin()));
1940       if (Intersection.empty())
1941         continue;
1942 
1943       // Speculatively grow the RegUnitSets to hold the new set.
1944       RegUnitSets.resize(RegUnitSets.size() + 1);
1945       RegUnitSets.back().Name =
1946         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1947 
1948       std::set_union(RegUnitSets[Idx].Units.begin(),
1949                      RegUnitSets[Idx].Units.end(),
1950                      RegUnitSets[SearchIdx].Units.begin(),
1951                      RegUnitSets[SearchIdx].Units.end(),
1952                      std::inserter(RegUnitSets.back().Units,
1953                                    RegUnitSets.back().Units.begin()));
1954 
1955       // Find an existing RegUnitSet, or add the union to the unique sets.
1956       std::vector<RegUnitSet>::const_iterator SetI =
1957         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1958       if (SetI != std::prev(RegUnitSets.end()))
1959         RegUnitSets.pop_back();
1960       else {
1961         LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
1962                           << RegUnitSets.back().Name << ":";
1963                    for (auto &U
1964                         : RegUnitSets.back().Units) printRegUnitName(U);
1965                    dbgs() << "\n";);
1966       }
1967     }
1968   }
1969 
1970   // Iteratively prune unit sets after inferring supersets.
1971   pruneUnitSets();
1972 
1973   LLVM_DEBUG(
1974       dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1975                            USIdx < USEnd; ++USIdx) {
1976         dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1977         for (auto &U : RegUnitSets[USIdx].Units)
1978           printRegUnitName(U);
1979         dbgs() << "\n";
1980       });
1981 
1982   // For each register class, list the UnitSets that are supersets.
1983   RegClassUnitSets.resize(RegClasses.size());
1984   int RCIdx = -1;
1985   for (auto &RC : RegClasses) {
1986     ++RCIdx;
1987     if (!RC.Allocatable)
1988       continue;
1989 
1990     // Recompute the sorted list of units in this class.
1991     std::vector<unsigned> RCRegUnits;
1992     RC.buildRegUnitSet(*this, RCRegUnits);
1993 
1994     // Don't increase pressure for unallocatable regclasses.
1995     if (RCRegUnits.empty())
1996       continue;
1997 
1998     LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1999                for (auto U
2000                     : RCRegUnits) printRegUnitName(U);
2001                dbgs() << "\n  UnitSetIDs:");
2002 
2003     // Find all supersets.
2004     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2005          USIdx != USEnd; ++USIdx) {
2006       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2007         LLVM_DEBUG(dbgs() << " " << USIdx);
2008         RegClassUnitSets[RCIdx].push_back(USIdx);
2009       }
2010     }
2011     LLVM_DEBUG(dbgs() << "\n");
2012     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
2013   }
2014 
2015   // For each register unit, ensure that we have the list of UnitSets that
2016   // contain the unit. Normally, this matches an existing list of UnitSets for a
2017   // register class. If not, we create a new entry in RegClassUnitSets as a
2018   // "fake" register class.
2019   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2020        UnitIdx < UnitEnd; ++UnitIdx) {
2021     std::vector<unsigned> RUSets;
2022     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2023       RegUnitSet &RUSet = RegUnitSets[i];
2024       if (!is_contained(RUSet.Units, UnitIdx))
2025         continue;
2026       RUSets.push_back(i);
2027     }
2028     unsigned RCUnitSetsIdx = 0;
2029     for (unsigned e = RegClassUnitSets.size();
2030          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2031       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2032         break;
2033       }
2034     }
2035     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2036     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2037       // Create a new list of UnitSets as a "fake" register class.
2038       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2039       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2040     }
2041   }
2042 }
2043 
2044 void CodeGenRegBank::computeRegUnitLaneMasks() {
2045   for (auto &Register : Registers) {
2046     // Create an initial lane mask for all register units.
2047     const auto &RegUnits = Register.getRegUnits();
2048     CodeGenRegister::RegUnitLaneMaskList
2049         RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2050     // Iterate through SubRegisters.
2051     typedef CodeGenRegister::SubRegMap SubRegMap;
2052     const SubRegMap &SubRegs = Register.getSubRegs();
2053     for (SubRegMap::const_iterator S = SubRegs.begin(),
2054          SE = SubRegs.end(); S != SE; ++S) {
2055       CodeGenRegister *SubReg = S->second;
2056       // Ignore non-leaf subregisters, their lane masks are fully covered by
2057       // the leaf subregisters anyway.
2058       if (!SubReg->getSubRegs().empty())
2059         continue;
2060       CodeGenSubRegIndex *SubRegIndex = S->first;
2061       const CodeGenRegister *SubRegister = S->second;
2062       LaneBitmask LaneMask = SubRegIndex->LaneMask;
2063       // Distribute LaneMask to Register Units touched.
2064       for (unsigned SUI : SubRegister->getRegUnits()) {
2065         bool Found = false;
2066         unsigned u = 0;
2067         for (unsigned RU : RegUnits) {
2068           if (SUI == RU) {
2069             RegUnitLaneMasks[u] |= LaneMask;
2070             assert(!Found);
2071             Found = true;
2072           }
2073           ++u;
2074         }
2075         (void)Found;
2076         assert(Found);
2077       }
2078     }
2079     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2080   }
2081 }
2082 
2083 void CodeGenRegBank::computeDerivedInfo() {
2084   computeComposites();
2085   computeSubRegLaneMasks();
2086 
2087   // Compute a weight for each register unit created during getSubRegs.
2088   // This may create adopted register units (with unit # >= NumNativeRegUnits).
2089   computeRegUnitWeights();
2090 
2091   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2092   // supersets for the union of overlapping sets.
2093   computeRegUnitSets();
2094 
2095   computeRegUnitLaneMasks();
2096 
2097   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2098   for (CodeGenRegisterClass &RC : RegClasses) {
2099     RC.HasDisjunctSubRegs = false;
2100     RC.CoveredBySubRegs = true;
2101     for (const CodeGenRegister *Reg : RC.getMembers()) {
2102       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2103       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2104     }
2105   }
2106 
2107   // Get the weight of each set.
2108   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2109     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2110 
2111   // Find the order of each set.
2112   RegUnitSetOrder.reserve(RegUnitSets.size());
2113   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2114     RegUnitSetOrder.push_back(Idx);
2115 
2116   llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2117     return getRegPressureSet(ID1).Units.size() <
2118            getRegPressureSet(ID2).Units.size();
2119   });
2120   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2121     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2122   }
2123 }
2124 
2125 //
2126 // Synthesize missing register class intersections.
2127 //
2128 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2129 // returns a maximal register class for all X.
2130 //
2131 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2132   assert(!RegClasses.empty());
2133   // Stash the iterator to the last element so that this loop doesn't visit
2134   // elements added by the getOrCreateSubClass call within it.
2135   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2136        I != std::next(E); ++I) {
2137     CodeGenRegisterClass *RC1 = RC;
2138     CodeGenRegisterClass *RC2 = &*I;
2139     if (RC1 == RC2)
2140       continue;
2141 
2142     // Compute the set intersection of RC1 and RC2.
2143     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2144     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2145     CodeGenRegister::Vec Intersection;
2146     std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2147                           Memb2.end(),
2148                           std::inserter(Intersection, Intersection.begin()),
2149                           deref<std::less<>>());
2150 
2151     // Skip disjoint class pairs.
2152     if (Intersection.empty())
2153       continue;
2154 
2155     // If RC1 and RC2 have different spill sizes or alignments, use the
2156     // stricter one for sub-classing.  If they are equal, prefer RC1.
2157     if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2158       std::swap(RC1, RC2);
2159 
2160     getOrCreateSubClass(RC1, &Intersection,
2161                         RC1->getName() + "_and_" + RC2->getName());
2162   }
2163 }
2164 
2165 //
2166 // Synthesize missing sub-classes for getSubClassWithSubReg().
2167 //
2168 // Make sure that the set of registers in RC with a given SubIdx sub-register
2169 // form a register class.  Update RC->SubClassWithSubReg.
2170 //
2171 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2172   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2173   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2174                    deref<std::less<>>>
2175       SubReg2SetMap;
2176 
2177   // Compute the set of registers supporting each SubRegIndex.
2178   SubReg2SetMap SRSets;
2179   for (const auto R : RC->getMembers()) {
2180     if (R->Artificial)
2181       continue;
2182     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2183     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2184          E = SRM.end(); I != E; ++I) {
2185       if (!I->first->Artificial)
2186         SRSets[I->first].push_back(R);
2187     }
2188   }
2189 
2190   for (auto I : SRSets)
2191     sortAndUniqueRegisters(I.second);
2192 
2193   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2194   // numerical order to visit synthetic indices last.
2195   for (const auto &SubIdx : SubRegIndices) {
2196     if (SubIdx.Artificial)
2197       continue;
2198     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2199     // Unsupported SubRegIndex. Skip it.
2200     if (I == SRSets.end())
2201       continue;
2202     // In most cases, all RC registers support the SubRegIndex.
2203     if (I->second.size() == RC->getMembers().size()) {
2204       RC->setSubClassWithSubReg(&SubIdx, RC);
2205       continue;
2206     }
2207     // This is a real subset.  See if we have a matching class.
2208     CodeGenRegisterClass *SubRC =
2209       getOrCreateSubClass(RC, &I->second,
2210                           RC->getName() + "_with_" + I->first->getName());
2211     RC->setSubClassWithSubReg(&SubIdx, SubRC);
2212   }
2213 }
2214 
2215 //
2216 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2217 //
2218 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2219 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2220 //
2221 
2222 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2223                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2224   SmallVector<std::pair<const CodeGenRegister*,
2225                         const CodeGenRegister*>, 16> SSPairs;
2226   BitVector TopoSigs(getNumTopoSigs());
2227 
2228   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2229   for (auto &SubIdx : SubRegIndices) {
2230     // Skip indexes that aren't fully supported by RC's registers. This was
2231     // computed by inferSubClassWithSubReg() above which should have been
2232     // called first.
2233     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2234       continue;
2235 
2236     // Build list of (Super, Sub) pairs for this SubIdx.
2237     SSPairs.clear();
2238     TopoSigs.reset();
2239     for (const auto Super : RC->getMembers()) {
2240       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2241       assert(Sub && "Missing sub-register");
2242       SSPairs.push_back(std::make_pair(Super, Sub));
2243       TopoSigs.set(Sub->getTopoSig());
2244     }
2245 
2246     // Iterate over sub-register class candidates.  Ignore classes created by
2247     // this loop. They will never be useful.
2248     // Store an iterator to the last element (not end) so that this loop doesn't
2249     // visit newly inserted elements.
2250     assert(!RegClasses.empty());
2251     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2252          I != std::next(E); ++I) {
2253       CodeGenRegisterClass &SubRC = *I;
2254       if (SubRC.Artificial)
2255         continue;
2256       // Topological shortcut: SubRC members have the wrong shape.
2257       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2258         continue;
2259       // Compute the subset of RC that maps into SubRC.
2260       CodeGenRegister::Vec SubSetVec;
2261       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2262         if (SubRC.contains(SSPairs[i].second))
2263           SubSetVec.push_back(SSPairs[i].first);
2264 
2265       if (SubSetVec.empty())
2266         continue;
2267 
2268       // RC injects completely into SubRC.
2269       sortAndUniqueRegisters(SubSetVec);
2270       if (SubSetVec.size() == SSPairs.size()) {
2271         SubRC.addSuperRegClass(&SubIdx, RC);
2272         continue;
2273       }
2274 
2275       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2276       // class.
2277       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2278                                           SubIdx.getName() + "_in_" +
2279                                           SubRC.getName());
2280     }
2281   }
2282 }
2283 
2284 //
2285 // Infer missing register classes.
2286 //
2287 void CodeGenRegBank::computeInferredRegisterClasses() {
2288   assert(!RegClasses.empty());
2289   // When this function is called, the register classes have not been sorted
2290   // and assigned EnumValues yet.  That means getSubClasses(),
2291   // getSuperClasses(), and hasSubClass() functions are defunct.
2292 
2293   // Use one-before-the-end so it doesn't move forward when new elements are
2294   // added.
2295   auto FirstNewRC = std::prev(RegClasses.end());
2296 
2297   // Visit all register classes, including the ones being added by the loop.
2298   // Watch out for iterator invalidation here.
2299   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2300     CodeGenRegisterClass *RC = &*I;
2301     if (RC->Artificial)
2302       continue;
2303 
2304     // Synthesize answers for getSubClassWithSubReg().
2305     inferSubClassWithSubReg(RC);
2306 
2307     // Synthesize answers for getCommonSubClass().
2308     inferCommonSubClass(RC);
2309 
2310     // Synthesize answers for getMatchingSuperRegClass().
2311     inferMatchingSuperRegClass(RC);
2312 
2313     // New register classes are created while this loop is running, and we need
2314     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2315     // to match old super-register classes with sub-register classes created
2316     // after inferMatchingSuperRegClass was called.  At this point,
2317     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2318     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2319     if (I == FirstNewRC) {
2320       auto NextNewRC = std::prev(RegClasses.end());
2321       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2322            ++I2)
2323         inferMatchingSuperRegClass(&*I2, E2);
2324       FirstNewRC = NextNewRC;
2325     }
2326   }
2327 }
2328 
2329 /// getRegisterClassForRegister - Find the register class that contains the
2330 /// specified physical register.  If the register is not in a register class,
2331 /// return null. If the register is in multiple classes, and the classes have a
2332 /// superset-subset relationship and the same set of types, return the
2333 /// superclass.  Otherwise return null.
2334 const CodeGenRegisterClass*
2335 CodeGenRegBank::getRegClassForRegister(Record *R) {
2336   const CodeGenRegister *Reg = getReg(R);
2337   const CodeGenRegisterClass *FoundRC = nullptr;
2338   for (const auto &RC : getRegClasses()) {
2339     if (!RC.contains(Reg))
2340       continue;
2341 
2342     // If this is the first class that contains the register,
2343     // make a note of it and go on to the next class.
2344     if (!FoundRC) {
2345       FoundRC = &RC;
2346       continue;
2347     }
2348 
2349     // If a register's classes have different types, return null.
2350     if (RC.getValueTypes() != FoundRC->getValueTypes())
2351       return nullptr;
2352 
2353     // Check to see if the previously found class that contains
2354     // the register is a subclass of the current class. If so,
2355     // prefer the superclass.
2356     if (RC.hasSubClass(FoundRC)) {
2357       FoundRC = &RC;
2358       continue;
2359     }
2360 
2361     // Check to see if the previously found class that contains
2362     // the register is a superclass of the current class. If so,
2363     // prefer the superclass.
2364     if (FoundRC->hasSubClass(&RC))
2365       continue;
2366 
2367     // Multiple classes, and neither is a superclass of the other.
2368     // Return null.
2369     return nullptr;
2370   }
2371   return FoundRC;
2372 }
2373 
2374 const CodeGenRegisterClass *
2375 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2376                                        ValueTypeByHwMode *VT) {
2377   const CodeGenRegister *Reg = getReg(RegRecord);
2378   const CodeGenRegisterClass *BestRC = nullptr;
2379   for (const auto &RC : getRegClasses()) {
2380     if ((!VT || RC.hasType(*VT)) &&
2381         RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2382       BestRC = &RC;
2383   }
2384 
2385   assert(BestRC && "Couldn't find the register class");
2386   return BestRC;
2387 }
2388 
2389 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2390   SetVector<const CodeGenRegister*> Set;
2391 
2392   // First add Regs with all sub-registers.
2393   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2394     CodeGenRegister *Reg = getReg(Regs[i]);
2395     if (Set.insert(Reg))
2396       // Reg is new, add all sub-registers.
2397       // The pre-ordering is not important here.
2398       Reg->addSubRegsPreOrder(Set, *this);
2399   }
2400 
2401   // Second, find all super-registers that are completely covered by the set.
2402   for (unsigned i = 0; i != Set.size(); ++i) {
2403     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2404     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2405       const CodeGenRegister *Super = SR[j];
2406       if (!Super->CoveredBySubRegs || Set.count(Super))
2407         continue;
2408       // This new super-register is covered by its sub-registers.
2409       bool AllSubsInSet = true;
2410       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2411       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2412              E = SRM.end(); I != E; ++I)
2413         if (!Set.count(I->second)) {
2414           AllSubsInSet = false;
2415           break;
2416         }
2417       // All sub-registers in Set, add Super as well.
2418       // We will visit Super later to recheck its super-registers.
2419       if (AllSubsInSet)
2420         Set.insert(Super);
2421     }
2422   }
2423 
2424   // Convert to BitVector.
2425   BitVector BV(Registers.size() + 1);
2426   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2427     BV.set(Set[i]->EnumValue);
2428   return BV;
2429 }
2430 
2431 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2432   if (Unit < NumNativeRegUnits)
2433     dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2434   else
2435     dbgs() << " #" << Unit;
2436 }
2437