1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines structures to encapsulate information gleaned from the 10 // target register and register class definitions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenRegisters.h" 15 #include "CodeGenTarget.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/IntEqClasses.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/TableGen/Error.h" 32 #include "llvm/TableGen/Record.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <queue> 39 #include <set> 40 #include <string> 41 #include <tuple> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "regalloc-emitter" 48 49 //===----------------------------------------------------------------------===// 50 // CodeGenSubRegIndex 51 //===----------------------------------------------------------------------===// 52 53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 54 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 55 Name = std::string(R->getName()); 56 if (R->getValue("Namespace")) 57 Namespace = std::string(R->getValueAsString("Namespace")); 58 Size = R->getValueAsInt("Size"); 59 Offset = R->getValueAsInt("Offset"); 60 } 61 62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 63 unsigned Enum) 64 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)), 65 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true), 66 Artificial(true) {} 67 68 std::string CodeGenSubRegIndex::getQualifiedName() const { 69 std::string N = getNamespace(); 70 if (!N.empty()) 71 N += "::"; 72 N += getName(); 73 return N; 74 } 75 76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 77 if (!TheDef) 78 return; 79 80 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 81 if (!Comps.empty()) { 82 if (Comps.size() != 2) 83 PrintFatalError(TheDef->getLoc(), 84 "ComposedOf must have exactly two entries"); 85 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 86 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 87 CodeGenSubRegIndex *X = A->addComposite(B, this); 88 if (X) 89 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 90 } 91 92 std::vector<Record*> Parts = 93 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 94 if (!Parts.empty()) { 95 if (Parts.size() < 2) 96 PrintFatalError(TheDef->getLoc(), 97 "CoveredBySubRegs must have two or more entries"); 98 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 99 for (Record *Part : Parts) 100 IdxParts.push_back(RegBank.getSubRegIdx(Part)); 101 setConcatenationOf(IdxParts); 102 } 103 } 104 105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 106 // Already computed? 107 if (LaneMask.any()) 108 return LaneMask; 109 110 // Recursion guard, shouldn't be required. 111 LaneMask = LaneBitmask::getAll(); 112 113 // The lane mask is simply the union of all sub-indices. 114 LaneBitmask M; 115 for (const auto &C : Composed) 116 M |= C.second->computeLaneMask(); 117 assert(M.any() && "Missing lane mask, sub-register cycle?"); 118 LaneMask = M; 119 return LaneMask; 120 } 121 122 void CodeGenSubRegIndex::setConcatenationOf( 123 ArrayRef<CodeGenSubRegIndex*> Parts) { 124 if (ConcatenationOf.empty()) 125 ConcatenationOf.assign(Parts.begin(), Parts.end()); 126 else 127 assert(std::equal(Parts.begin(), Parts.end(), 128 ConcatenationOf.begin()) && "parts consistent"); 129 } 130 131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() { 132 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator 133 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { 134 CodeGenSubRegIndex *SubIdx = *I; 135 SubIdx->computeConcatTransitiveClosure(); 136 #ifndef NDEBUG 137 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) 138 assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); 139 #endif 140 141 if (SubIdx->ConcatenationOf.empty()) { 142 ++I; 143 } else { 144 I = ConcatenationOf.erase(I); 145 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), 146 SubIdx->ConcatenationOf.end()); 147 I += SubIdx->ConcatenationOf.size(); 148 } 149 } 150 } 151 152 //===----------------------------------------------------------------------===// 153 // CodeGenRegister 154 //===----------------------------------------------------------------------===// 155 156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 157 : TheDef(R), EnumValue(Enum), 158 CostPerUse(R->getValueAsListOfInts("CostPerUse")), 159 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 160 HasDisjunctSubRegs(false), SubRegsComplete(false), 161 SuperRegsComplete(false), TopoSig(~0u) { 162 Artificial = R->getValueAsBit("isArtificial"); 163 } 164 165 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 166 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 167 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 168 169 if (SRIs.size() != SRs.size()) 170 PrintFatalError(TheDef->getLoc(), 171 "SubRegs and SubRegIndices must have the same size"); 172 173 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 174 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 175 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 176 } 177 178 // Also compute leading super-registers. Each register has a list of 179 // covered-by-subregs super-registers where it appears as the first explicit 180 // sub-register. 181 // 182 // This is used by computeSecondarySubRegs() to find candidates. 183 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 184 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 185 186 // Add ad hoc alias links. This is a symmetric relationship between two 187 // registers, so build a symmetric graph by adding links in both ends. 188 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 189 for (Record *Alias : Aliases) { 190 CodeGenRegister *Reg = RegBank.getReg(Alias); 191 ExplicitAliases.push_back(Reg); 192 Reg->ExplicitAliases.push_back(this); 193 } 194 } 195 196 StringRef CodeGenRegister::getName() const { 197 assert(TheDef && "no def"); 198 return TheDef->getName(); 199 } 200 201 namespace { 202 203 // Iterate over all register units in a set of registers. 204 class RegUnitIterator { 205 CodeGenRegister::Vec::const_iterator RegI, RegE; 206 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 207 208 public: 209 RegUnitIterator(const CodeGenRegister::Vec &Regs): 210 RegI(Regs.begin()), RegE(Regs.end()) { 211 212 if (RegI != RegE) { 213 UnitI = (*RegI)->getRegUnits().begin(); 214 UnitE = (*RegI)->getRegUnits().end(); 215 advance(); 216 } 217 } 218 219 bool isValid() const { return UnitI != UnitE; } 220 221 unsigned operator* () const { assert(isValid()); return *UnitI; } 222 223 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 224 225 /// Preincrement. Move to the next unit. 226 void operator++() { 227 assert(isValid() && "Cannot advance beyond the last operand"); 228 ++UnitI; 229 advance(); 230 } 231 232 protected: 233 void advance() { 234 while (UnitI == UnitE) { 235 if (++RegI == RegE) 236 break; 237 UnitI = (*RegI)->getRegUnits().begin(); 238 UnitE = (*RegI)->getRegUnits().end(); 239 } 240 } 241 }; 242 243 } // end anonymous namespace 244 245 // Return true of this unit appears in RegUnits. 246 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 247 return RegUnits.test(Unit); 248 } 249 250 // Inherit register units from subregisters. 251 // Return true if the RegUnits changed. 252 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 253 bool changed = false; 254 for (const auto &SubReg : SubRegs) { 255 CodeGenRegister *SR = SubReg.second; 256 // Merge the subregister's units into this register's RegUnits. 257 changed |= (RegUnits |= SR->RegUnits); 258 } 259 260 return changed; 261 } 262 263 const CodeGenRegister::SubRegMap & 264 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 265 // Only compute this map once. 266 if (SubRegsComplete) 267 return SubRegs; 268 SubRegsComplete = true; 269 270 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 271 272 // First insert the explicit subregs and make sure they are fully indexed. 273 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 274 CodeGenRegister *SR = ExplicitSubRegs[i]; 275 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 276 if (!SR->Artificial) 277 Idx->Artificial = false; 278 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 279 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 280 " appears twice in Register " + getName()); 281 // Map explicit sub-registers first, so the names take precedence. 282 // The inherited sub-registers are mapped below. 283 SubReg2Idx.insert(std::make_pair(SR, Idx)); 284 } 285 286 // Keep track of inherited subregs and how they can be reached. 287 SmallPtrSet<CodeGenRegister*, 8> Orphans; 288 289 // Clone inherited subregs and place duplicate entries in Orphans. 290 // Here the order is important - earlier subregs take precedence. 291 for (CodeGenRegister *ESR : ExplicitSubRegs) { 292 const SubRegMap &Map = ESR->computeSubRegs(RegBank); 293 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; 294 295 for (const auto &SR : Map) { 296 if (!SubRegs.insert(SR).second) 297 Orphans.insert(SR.second); 298 } 299 } 300 301 // Expand any composed subreg indices. 302 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 303 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 304 // expanded subreg indices recursively. 305 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 306 for (unsigned i = 0; i != Indices.size(); ++i) { 307 CodeGenSubRegIndex *Idx = Indices[i]; 308 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 309 CodeGenRegister *SR = SubRegs[Idx]; 310 const SubRegMap &Map = SR->computeSubRegs(RegBank); 311 312 // Look at the possible compositions of Idx. 313 // They may not all be supported by SR. 314 for (auto Comp : Comps) { 315 SubRegMap::const_iterator SRI = Map.find(Comp.first); 316 if (SRI == Map.end()) 317 continue; // Idx + I->first doesn't exist in SR. 318 // Add I->second as a name for the subreg SRI->second, assuming it is 319 // orphaned, and the name isn't already used for something else. 320 if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second)) 321 continue; 322 // We found a new name for the orphaned sub-register. 323 SubRegs.insert(std::make_pair(Comp.second, SRI->second)); 324 Indices.push_back(Comp.second); 325 } 326 } 327 328 // Now Orphans contains the inherited subregisters without a direct index. 329 // Create inferred indexes for all missing entries. 330 // Work backwards in the Indices vector in order to compose subregs bottom-up. 331 // Consider this subreg sequence: 332 // 333 // qsub_1 -> dsub_0 -> ssub_0 334 // 335 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 336 // can be reached in two different ways: 337 // 338 // qsub_1 -> ssub_0 339 // dsub_2 -> ssub_0 340 // 341 // We pick the latter composition because another register may have [dsub_0, 342 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 343 // dsub_2 -> ssub_0 composition can be shared. 344 while (!Indices.empty() && !Orphans.empty()) { 345 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 346 CodeGenRegister *SR = SubRegs[Idx]; 347 const SubRegMap &Map = SR->computeSubRegs(RegBank); 348 for (const auto &SubReg : Map) 349 if (Orphans.erase(SubReg.second)) 350 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; 351 } 352 353 // Compute the inverse SubReg -> Idx map. 354 for (const auto &SubReg : SubRegs) { 355 if (SubReg.second == this) { 356 ArrayRef<SMLoc> Loc; 357 if (TheDef) 358 Loc = TheDef->getLoc(); 359 PrintFatalError(Loc, "Register " + getName() + 360 " has itself as a sub-register"); 361 } 362 363 // Compute AllSuperRegsCovered. 364 if (!CoveredBySubRegs) 365 SubReg.first->AllSuperRegsCovered = false; 366 367 // Ensure that every sub-register has a unique name. 368 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 369 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; 370 if (Ins->second == SubReg.first) 371 continue; 372 // Trouble: Two different names for SubReg.second. 373 ArrayRef<SMLoc> Loc; 374 if (TheDef) 375 Loc = TheDef->getLoc(); 376 PrintFatalError(Loc, "Sub-register can't have two names: " + 377 SubReg.second->getName() + " available as " + 378 SubReg.first->getName() + " and " + Ins->second->getName()); 379 } 380 381 // Derive possible names for sub-register concatenations from any explicit 382 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 383 // that getConcatSubRegIndex() won't invent any concatenated indices that the 384 // user already specified. 385 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 386 CodeGenRegister *SR = ExplicitSubRegs[i]; 387 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 || 388 SR->Artificial) 389 continue; 390 391 // SR is composed of multiple sub-regs. Find their names in this register. 392 SmallVector<CodeGenSubRegIndex*, 8> Parts; 393 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) { 394 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j]; 395 if (!I.Artificial) 396 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 397 } 398 399 // Offer this as an existing spelling for the concatenation of Parts. 400 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; 401 Idx.setConcatenationOf(Parts); 402 } 403 404 // Initialize RegUnitList. Because getSubRegs is called recursively, this 405 // processes the register hierarchy in postorder. 406 // 407 // Inherit all sub-register units. It is good enough to look at the explicit 408 // sub-registers, the other registers won't contribute any more units. 409 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 410 CodeGenRegister *SR = ExplicitSubRegs[i]; 411 RegUnits |= SR->RegUnits; 412 } 413 414 // Absent any ad hoc aliasing, we create one register unit per leaf register. 415 // These units correspond to the maximal cliques in the register overlap 416 // graph which is optimal. 417 // 418 // When there is ad hoc aliasing, we simply create one unit per edge in the 419 // undirected ad hoc aliasing graph. Technically, we could do better by 420 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 421 // are extremely rare anyway (I've never seen one), so we don't bother with 422 // the added complexity. 423 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 424 CodeGenRegister *AR = ExplicitAliases[i]; 425 // Only visit each edge once. 426 if (AR->SubRegsComplete) 427 continue; 428 // Create a RegUnit representing this alias edge, and add it to both 429 // registers. 430 unsigned Unit = RegBank.newRegUnit(this, AR); 431 RegUnits.set(Unit); 432 AR->RegUnits.set(Unit); 433 } 434 435 // Finally, create units for leaf registers without ad hoc aliases. Note that 436 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 437 // necessary. This means the aliasing leaf registers can share a single unit. 438 if (RegUnits.empty()) 439 RegUnits.set(RegBank.newRegUnit(this)); 440 441 // We have now computed the native register units. More may be adopted later 442 // for balancing purposes. 443 NativeRegUnits = RegUnits; 444 445 return SubRegs; 446 } 447 448 // In a register that is covered by its sub-registers, try to find redundant 449 // sub-registers. For example: 450 // 451 // QQ0 = {Q0, Q1} 452 // Q0 = {D0, D1} 453 // Q1 = {D2, D3} 454 // 455 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 456 // the register definition. 457 // 458 // The explicitly specified registers form a tree. This function discovers 459 // sub-register relationships that would force a DAG. 460 // 461 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 462 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 463 464 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue; 465 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs) 466 SubRegQueue.push(P); 467 468 // Look at the leading super-registers of each sub-register. Those are the 469 // candidates for new sub-registers, assuming they are fully contained in 470 // this register. 471 while (!SubRegQueue.empty()) { 472 CodeGenSubRegIndex *SubRegIdx; 473 const CodeGenRegister *SubReg; 474 std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); 475 SubRegQueue.pop(); 476 477 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 478 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 479 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 480 // Already got this sub-register? 481 if (Cand == this || getSubRegIndex(Cand)) 482 continue; 483 // Check if each component of Cand is already a sub-register. 484 assert(!Cand->ExplicitSubRegs.empty() && 485 "Super-register has no sub-registers"); 486 if (Cand->ExplicitSubRegs.size() == 1) 487 continue; 488 SmallVector<CodeGenSubRegIndex*, 8> Parts; 489 // We know that the first component is (SubRegIdx,SubReg). However we 490 // may still need to split it into smaller subregister parts. 491 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); 492 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); 493 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { 494 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { 495 if (SubRegIdx->ConcatenationOf.empty()) 496 Parts.push_back(SubRegIdx); 497 else 498 append_range(Parts, SubRegIdx->ConcatenationOf); 499 } else { 500 // Sub-register doesn't exist. 501 Parts.clear(); 502 break; 503 } 504 } 505 // There is nothing to do if some Cand sub-register is not part of this 506 // register. 507 if (Parts.empty()) 508 continue; 509 510 // Each part of Cand is a sub-register of this. Make the full Cand also 511 // a sub-register with a concatenated sub-register index. 512 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); 513 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg = 514 std::make_pair(Concat, Cand); 515 516 if (!SubRegs.insert(NewSubReg).second) 517 continue; 518 519 // We inserted a new subregister. 520 NewSubRegs.push_back(NewSubReg); 521 SubRegQueue.push(NewSubReg); 522 SubReg2Idx.insert(std::make_pair(Cand, Concat)); 523 } 524 } 525 526 // Create sub-register index composition maps for the synthesized indices. 527 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 528 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 529 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 530 for (auto SubReg : NewSubReg->SubRegs) { 531 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second); 532 if (!SubIdx) 533 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 534 SubReg.second->getName() + 535 " in " + getName()); 536 NewIdx->addComposite(SubReg.first, SubIdx); 537 } 538 } 539 } 540 541 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 542 // Only visit each register once. 543 if (SuperRegsComplete) 544 return; 545 SuperRegsComplete = true; 546 547 // Make sure all sub-registers have been visited first, so the super-reg 548 // lists will be topologically ordered. 549 for (auto SubReg : SubRegs) 550 SubReg.second->computeSuperRegs(RegBank); 551 552 // Now add this as a super-register on all sub-registers. 553 // Also compute the TopoSigId in post-order. 554 TopoSigId Id; 555 for (auto SubReg : SubRegs) { 556 // Topological signature computed from SubIdx, TopoId(SubReg). 557 // Loops and idempotent indices have TopoSig = ~0u. 558 Id.push_back(SubReg.first->EnumValue); 559 Id.push_back(SubReg.second->TopoSig); 560 561 // Don't add duplicate entries. 562 if (!SubReg.second->SuperRegs.empty() && 563 SubReg.second->SuperRegs.back() == this) 564 continue; 565 SubReg.second->SuperRegs.push_back(this); 566 } 567 TopoSig = RegBank.getTopoSig(Id); 568 } 569 570 void 571 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 572 CodeGenRegBank &RegBank) const { 573 assert(SubRegsComplete && "Must precompute sub-registers"); 574 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 575 CodeGenRegister *SR = ExplicitSubRegs[i]; 576 if (OSet.insert(SR)) 577 SR->addSubRegsPreOrder(OSet, RegBank); 578 } 579 // Add any secondary sub-registers that weren't part of the explicit tree. 580 for (auto SubReg : SubRegs) 581 OSet.insert(SubReg.second); 582 } 583 584 // Get the sum of this register's unit weights. 585 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 586 unsigned Weight = 0; 587 for (unsigned RegUnit : RegUnits) { 588 Weight += RegBank.getRegUnit(RegUnit).Weight; 589 } 590 return Weight; 591 } 592 593 //===----------------------------------------------------------------------===// 594 // RegisterTuples 595 //===----------------------------------------------------------------------===// 596 597 // A RegisterTuples def is used to generate pseudo-registers from lists of 598 // sub-registers. We provide a SetTheory expander class that returns the new 599 // registers. 600 namespace { 601 602 struct TupleExpander : SetTheory::Expander { 603 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of 604 // the synthesized definitions for their lifetime. 605 std::vector<std::unique_ptr<Record>> &SynthDefs; 606 607 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs) 608 : SynthDefs(SynthDefs) {} 609 610 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 611 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 612 unsigned Dim = Indices.size(); 613 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 614 if (Dim != SubRegs->size()) 615 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 616 if (Dim < 2) 617 PrintFatalError(Def->getLoc(), 618 "Tuples must have at least 2 sub-registers"); 619 620 // Evaluate the sub-register lists to be zipped. 621 unsigned Length = ~0u; 622 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 623 for (unsigned i = 0; i != Dim; ++i) { 624 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 625 Length = std::min(Length, unsigned(Lists[i].size())); 626 } 627 628 if (Length == 0) 629 return; 630 631 // Precompute some types. 632 Record *RegisterCl = Def->getRecords().getClass("Register"); 633 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 634 std::vector<StringRef> RegNames = 635 Def->getValueAsListOfStrings("RegAsmNames"); 636 637 // Zip them up. 638 for (unsigned n = 0; n != Length; ++n) { 639 std::string Name; 640 Record *Proto = Lists[0][n]; 641 std::vector<Init*> Tuple; 642 for (unsigned i = 0; i != Dim; ++i) { 643 Record *Reg = Lists[i][n]; 644 if (i) Name += '_'; 645 Name += Reg->getName(); 646 Tuple.push_back(DefInit::get(Reg)); 647 } 648 649 // Take the cost list of the first register in the tuple. 650 ListInit *CostList = Proto->getValueAsListInit("CostPerUse"); 651 SmallVector<Init *, 2> CostPerUse; 652 CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end()); 653 654 StringInit *AsmName = StringInit::get(""); 655 if (!RegNames.empty()) { 656 if (RegNames.size() <= n) 657 PrintFatalError(Def->getLoc(), 658 "Register tuple definition missing name for '" + 659 Name + "'."); 660 AsmName = StringInit::get(RegNames[n]); 661 } 662 663 // Create a new Record representing the synthesized register. This record 664 // is only for consumption by CodeGenRegister, it is not added to the 665 // RecordKeeper. 666 SynthDefs.emplace_back( 667 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords())); 668 Record *NewReg = SynthDefs.back().get(); 669 Elts.insert(NewReg); 670 671 // Copy Proto super-classes. 672 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 673 for (const auto &SuperPair : Supers) 674 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 675 676 // Copy Proto fields. 677 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 678 RecordVal RV = Proto->getValues()[i]; 679 680 // Skip existing fields, like NAME. 681 if (NewReg->getValue(RV.getNameInit())) 682 continue; 683 684 StringRef Field = RV.getName(); 685 686 // Replace the sub-register list with Tuple. 687 if (Field == "SubRegs") 688 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 689 690 if (Field == "AsmName") 691 RV.setValue(AsmName); 692 693 // CostPerUse is aggregated from all Tuple members. 694 if (Field == "CostPerUse") 695 RV.setValue(ListInit::get(CostPerUse, CostList->getElementType())); 696 697 // Composite registers are always covered by sub-registers. 698 if (Field == "CoveredBySubRegs") 699 RV.setValue(BitInit::get(true)); 700 701 // Copy fields from the RegisterTuples def. 702 if (Field == "SubRegIndices" || 703 Field == "CompositeIndices") { 704 NewReg->addValue(*Def->getValue(Field)); 705 continue; 706 } 707 708 // Some fields get their default uninitialized value. 709 if (Field == "DwarfNumbers" || 710 Field == "DwarfAlias" || 711 Field == "Aliases") { 712 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 713 NewReg->addValue(*DefRV); 714 continue; 715 } 716 717 // Everything else is copied from Proto. 718 NewReg->addValue(RV); 719 } 720 } 721 } 722 }; 723 724 } // end anonymous namespace 725 726 //===----------------------------------------------------------------------===// 727 // CodeGenRegisterClass 728 //===----------------------------------------------------------------------===// 729 730 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 731 llvm::sort(M, deref<std::less<>>()); 732 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end()); 733 } 734 735 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 736 : TheDef(R), Name(std::string(R->getName())), 737 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1) { 738 GeneratePressureSet = R->getValueAsBit("GeneratePressureSet"); 739 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 740 if (TypeList.empty()) 741 PrintFatalError(R->getLoc(), "RegTypes list must not be empty!"); 742 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 743 Record *Type = TypeList[i]; 744 if (!Type->isSubClassOf("ValueType")) 745 PrintFatalError(R->getLoc(), 746 "RegTypes list member '" + Type->getName() + 747 "' does not derive from the ValueType class!"); 748 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); 749 } 750 751 // Allocation order 0 is the full set. AltOrders provides others. 752 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 753 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 754 Orders.resize(1 + AltOrders->size()); 755 756 // Default allocation order always contains all registers. 757 Artificial = true; 758 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 759 Orders[0].push_back((*Elements)[i]); 760 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 761 Members.push_back(Reg); 762 Artificial &= Reg->Artificial; 763 TopoSigs.set(Reg->getTopoSig()); 764 } 765 sortAndUniqueRegisters(Members); 766 767 // Alternative allocation orders may be subsets. 768 SetTheory::RecSet Order; 769 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 770 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 771 Orders[1 + i].append(Order.begin(), Order.end()); 772 // Verify that all altorder members are regclass members. 773 while (!Order.empty()) { 774 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 775 Order.pop_back(); 776 if (!contains(Reg)) 777 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 778 " is not a class member"); 779 } 780 } 781 782 Namespace = R->getValueAsString("Namespace"); 783 784 if (const RecordVal *RV = R->getValue("RegInfos")) 785 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) 786 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); 787 unsigned Size = R->getValueAsInt("Size"); 788 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && 789 "Impossible to determine register size"); 790 if (!RSI.hasDefault()) { 791 RegSizeInfo RI; 792 RI.RegSize = RI.SpillSize = Size ? Size 793 : VTs[0].getSimple().getSizeInBits(); 794 RI.SpillAlignment = R->getValueAsInt("Alignment"); 795 RSI.insertRegSizeForMode(DefaultMode, RI); 796 } 797 798 CopyCost = R->getValueAsInt("CopyCost"); 799 Allocatable = R->getValueAsBit("isAllocatable"); 800 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 801 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 802 if (AllocationPriority < 0 || AllocationPriority > 63) 803 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 804 this->AllocationPriority = AllocationPriority; 805 } 806 807 // Create an inferred register class that was missing from the .td files. 808 // Most properties will be inherited from the closest super-class after the 809 // class structure has been computed. 810 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 811 StringRef Name, Key Props) 812 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)), 813 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI), 814 CopyCost(0), Allocatable(true), AllocationPriority(0) { 815 Artificial = true; 816 GeneratePressureSet = false; 817 for (const auto R : Members) { 818 TopoSigs.set(R->getTopoSig()); 819 Artificial &= R->Artificial; 820 } 821 } 822 823 // Compute inherited propertied for a synthesized register class. 824 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 825 assert(!getDef() && "Only synthesized classes can inherit properties"); 826 assert(!SuperClasses.empty() && "Synthesized class without super class"); 827 828 // The last super-class is the smallest one. 829 CodeGenRegisterClass &Super = *SuperClasses.back(); 830 831 // Most properties are copied directly. 832 // Exceptions are members, size, and alignment 833 Namespace = Super.Namespace; 834 VTs = Super.VTs; 835 CopyCost = Super.CopyCost; 836 Allocatable = Super.Allocatable; 837 AltOrderSelect = Super.AltOrderSelect; 838 AllocationPriority = Super.AllocationPriority; 839 GeneratePressureSet |= Super.GeneratePressureSet; 840 841 // Copy all allocation orders, filter out foreign registers from the larger 842 // super-class. 843 Orders.resize(Super.Orders.size()); 844 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 845 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 846 if (contains(RegBank.getReg(Super.Orders[i][j]))) 847 Orders[i].push_back(Super.Orders[i][j]); 848 } 849 850 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 851 return std::binary_search(Members.begin(), Members.end(), Reg, 852 deref<std::less<>>()); 853 } 854 855 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const { 856 if (TheDef && !TheDef->isValueUnset("Weight")) 857 return TheDef->getValueAsInt("Weight"); 858 859 if (Members.empty() || Artificial) 860 return 0; 861 862 return (*Members.begin())->getWeight(RegBank); 863 } 864 865 namespace llvm { 866 867 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 868 OS << "{ " << K.RSI; 869 for (const auto R : *K.Members) 870 OS << ", " << R->getName(); 871 return OS << " }"; 872 } 873 874 } // end namespace llvm 875 876 // This is a simple lexicographical order that can be used to search for sets. 877 // It is not the same as the topological order provided by TopoOrderRC. 878 bool CodeGenRegisterClass::Key:: 879 operator<(const CodeGenRegisterClass::Key &B) const { 880 assert(Members && B.Members); 881 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); 882 } 883 884 // Returns true if RC is a strict subclass. 885 // RC is a sub-class of this class if it is a valid replacement for any 886 // instruction operand where a register of this classis required. It must 887 // satisfy these conditions: 888 // 889 // 1. All RC registers are also in this. 890 // 2. The RC spill size must not be smaller than our spill size. 891 // 3. RC spill alignment must be compatible with ours. 892 // 893 static bool testSubClass(const CodeGenRegisterClass *A, 894 const CodeGenRegisterClass *B) { 895 return A->RSI.isSubClassOf(B->RSI) && 896 std::includes(A->getMembers().begin(), A->getMembers().end(), 897 B->getMembers().begin(), B->getMembers().end(), 898 deref<std::less<>>()); 899 } 900 901 /// Sorting predicate for register classes. This provides a topological 902 /// ordering that arranges all register classes before their sub-classes. 903 /// 904 /// Register classes with the same registers, spill size, and alignment form a 905 /// clique. They will be ordered alphabetically. 906 /// 907 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 908 const CodeGenRegisterClass &PB) { 909 auto *A = &PA; 910 auto *B = &PB; 911 if (A == B) 912 return false; 913 914 if (A->RSI < B->RSI) 915 return true; 916 if (A->RSI != B->RSI) 917 return false; 918 919 // Order by descending set size. Note that the classes' allocation order may 920 // not have been computed yet. The Members set is always vaild. 921 if (A->getMembers().size() > B->getMembers().size()) 922 return true; 923 if (A->getMembers().size() < B->getMembers().size()) 924 return false; 925 926 // Finally order by name as a tie breaker. 927 return StringRef(A->getName()) < B->getName(); 928 } 929 930 std::string CodeGenRegisterClass::getQualifiedName() const { 931 if (Namespace.empty()) 932 return getName(); 933 else 934 return (Namespace + "::" + getName()).str(); 935 } 936 937 // Compute sub-classes of all register classes. 938 // Assume the classes are ordered topologically. 939 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 940 auto &RegClasses = RegBank.getRegClasses(); 941 942 // Visit backwards so sub-classes are seen first. 943 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 944 CodeGenRegisterClass &RC = *I; 945 RC.SubClasses.resize(RegClasses.size()); 946 RC.SubClasses.set(RC.EnumValue); 947 if (RC.Artificial) 948 continue; 949 950 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 951 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 952 CodeGenRegisterClass &SubRC = *I2; 953 if (RC.SubClasses.test(SubRC.EnumValue)) 954 continue; 955 if (!testSubClass(&RC, &SubRC)) 956 continue; 957 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 958 // check them again. 959 RC.SubClasses |= SubRC.SubClasses; 960 } 961 962 // Sweep up missed clique members. They will be immediately preceding RC. 963 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 964 RC.SubClasses.set(I2->EnumValue); 965 } 966 967 // Compute the SuperClasses lists from the SubClasses vectors. 968 for (auto &RC : RegClasses) { 969 const BitVector &SC = RC.getSubClasses(); 970 auto I = RegClasses.begin(); 971 for (int s = 0, next_s = SC.find_first(); next_s != -1; 972 next_s = SC.find_next(s)) { 973 std::advance(I, next_s - s); 974 s = next_s; 975 if (&*I == &RC) 976 continue; 977 I->SuperClasses.push_back(&RC); 978 } 979 } 980 981 // With the class hierarchy in place, let synthesized register classes inherit 982 // properties from their closest super-class. The iteration order here can 983 // propagate properties down multiple levels. 984 for (auto &RC : RegClasses) 985 if (!RC.getDef()) 986 RC.inheritProperties(RegBank); 987 } 988 989 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>> 990 CodeGenRegisterClass::getMatchingSubClassWithSubRegs( 991 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { 992 auto SizeOrder = [this](const CodeGenRegisterClass *A, 993 const CodeGenRegisterClass *B) { 994 // If there are multiple, identical register classes, prefer the original 995 // register class. 996 if (A == B) 997 return false; 998 if (A->getMembers().size() == B->getMembers().size()) 999 return A == this; 1000 return A->getMembers().size() > B->getMembers().size(); 1001 }; 1002 1003 auto &RegClasses = RegBank.getRegClasses(); 1004 1005 // Find all the subclasses of this one that fully support the sub-register 1006 // index and order them by size. BiggestSuperRC should always be first. 1007 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); 1008 if (!BiggestSuperRegRC) 1009 return None; 1010 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); 1011 std::vector<CodeGenRegisterClass *> SuperRegRCs; 1012 for (auto &RC : RegClasses) 1013 if (SuperRegRCsBV[RC.EnumValue]) 1014 SuperRegRCs.emplace_back(&RC); 1015 llvm::stable_sort(SuperRegRCs, SizeOrder); 1016 1017 assert(SuperRegRCs.front() == BiggestSuperRegRC && 1018 "Biggest class wasn't first"); 1019 1020 // Find all the subreg classes and order them by size too. 1021 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses; 1022 for (auto &RC: RegClasses) { 1023 BitVector SuperRegClassesBV(RegClasses.size()); 1024 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); 1025 if (SuperRegClassesBV.any()) 1026 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); 1027 } 1028 llvm::sort(SuperRegClasses, 1029 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A, 1030 const std::pair<CodeGenRegisterClass *, BitVector> &B) { 1031 return SizeOrder(A.first, B.first); 1032 }); 1033 1034 // Find the biggest subclass and subreg class such that R:subidx is in the 1035 // subreg class for all R in subclass. 1036 // 1037 // For example: 1038 // All registers in X86's GR64 have a sub_32bit subregister but no class 1039 // exists that contains all the 32-bit subregisters because GR64 contains RIP 1040 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to 1041 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, 1042 // having excluded RIP, we are able to find a SubRegRC (GR32). 1043 CodeGenRegisterClass *ChosenSuperRegClass = nullptr; 1044 CodeGenRegisterClass *SubRegRC = nullptr; 1045 for (auto *SuperRegRC : SuperRegRCs) { 1046 for (const auto &SuperRegClassPair : SuperRegClasses) { 1047 const BitVector &SuperRegClassBV = SuperRegClassPair.second; 1048 if (SuperRegClassBV[SuperRegRC->EnumValue]) { 1049 SubRegRC = SuperRegClassPair.first; 1050 ChosenSuperRegClass = SuperRegRC; 1051 1052 // If SubRegRC is bigger than SuperRegRC then there are members of 1053 // SubRegRC that don't have super registers via SubIdx. Keep looking to 1054 // find a better fit and fall back on this one if there isn't one. 1055 // 1056 // This is intended to prevent X86 from making odd choices such as 1057 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. 1058 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that 1059 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 1060 // mapping. 1061 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) 1062 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1063 } 1064 } 1065 1066 // If we found a fit but it wasn't quite ideal because SubRegRC had excess 1067 // registers, then we're done. 1068 if (ChosenSuperRegClass) 1069 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1070 } 1071 1072 return None; 1073 } 1074 1075 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 1076 BitVector &Out) const { 1077 auto FindI = SuperRegClasses.find(SubIdx); 1078 if (FindI == SuperRegClasses.end()) 1079 return; 1080 for (CodeGenRegisterClass *RC : FindI->second) 1081 Out.set(RC->EnumValue); 1082 } 1083 1084 // Populate a unique sorted list of units from a register set. 1085 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, 1086 std::vector<unsigned> &RegUnits) const { 1087 std::vector<unsigned> TmpUnits; 1088 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { 1089 const RegUnit &RU = RegBank.getRegUnit(*UnitI); 1090 if (!RU.Artificial) 1091 TmpUnits.push_back(*UnitI); 1092 } 1093 llvm::sort(TmpUnits); 1094 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 1095 std::back_inserter(RegUnits)); 1096 } 1097 1098 //===----------------------------------------------------------------------===// 1099 // CodeGenRegBank 1100 //===----------------------------------------------------------------------===// 1101 1102 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, 1103 const CodeGenHwModes &Modes) : CGH(Modes) { 1104 // Configure register Sets to understand register classes and tuples. 1105 Sets.addFieldExpander("RegisterClass", "MemberList"); 1106 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 1107 Sets.addExpander("RegisterTuples", 1108 std::make_unique<TupleExpander>(SynthDefs)); 1109 1110 // Read in the user-defined (named) sub-register indices. 1111 // More indices will be synthesized later. 1112 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 1113 llvm::sort(SRIs, LessRecord()); 1114 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 1115 getSubRegIdx(SRIs[i]); 1116 // Build composite maps from ComposedOf fields. 1117 for (auto &Idx : SubRegIndices) 1118 Idx.updateComponents(*this); 1119 1120 // Read in the register definitions. 1121 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 1122 llvm::sort(Regs, LessRecordRegister()); 1123 // Assign the enumeration values. 1124 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 1125 getReg(Regs[i]); 1126 1127 // Expand tuples and number the new registers. 1128 std::vector<Record*> Tups = 1129 Records.getAllDerivedDefinitions("RegisterTuples"); 1130 1131 for (Record *R : Tups) { 1132 std::vector<Record *> TupRegs = *Sets.expand(R); 1133 llvm::sort(TupRegs, LessRecordRegister()); 1134 for (Record *RC : TupRegs) 1135 getReg(RC); 1136 } 1137 1138 // Now all the registers are known. Build the object graph of explicit 1139 // register-register references. 1140 for (auto &Reg : Registers) 1141 Reg.buildObjectGraph(*this); 1142 1143 // Compute register name map. 1144 for (auto &Reg : Registers) 1145 // FIXME: This could just be RegistersByName[name] = register, except that 1146 // causes some failures in MIPS - perhaps they have duplicate register name 1147 // entries? (or maybe there's a reason for it - I don't know much about this 1148 // code, just drive-by refactoring) 1149 RegistersByName.insert( 1150 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 1151 1152 // Precompute all sub-register maps. 1153 // This will create Composite entries for all inferred sub-register indices. 1154 for (auto &Reg : Registers) 1155 Reg.computeSubRegs(*this); 1156 1157 // Compute transitive closure of subregister index ConcatenationOf vectors 1158 // and initialize ConcatIdx map. 1159 for (CodeGenSubRegIndex &SRI : SubRegIndices) { 1160 SRI.computeConcatTransitiveClosure(); 1161 if (!SRI.ConcatenationOf.empty()) 1162 ConcatIdx.insert(std::make_pair( 1163 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(), 1164 SRI.ConcatenationOf.end()), &SRI)); 1165 } 1166 1167 // Infer even more sub-registers by combining leading super-registers. 1168 for (auto &Reg : Registers) 1169 if (Reg.CoveredBySubRegs) 1170 Reg.computeSecondarySubRegs(*this); 1171 1172 // After the sub-register graph is complete, compute the topologically 1173 // ordered SuperRegs list. 1174 for (auto &Reg : Registers) 1175 Reg.computeSuperRegs(*this); 1176 1177 // For each pair of Reg:SR, if both are non-artificial, mark the 1178 // corresponding sub-register index as non-artificial. 1179 for (auto &Reg : Registers) { 1180 if (Reg.Artificial) 1181 continue; 1182 for (auto P : Reg.getSubRegs()) { 1183 const CodeGenRegister *SR = P.second; 1184 if (!SR->Artificial) 1185 P.first->Artificial = false; 1186 } 1187 } 1188 1189 // Native register units are associated with a leaf register. They've all been 1190 // discovered now. 1191 NumNativeRegUnits = RegUnits.size(); 1192 1193 // Read in register class definitions. 1194 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1195 if (RCs.empty()) 1196 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1197 1198 // Allocate user-defined register classes. 1199 for (auto *R : RCs) { 1200 RegClasses.emplace_back(*this, R); 1201 CodeGenRegisterClass &RC = RegClasses.back(); 1202 if (!RC.Artificial) 1203 addToMaps(&RC); 1204 } 1205 1206 // Infer missing classes to create a full algebra. 1207 computeInferredRegisterClasses(); 1208 1209 // Order register classes topologically and assign enum values. 1210 RegClasses.sort(TopoOrderRC); 1211 unsigned i = 0; 1212 for (auto &RC : RegClasses) 1213 RC.EnumValue = i++; 1214 CodeGenRegisterClass::computeSubClasses(*this); 1215 } 1216 1217 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1218 CodeGenSubRegIndex* 1219 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1220 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1221 return &SubRegIndices.back(); 1222 } 1223 1224 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1225 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1226 if (Idx) 1227 return Idx; 1228 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1229 Idx = &SubRegIndices.back(); 1230 return Idx; 1231 } 1232 1233 const CodeGenSubRegIndex * 1234 CodeGenRegBank::findSubRegIdx(const Record* Def) const { 1235 return Def2SubRegIdx.lookup(Def); 1236 } 1237 1238 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1239 CodeGenRegister *&Reg = Def2Reg[Def]; 1240 if (Reg) 1241 return Reg; 1242 Registers.emplace_back(Def, Registers.size() + 1); 1243 Reg = &Registers.back(); 1244 return Reg; 1245 } 1246 1247 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1248 if (Record *Def = RC->getDef()) 1249 Def2RC.insert(std::make_pair(Def, RC)); 1250 1251 // Duplicate classes are rejected by insert(). 1252 // That's OK, we only care about the properties handled by CGRC::Key. 1253 CodeGenRegisterClass::Key K(*RC); 1254 Key2RC.insert(std::make_pair(K, RC)); 1255 } 1256 1257 // Create a synthetic sub-class if it is missing. 1258 CodeGenRegisterClass* 1259 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1260 const CodeGenRegister::Vec *Members, 1261 StringRef Name) { 1262 // Synthetic sub-class has the same size and alignment as RC. 1263 CodeGenRegisterClass::Key K(Members, RC->RSI); 1264 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1265 if (FoundI != Key2RC.end()) 1266 return FoundI->second; 1267 1268 // Sub-class doesn't exist, create a new one. 1269 RegClasses.emplace_back(*this, Name, K); 1270 addToMaps(&RegClasses.back()); 1271 return &RegClasses.back(); 1272 } 1273 1274 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const { 1275 if (CodeGenRegisterClass *RC = Def2RC.lookup(Def)) 1276 return RC; 1277 1278 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1279 } 1280 1281 CodeGenSubRegIndex* 1282 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1283 CodeGenSubRegIndex *B) { 1284 // Look for an existing entry. 1285 CodeGenSubRegIndex *Comp = A->compose(B); 1286 if (Comp) 1287 return Comp; 1288 1289 // None exists, synthesize one. 1290 std::string Name = A->getName() + "_then_" + B->getName(); 1291 Comp = createSubRegIndex(Name, A->getNamespace()); 1292 A->addComposite(B, Comp); 1293 return Comp; 1294 } 1295 1296 CodeGenSubRegIndex *CodeGenRegBank:: 1297 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1298 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1299 #ifndef NDEBUG 1300 for (CodeGenSubRegIndex *Idx : Parts) { 1301 assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); 1302 } 1303 #endif 1304 1305 // Look for an existing entry. 1306 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1307 if (Idx) 1308 return Idx; 1309 1310 // None exists, synthesize one. 1311 std::string Name = Parts.front()->getName(); 1312 // Determine whether all parts are contiguous. 1313 bool isContinuous = true; 1314 unsigned Size = Parts.front()->Size; 1315 unsigned LastOffset = Parts.front()->Offset; 1316 unsigned LastSize = Parts.front()->Size; 1317 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1318 Name += '_'; 1319 Name += Parts[i]->getName(); 1320 Size += Parts[i]->Size; 1321 if (Parts[i]->Offset != (LastOffset + LastSize)) 1322 isContinuous = false; 1323 LastOffset = Parts[i]->Offset; 1324 LastSize = Parts[i]->Size; 1325 } 1326 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1327 Idx->Size = Size; 1328 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1329 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); 1330 return Idx; 1331 } 1332 1333 void CodeGenRegBank::computeComposites() { 1334 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>; 1335 1336 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from 1337 // register to (sub)register associated with the action of the left-hand 1338 // side subregister. 1339 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction; 1340 for (const CodeGenRegister &R : Registers) { 1341 const CodeGenRegister::SubRegMap &SM = R.getSubRegs(); 1342 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM) 1343 SubRegAction[P.first].insert({&R, P.second}); 1344 } 1345 1346 // Calculate the composition of two subregisters as compositions of their 1347 // associated actions. 1348 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1, 1349 const CodeGenSubRegIndex *Sub2) { 1350 RegMap C; 1351 const RegMap &Img1 = SubRegAction.at(Sub1); 1352 const RegMap &Img2 = SubRegAction.at(Sub2); 1353 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) { 1354 auto F = Img2.find(P.second); 1355 if (F != Img2.end()) 1356 C.insert({P.first, F->second}); 1357 } 1358 return C; 1359 }; 1360 1361 // Check if the two maps agree on the intersection of their domains. 1362 auto agree = [] (const RegMap &Map1, const RegMap &Map2) { 1363 // Technically speaking, an empty map agrees with any other map, but 1364 // this could flag false positives. We're interested in non-vacuous 1365 // agreements. 1366 if (Map1.empty() || Map2.empty()) 1367 return false; 1368 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) { 1369 auto F = Map2.find(P.first); 1370 if (F == Map2.end() || P.second != F->second) 1371 return false; 1372 } 1373 return true; 1374 }; 1375 1376 using CompositePair = std::pair<const CodeGenSubRegIndex*, 1377 const CodeGenSubRegIndex*>; 1378 SmallSet<CompositePair,4> UserDefined; 1379 for (const CodeGenSubRegIndex &Idx : SubRegIndices) 1380 for (auto P : Idx.getComposites()) 1381 UserDefined.insert(std::make_pair(&Idx, P.first)); 1382 1383 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1384 // and many registers will share TopoSigs on regular architectures. 1385 BitVector TopoSigs(getNumTopoSigs()); 1386 1387 for (const auto &Reg1 : Registers) { 1388 // Skip identical subreg structures already processed. 1389 if (TopoSigs.test(Reg1.getTopoSig())) 1390 continue; 1391 TopoSigs.set(Reg1.getTopoSig()); 1392 1393 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1394 for (auto I1 : SRM1) { 1395 CodeGenSubRegIndex *Idx1 = I1.first; 1396 CodeGenRegister *Reg2 = I1.second; 1397 // Ignore identity compositions. 1398 if (&Reg1 == Reg2) 1399 continue; 1400 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1401 // Try composing Idx1 with another SubRegIndex. 1402 for (auto I2 : SRM2) { 1403 CodeGenSubRegIndex *Idx2 = I2.first; 1404 CodeGenRegister *Reg3 = I2.second; 1405 // Ignore identity compositions. 1406 if (Reg2 == Reg3) 1407 continue; 1408 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1409 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1410 assert(Idx3 && "Sub-register doesn't have an index"); 1411 1412 // Conflicting composition? Emit a warning but allow it. 1413 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) { 1414 // If the composition was not user-defined, always emit a warning. 1415 if (!UserDefined.count({Idx1, Idx2}) || 1416 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3))) 1417 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1418 " and " + Idx2->getQualifiedName() + 1419 " compose ambiguously as " + Prev->getQualifiedName() + 1420 " or " + Idx3->getQualifiedName()); 1421 } 1422 } 1423 } 1424 } 1425 } 1426 1427 // Compute lane masks. This is similar to register units, but at the 1428 // sub-register index level. Each bit in the lane mask is like a register unit 1429 // class, and two lane masks will have a bit in common if two sub-register 1430 // indices overlap in some register. 1431 // 1432 // Conservatively share a lane mask bit if two sub-register indices overlap in 1433 // some registers, but not in others. That shouldn't happen a lot. 1434 void CodeGenRegBank::computeSubRegLaneMasks() { 1435 // First assign individual bits to all the leaf indices. 1436 unsigned Bit = 0; 1437 // Determine mask of lanes that cover their registers. 1438 CoveringLanes = LaneBitmask::getAll(); 1439 for (auto &Idx : SubRegIndices) { 1440 if (Idx.getComposites().empty()) { 1441 if (Bit > LaneBitmask::BitWidth) { 1442 PrintFatalError( 1443 Twine("Ran out of lanemask bits to represent subregister ") 1444 + Idx.getName()); 1445 } 1446 Idx.LaneMask = LaneBitmask::getLane(Bit); 1447 ++Bit; 1448 } else { 1449 Idx.LaneMask = LaneBitmask::getNone(); 1450 } 1451 } 1452 1453 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1454 // here is that for each possible target subregister we look at the leafs 1455 // in the subregister graph that compose for this target and create 1456 // transformation sequences for the lanemasks. Each step in the sequence 1457 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1458 // are usually the same for many subregisters we can easily combine the steps 1459 // by combining the masks. 1460 for (const auto &Idx : SubRegIndices) { 1461 const auto &Composites = Idx.getComposites(); 1462 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1463 1464 if (Composites.empty()) { 1465 // Moving from a class with no subregisters we just had a single lane: 1466 // The subregister must be a leaf subregister and only occupies 1 bit. 1467 // Move the bit from the class without subregisters into that position. 1468 unsigned DstBit = Idx.LaneMask.getHighestLane(); 1469 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && 1470 "Must be a leaf subregister"); 1471 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; 1472 LaneTransforms.push_back(MaskRol); 1473 } else { 1474 // Go through all leaf subregisters and find the ones that compose with 1475 // Idx. These make out all possible valid bits in the lane mask we want to 1476 // transform. Looking only at the leafs ensure that only a single bit in 1477 // the mask is set. 1478 unsigned NextBit = 0; 1479 for (auto &Idx2 : SubRegIndices) { 1480 // Skip non-leaf subregisters. 1481 if (!Idx2.getComposites().empty()) 1482 continue; 1483 // Replicate the behaviour from the lane mask generation loop above. 1484 unsigned SrcBit = NextBit; 1485 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); 1486 if (NextBit < LaneBitmask::BitWidth-1) 1487 ++NextBit; 1488 assert(Idx2.LaneMask == SrcMask); 1489 1490 // Get the composed subregister if there is any. 1491 auto C = Composites.find(&Idx2); 1492 if (C == Composites.end()) 1493 continue; 1494 const CodeGenSubRegIndex *Composite = C->second; 1495 // The Composed subreg should be a leaf subreg too 1496 assert(Composite->getComposites().empty()); 1497 1498 // Create Mask+Rotate operation and merge with existing ops if possible. 1499 unsigned DstBit = Composite->LaneMask.getHighestLane(); 1500 int Shift = DstBit - SrcBit; 1501 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1502 : LaneBitmask::BitWidth + Shift; 1503 for (auto &I : LaneTransforms) { 1504 if (I.RotateLeft == RotateLeft) { 1505 I.Mask |= SrcMask; 1506 SrcMask = LaneBitmask::getNone(); 1507 } 1508 } 1509 if (SrcMask.any()) { 1510 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1511 LaneTransforms.push_back(MaskRol); 1512 } 1513 } 1514 } 1515 1516 // Optimize if the transformation consists of one step only: Set mask to 1517 // 0xffffffff (including some irrelevant invalid bits) so that it should 1518 // merge with more entries later while compressing the table. 1519 if (LaneTransforms.size() == 1) 1520 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1521 1522 // Further compression optimization: For invalid compositions resulting 1523 // in a sequence with 0 entries we can just pick any other. Choose 1524 // Mask 0xffffffff with Rotation 0. 1525 if (LaneTransforms.size() == 0) { 1526 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1527 LaneTransforms.push_back(P); 1528 } 1529 } 1530 1531 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1532 // by the sub-register graph? This doesn't occur in any known targets. 1533 1534 // Inherit lanes from composites. 1535 for (const auto &Idx : SubRegIndices) { 1536 LaneBitmask Mask = Idx.computeLaneMask(); 1537 // If some super-registers without CoveredBySubRegs use this index, we can 1538 // no longer assume that the lanes are covering their registers. 1539 if (!Idx.AllSuperRegsCovered) 1540 CoveringLanes &= ~Mask; 1541 } 1542 1543 // Compute lane mask combinations for register classes. 1544 for (auto &RegClass : RegClasses) { 1545 LaneBitmask LaneMask; 1546 for (const auto &SubRegIndex : SubRegIndices) { 1547 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1548 continue; 1549 LaneMask |= SubRegIndex.LaneMask; 1550 } 1551 1552 // For classes without any subregisters set LaneMask to 1 instead of 0. 1553 // This makes it easier for client code to handle classes uniformly. 1554 if (LaneMask.none()) 1555 LaneMask = LaneBitmask::getLane(0); 1556 1557 RegClass.LaneMask = LaneMask; 1558 } 1559 } 1560 1561 namespace { 1562 1563 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1564 // the transitive closure of the union of overlapping register 1565 // classes. Together, the UberRegSets form a partition of the registers. If we 1566 // consider overlapping register classes to be connected, then each UberRegSet 1567 // is a set of connected components. 1568 // 1569 // An UberRegSet will likely be a horizontal slice of register names of 1570 // the same width. Nontrivial subregisters should then be in a separate 1571 // UberRegSet. But this property isn't required for valid computation of 1572 // register unit weights. 1573 // 1574 // A Weight field caches the max per-register unit weight in each UberRegSet. 1575 // 1576 // A set of SingularDeterminants flags single units of some register in this set 1577 // for which the unit weight equals the set weight. These units should not have 1578 // their weight increased. 1579 struct UberRegSet { 1580 CodeGenRegister::Vec Regs; 1581 unsigned Weight = 0; 1582 CodeGenRegister::RegUnitList SingularDeterminants; 1583 1584 UberRegSet() = default; 1585 }; 1586 1587 } // end anonymous namespace 1588 1589 // Partition registers into UberRegSets, where each set is the transitive 1590 // closure of the union of overlapping register classes. 1591 // 1592 // UberRegSets[0] is a special non-allocatable set. 1593 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1594 std::vector<UberRegSet*> &RegSets, 1595 CodeGenRegBank &RegBank) { 1596 const auto &Registers = RegBank.getRegisters(); 1597 1598 // The Register EnumValue is one greater than its index into Registers. 1599 assert(Registers.size() == Registers.back().EnumValue && 1600 "register enum value mismatch"); 1601 1602 // For simplicitly make the SetID the same as EnumValue. 1603 IntEqClasses UberSetIDs(Registers.size()+1); 1604 std::set<unsigned> AllocatableRegs; 1605 for (auto &RegClass : RegBank.getRegClasses()) { 1606 if (!RegClass.Allocatable) 1607 continue; 1608 1609 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1610 if (Regs.empty()) 1611 continue; 1612 1613 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1614 assert(USetID && "register number 0 is invalid"); 1615 1616 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1617 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1618 AllocatableRegs.insert((*I)->EnumValue); 1619 UberSetIDs.join(USetID, (*I)->EnumValue); 1620 } 1621 } 1622 // Combine non-allocatable regs. 1623 for (const auto &Reg : Registers) { 1624 unsigned RegNum = Reg.EnumValue; 1625 if (AllocatableRegs.count(RegNum)) 1626 continue; 1627 1628 UberSetIDs.join(0, RegNum); 1629 } 1630 UberSetIDs.compress(); 1631 1632 // Make the first UberSet a special unallocatable set. 1633 unsigned ZeroID = UberSetIDs[0]; 1634 1635 // Insert Registers into the UberSets formed by union-find. 1636 // Do not resize after this. 1637 UberSets.resize(UberSetIDs.getNumClasses()); 1638 unsigned i = 0; 1639 for (const CodeGenRegister &Reg : Registers) { 1640 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1641 if (!USetID) 1642 USetID = ZeroID; 1643 else if (USetID == ZeroID) 1644 USetID = 0; 1645 1646 UberRegSet *USet = &UberSets[USetID]; 1647 USet->Regs.push_back(&Reg); 1648 sortAndUniqueRegisters(USet->Regs); 1649 RegSets[i++] = USet; 1650 } 1651 } 1652 1653 // Recompute each UberSet weight after changing unit weights. 1654 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1655 CodeGenRegBank &RegBank) { 1656 // Skip the first unallocatable set. 1657 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1658 E = UberSets.end(); I != E; ++I) { 1659 1660 // Initialize all unit weights in this set, and remember the max units/reg. 1661 const CodeGenRegister *Reg = nullptr; 1662 unsigned MaxWeight = 0, Weight = 0; 1663 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1664 if (Reg != UnitI.getReg()) { 1665 if (Weight > MaxWeight) 1666 MaxWeight = Weight; 1667 Reg = UnitI.getReg(); 1668 Weight = 0; 1669 } 1670 if (!RegBank.getRegUnit(*UnitI).Artificial) { 1671 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1672 if (!UWeight) { 1673 UWeight = 1; 1674 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1675 } 1676 Weight += UWeight; 1677 } 1678 } 1679 if (Weight > MaxWeight) 1680 MaxWeight = Weight; 1681 if (I->Weight != MaxWeight) { 1682 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " 1683 << MaxWeight; 1684 for (auto &Unit 1685 : I->Regs) dbgs() 1686 << " " << Unit->getName(); 1687 dbgs() << "\n"); 1688 // Update the set weight. 1689 I->Weight = MaxWeight; 1690 } 1691 1692 // Find singular determinants. 1693 for (const auto R : I->Regs) { 1694 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1695 I->SingularDeterminants |= R->getRegUnits(); 1696 } 1697 } 1698 } 1699 } 1700 1701 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1702 // a register and its subregisters so that they have the same weight as their 1703 // UberSet. Self-recursion processes the subregister tree in postorder so 1704 // subregisters are normalized first. 1705 // 1706 // Side effects: 1707 // - creates new adopted register units 1708 // - causes superregisters to inherit adopted units 1709 // - increases the weight of "singular" units 1710 // - induces recomputation of UberWeights. 1711 static bool normalizeWeight(CodeGenRegister *Reg, 1712 std::vector<UberRegSet> &UberSets, 1713 std::vector<UberRegSet*> &RegSets, 1714 BitVector &NormalRegs, 1715 CodeGenRegister::RegUnitList &NormalUnits, 1716 CodeGenRegBank &RegBank) { 1717 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size())); 1718 if (NormalRegs.test(Reg->EnumValue)) 1719 return false; 1720 NormalRegs.set(Reg->EnumValue); 1721 1722 bool Changed = false; 1723 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1724 for (auto SRI : SRM) { 1725 if (SRI.second == Reg) 1726 continue; // self-cycles happen 1727 1728 Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs, 1729 NormalUnits, RegBank); 1730 } 1731 // Postorder register normalization. 1732 1733 // Inherit register units newly adopted by subregisters. 1734 if (Reg->inheritRegUnits(RegBank)) 1735 computeUberWeights(UberSets, RegBank); 1736 1737 // Check if this register is too skinny for its UberRegSet. 1738 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1739 1740 unsigned RegWeight = Reg->getWeight(RegBank); 1741 if (UberSet->Weight > RegWeight) { 1742 // A register unit's weight can be adjusted only if it is the singular unit 1743 // for this register, has not been used to normalize a subregister's set, 1744 // and has not already been used to singularly determine this UberRegSet. 1745 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1746 if (Reg->getRegUnits().count() != 1 1747 || hasRegUnit(NormalUnits, AdjustUnit) 1748 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1749 // We don't have an adjustable unit, so adopt a new one. 1750 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1751 Reg->adoptRegUnit(AdjustUnit); 1752 // Adopting a unit does not immediately require recomputing set weights. 1753 } 1754 else { 1755 // Adjust the existing single unit. 1756 if (!RegBank.getRegUnit(AdjustUnit).Artificial) 1757 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1758 // The unit may be shared among sets and registers within this set. 1759 computeUberWeights(UberSets, RegBank); 1760 } 1761 Changed = true; 1762 } 1763 1764 // Mark these units normalized so superregisters can't change their weights. 1765 NormalUnits |= Reg->getRegUnits(); 1766 1767 return Changed; 1768 } 1769 1770 // Compute a weight for each register unit created during getSubRegs. 1771 // 1772 // The goal is that two registers in the same class will have the same weight, 1773 // where each register's weight is defined as sum of its units' weights. 1774 void CodeGenRegBank::computeRegUnitWeights() { 1775 std::vector<UberRegSet> UberSets; 1776 std::vector<UberRegSet*> RegSets(Registers.size()); 1777 computeUberSets(UberSets, RegSets, *this); 1778 // UberSets and RegSets are now immutable. 1779 1780 computeUberWeights(UberSets, *this); 1781 1782 // Iterate over each Register, normalizing the unit weights until reaching 1783 // a fix point. 1784 unsigned NumIters = 0; 1785 for (bool Changed = true; Changed; ++NumIters) { 1786 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1787 Changed = false; 1788 for (auto &Reg : Registers) { 1789 CodeGenRegister::RegUnitList NormalUnits; 1790 BitVector NormalRegs; 1791 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1792 NormalUnits, *this); 1793 } 1794 } 1795 } 1796 1797 // Find a set in UniqueSets with the same elements as Set. 1798 // Return an iterator into UniqueSets. 1799 static std::vector<RegUnitSet>::const_iterator 1800 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1801 const RegUnitSet &Set) { 1802 std::vector<RegUnitSet>::const_iterator 1803 I = UniqueSets.begin(), E = UniqueSets.end(); 1804 for(;I != E; ++I) { 1805 if (I->Units == Set.Units) 1806 break; 1807 } 1808 return I; 1809 } 1810 1811 // Return true if the RUSubSet is a subset of RUSuperSet. 1812 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1813 const std::vector<unsigned> &RUSuperSet) { 1814 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1815 RUSubSet.begin(), RUSubSet.end()); 1816 } 1817 1818 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1819 /// but with one or two registers removed. We occasionally have registers like 1820 /// APSR and PC thrown in with the general registers. We also see many 1821 /// special-purpose register subsets, such as tail-call and Thumb 1822 /// encodings. Generating all possible overlapping sets is combinatorial and 1823 /// overkill for modeling pressure. Ideally we could fix this statically in 1824 /// tablegen by (1) having the target define register classes that only include 1825 /// the allocatable registers and marking other classes as non-allocatable and 1826 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1827 /// the purpose of pressure. However, we make an attempt to handle targets that 1828 /// are not nicely defined by merging nearly identical register unit sets 1829 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1830 /// set limit by filtering the reserved registers. 1831 /// 1832 /// Merge sets only if the units have the same weight. For example, on ARM, 1833 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1834 /// should not expand the S set to include D regs. 1835 void CodeGenRegBank::pruneUnitSets() { 1836 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1837 1838 // Form an equivalence class of UnitSets with no significant difference. 1839 std::vector<unsigned> SuperSetIDs; 1840 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1841 SubIdx != EndIdx; ++SubIdx) { 1842 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1843 unsigned SuperIdx = 0; 1844 for (; SuperIdx != EndIdx; ++SuperIdx) { 1845 if (SuperIdx == SubIdx) 1846 continue; 1847 1848 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1849 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1850 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1851 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1852 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1853 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1854 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1855 << "\n"); 1856 // We can pick any of the set names for the merged set. Go for the 1857 // shortest one to avoid picking the name of one of the classes that are 1858 // artificially created by tablegen. So "FPR128_lo" instead of 1859 // "QQQQ_with_qsub3_in_FPR128_lo". 1860 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1861 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1862 break; 1863 } 1864 } 1865 if (SuperIdx == EndIdx) 1866 SuperSetIDs.push_back(SubIdx); 1867 } 1868 // Populate PrunedUnitSets with each equivalence class's superset. 1869 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1870 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1871 unsigned SuperIdx = SuperSetIDs[i]; 1872 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1873 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1874 } 1875 RegUnitSets.swap(PrunedUnitSets); 1876 } 1877 1878 // Create a RegUnitSet for each RegClass that contains all units in the class 1879 // including adopted units that are necessary to model register pressure. Then 1880 // iteratively compute RegUnitSets such that the union of any two overlapping 1881 // RegUnitSets is repreresented. 1882 // 1883 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1884 // RegUnitSet that is a superset of that RegUnitClass. 1885 void CodeGenRegBank::computeRegUnitSets() { 1886 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1887 1888 // Compute a unique RegUnitSet for each RegClass. 1889 auto &RegClasses = getRegClasses(); 1890 for (auto &RC : RegClasses) { 1891 if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet) 1892 continue; 1893 1894 // Speculatively grow the RegUnitSets to hold the new set. 1895 RegUnitSets.resize(RegUnitSets.size() + 1); 1896 RegUnitSets.back().Name = RC.getName(); 1897 1898 // Compute a sorted list of units in this class. 1899 RC.buildRegUnitSet(*this, RegUnitSets.back().Units); 1900 1901 // Find an existing RegUnitSet. 1902 std::vector<RegUnitSet>::const_iterator SetI = 1903 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1904 if (SetI != std::prev(RegUnitSets.end())) 1905 RegUnitSets.pop_back(); 1906 } 1907 1908 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, 1909 USEnd = RegUnitSets.size(); 1910 USIdx < USEnd; ++USIdx) { 1911 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1912 for (auto &U : RegUnitSets[USIdx].Units) 1913 printRegUnitName(U); 1914 dbgs() << "\n"; 1915 }); 1916 1917 // Iteratively prune unit sets. 1918 pruneUnitSets(); 1919 1920 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, 1921 USEnd = RegUnitSets.size(); 1922 USIdx < USEnd; ++USIdx) { 1923 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1924 for (auto &U : RegUnitSets[USIdx].Units) 1925 printRegUnitName(U); 1926 dbgs() << "\n"; 1927 } dbgs() << "\nUnion sets:\n"); 1928 1929 // Iterate over all unit sets, including new ones added by this loop. 1930 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1931 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1932 // In theory, this is combinatorial. In practice, it needs to be bounded 1933 // by a small number of sets for regpressure to be efficient. 1934 // If the assert is hit, we need to implement pruning. 1935 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1936 1937 // Compare new sets with all original classes. 1938 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1939 SearchIdx != EndIdx; ++SearchIdx) { 1940 std::set<unsigned> Intersection; 1941 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1942 RegUnitSets[Idx].Units.end(), 1943 RegUnitSets[SearchIdx].Units.begin(), 1944 RegUnitSets[SearchIdx].Units.end(), 1945 std::inserter(Intersection, Intersection.begin())); 1946 if (Intersection.empty()) 1947 continue; 1948 1949 // Speculatively grow the RegUnitSets to hold the new set. 1950 RegUnitSets.resize(RegUnitSets.size() + 1); 1951 RegUnitSets.back().Name = 1952 RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name; 1953 1954 std::set_union(RegUnitSets[Idx].Units.begin(), 1955 RegUnitSets[Idx].Units.end(), 1956 RegUnitSets[SearchIdx].Units.begin(), 1957 RegUnitSets[SearchIdx].Units.end(), 1958 std::inserter(RegUnitSets.back().Units, 1959 RegUnitSets.back().Units.begin())); 1960 1961 // Find an existing RegUnitSet, or add the union to the unique sets. 1962 std::vector<RegUnitSet>::const_iterator SetI = 1963 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1964 if (SetI != std::prev(RegUnitSets.end())) 1965 RegUnitSets.pop_back(); 1966 else { 1967 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " 1968 << RegUnitSets.back().Name << ":"; 1969 for (auto &U 1970 : RegUnitSets.back().Units) printRegUnitName(U); 1971 dbgs() << "\n";); 1972 } 1973 } 1974 } 1975 1976 // Iteratively prune unit sets after inferring supersets. 1977 pruneUnitSets(); 1978 1979 LLVM_DEBUG( 1980 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1981 USIdx < USEnd; ++USIdx) { 1982 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1983 for (auto &U : RegUnitSets[USIdx].Units) 1984 printRegUnitName(U); 1985 dbgs() << "\n"; 1986 }); 1987 1988 // For each register class, list the UnitSets that are supersets. 1989 RegClassUnitSets.resize(RegClasses.size()); 1990 int RCIdx = -1; 1991 for (auto &RC : RegClasses) { 1992 ++RCIdx; 1993 if (!RC.Allocatable) 1994 continue; 1995 1996 // Recompute the sorted list of units in this class. 1997 std::vector<unsigned> RCRegUnits; 1998 RC.buildRegUnitSet(*this, RCRegUnits); 1999 2000 // Don't increase pressure for unallocatable regclasses. 2001 if (RCRegUnits.empty()) 2002 continue; 2003 2004 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n"; 2005 for (auto U 2006 : RCRegUnits) printRegUnitName(U); 2007 dbgs() << "\n UnitSetIDs:"); 2008 2009 // Find all supersets. 2010 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2011 USIdx != USEnd; ++USIdx) { 2012 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 2013 LLVM_DEBUG(dbgs() << " " << USIdx); 2014 RegClassUnitSets[RCIdx].push_back(USIdx); 2015 } 2016 } 2017 LLVM_DEBUG(dbgs() << "\n"); 2018 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 2019 } 2020 2021 // For each register unit, ensure that we have the list of UnitSets that 2022 // contain the unit. Normally, this matches an existing list of UnitSets for a 2023 // register class. If not, we create a new entry in RegClassUnitSets as a 2024 // "fake" register class. 2025 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 2026 UnitIdx < UnitEnd; ++UnitIdx) { 2027 std::vector<unsigned> RUSets; 2028 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 2029 RegUnitSet &RUSet = RegUnitSets[i]; 2030 if (!is_contained(RUSet.Units, UnitIdx)) 2031 continue; 2032 RUSets.push_back(i); 2033 } 2034 unsigned RCUnitSetsIdx = 0; 2035 for (unsigned e = RegClassUnitSets.size(); 2036 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 2037 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 2038 break; 2039 } 2040 } 2041 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 2042 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 2043 // Create a new list of UnitSets as a "fake" register class. 2044 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 2045 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 2046 } 2047 } 2048 } 2049 2050 void CodeGenRegBank::computeRegUnitLaneMasks() { 2051 for (auto &Register : Registers) { 2052 // Create an initial lane mask for all register units. 2053 const auto &RegUnits = Register.getRegUnits(); 2054 CodeGenRegister::RegUnitLaneMaskList 2055 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 2056 // Iterate through SubRegisters. 2057 typedef CodeGenRegister::SubRegMap SubRegMap; 2058 const SubRegMap &SubRegs = Register.getSubRegs(); 2059 for (auto S : SubRegs) { 2060 CodeGenRegister *SubReg = S.second; 2061 // Ignore non-leaf subregisters, their lane masks are fully covered by 2062 // the leaf subregisters anyway. 2063 if (!SubReg->getSubRegs().empty()) 2064 continue; 2065 CodeGenSubRegIndex *SubRegIndex = S.first; 2066 const CodeGenRegister *SubRegister = S.second; 2067 LaneBitmask LaneMask = SubRegIndex->LaneMask; 2068 // Distribute LaneMask to Register Units touched. 2069 for (unsigned SUI : SubRegister->getRegUnits()) { 2070 bool Found = false; 2071 unsigned u = 0; 2072 for (unsigned RU : RegUnits) { 2073 if (SUI == RU) { 2074 RegUnitLaneMasks[u] |= LaneMask; 2075 assert(!Found); 2076 Found = true; 2077 } 2078 ++u; 2079 } 2080 (void)Found; 2081 assert(Found); 2082 } 2083 } 2084 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 2085 } 2086 } 2087 2088 void CodeGenRegBank::computeDerivedInfo() { 2089 computeComposites(); 2090 computeSubRegLaneMasks(); 2091 2092 // Compute a weight for each register unit created during getSubRegs. 2093 // This may create adopted register units (with unit # >= NumNativeRegUnits). 2094 computeRegUnitWeights(); 2095 2096 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 2097 // supersets for the union of overlapping sets. 2098 computeRegUnitSets(); 2099 2100 computeRegUnitLaneMasks(); 2101 2102 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 2103 for (CodeGenRegisterClass &RC : RegClasses) { 2104 RC.HasDisjunctSubRegs = false; 2105 RC.CoveredBySubRegs = true; 2106 for (const CodeGenRegister *Reg : RC.getMembers()) { 2107 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 2108 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 2109 } 2110 } 2111 2112 // Get the weight of each set. 2113 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2114 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 2115 2116 // Find the order of each set. 2117 RegUnitSetOrder.reserve(RegUnitSets.size()); 2118 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2119 RegUnitSetOrder.push_back(Idx); 2120 2121 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) { 2122 return getRegPressureSet(ID1).Units.size() < 2123 getRegPressureSet(ID2).Units.size(); 2124 }); 2125 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 2126 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 2127 } 2128 } 2129 2130 // 2131 // Synthesize missing register class intersections. 2132 // 2133 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 2134 // returns a maximal register class for all X. 2135 // 2136 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 2137 assert(!RegClasses.empty()); 2138 // Stash the iterator to the last element so that this loop doesn't visit 2139 // elements added by the getOrCreateSubClass call within it. 2140 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 2141 I != std::next(E); ++I) { 2142 CodeGenRegisterClass *RC1 = RC; 2143 CodeGenRegisterClass *RC2 = &*I; 2144 if (RC1 == RC2) 2145 continue; 2146 2147 // Compute the set intersection of RC1 and RC2. 2148 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 2149 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 2150 CodeGenRegister::Vec Intersection; 2151 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(), 2152 Memb2.end(), 2153 std::inserter(Intersection, Intersection.begin()), 2154 deref<std::less<>>()); 2155 2156 // Skip disjoint class pairs. 2157 if (Intersection.empty()) 2158 continue; 2159 2160 // If RC1 and RC2 have different spill sizes or alignments, use the 2161 // stricter one for sub-classing. If they are equal, prefer RC1. 2162 if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) 2163 std::swap(RC1, RC2); 2164 2165 getOrCreateSubClass(RC1, &Intersection, 2166 RC1->getName() + "_and_" + RC2->getName()); 2167 } 2168 } 2169 2170 // 2171 // Synthesize missing sub-classes for getSubClassWithSubReg(). 2172 // 2173 // Make sure that the set of registers in RC with a given SubIdx sub-register 2174 // form a register class. Update RC->SubClassWithSubReg. 2175 // 2176 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 2177 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 2178 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 2179 deref<std::less<>>> 2180 SubReg2SetMap; 2181 2182 // Compute the set of registers supporting each SubRegIndex. 2183 SubReg2SetMap SRSets; 2184 for (const auto R : RC->getMembers()) { 2185 if (R->Artificial) 2186 continue; 2187 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 2188 for (auto I : SRM) { 2189 if (!I.first->Artificial) 2190 SRSets[I.first].push_back(R); 2191 } 2192 } 2193 2194 for (auto I : SRSets) 2195 sortAndUniqueRegisters(I.second); 2196 2197 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 2198 // numerical order to visit synthetic indices last. 2199 for (const auto &SubIdx : SubRegIndices) { 2200 if (SubIdx.Artificial) 2201 continue; 2202 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 2203 // Unsupported SubRegIndex. Skip it. 2204 if (I == SRSets.end()) 2205 continue; 2206 // In most cases, all RC registers support the SubRegIndex. 2207 if (I->second.size() == RC->getMembers().size()) { 2208 RC->setSubClassWithSubReg(&SubIdx, RC); 2209 continue; 2210 } 2211 // This is a real subset. See if we have a matching class. 2212 CodeGenRegisterClass *SubRC = 2213 getOrCreateSubClass(RC, &I->second, 2214 RC->getName() + "_with_" + I->first->getName()); 2215 RC->setSubClassWithSubReg(&SubIdx, SubRC); 2216 } 2217 } 2218 2219 // 2220 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 2221 // 2222 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 2223 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 2224 // 2225 2226 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 2227 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 2228 SmallVector<std::pair<const CodeGenRegister*, 2229 const CodeGenRegister*>, 16> SSPairs; 2230 BitVector TopoSigs(getNumTopoSigs()); 2231 2232 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 2233 for (auto &SubIdx : SubRegIndices) { 2234 // Skip indexes that aren't fully supported by RC's registers. This was 2235 // computed by inferSubClassWithSubReg() above which should have been 2236 // called first. 2237 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 2238 continue; 2239 2240 // Build list of (Super, Sub) pairs for this SubIdx. 2241 SSPairs.clear(); 2242 TopoSigs.reset(); 2243 for (const auto Super : RC->getMembers()) { 2244 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 2245 assert(Sub && "Missing sub-register"); 2246 SSPairs.push_back(std::make_pair(Super, Sub)); 2247 TopoSigs.set(Sub->getTopoSig()); 2248 } 2249 2250 // Iterate over sub-register class candidates. Ignore classes created by 2251 // this loop. They will never be useful. 2252 // Store an iterator to the last element (not end) so that this loop doesn't 2253 // visit newly inserted elements. 2254 assert(!RegClasses.empty()); 2255 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2256 I != std::next(E); ++I) { 2257 CodeGenRegisterClass &SubRC = *I; 2258 if (SubRC.Artificial) 2259 continue; 2260 // Topological shortcut: SubRC members have the wrong shape. 2261 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2262 continue; 2263 // Compute the subset of RC that maps into SubRC. 2264 CodeGenRegister::Vec SubSetVec; 2265 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2266 if (SubRC.contains(SSPairs[i].second)) 2267 SubSetVec.push_back(SSPairs[i].first); 2268 2269 if (SubSetVec.empty()) 2270 continue; 2271 2272 // RC injects completely into SubRC. 2273 sortAndUniqueRegisters(SubSetVec); 2274 if (SubSetVec.size() == SSPairs.size()) { 2275 SubRC.addSuperRegClass(&SubIdx, RC); 2276 continue; 2277 } 2278 2279 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2280 // class. 2281 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2282 SubIdx.getName() + "_in_" + 2283 SubRC.getName()); 2284 } 2285 } 2286 } 2287 2288 // 2289 // Infer missing register classes. 2290 // 2291 void CodeGenRegBank::computeInferredRegisterClasses() { 2292 assert(!RegClasses.empty()); 2293 // When this function is called, the register classes have not been sorted 2294 // and assigned EnumValues yet. That means getSubClasses(), 2295 // getSuperClasses(), and hasSubClass() functions are defunct. 2296 2297 // Use one-before-the-end so it doesn't move forward when new elements are 2298 // added. 2299 auto FirstNewRC = std::prev(RegClasses.end()); 2300 2301 // Visit all register classes, including the ones being added by the loop. 2302 // Watch out for iterator invalidation here. 2303 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2304 CodeGenRegisterClass *RC = &*I; 2305 if (RC->Artificial) 2306 continue; 2307 2308 // Synthesize answers for getSubClassWithSubReg(). 2309 inferSubClassWithSubReg(RC); 2310 2311 // Synthesize answers for getCommonSubClass(). 2312 inferCommonSubClass(RC); 2313 2314 // Synthesize answers for getMatchingSuperRegClass(). 2315 inferMatchingSuperRegClass(RC); 2316 2317 // New register classes are created while this loop is running, and we need 2318 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2319 // to match old super-register classes with sub-register classes created 2320 // after inferMatchingSuperRegClass was called. At this point, 2321 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2322 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2323 if (I == FirstNewRC) { 2324 auto NextNewRC = std::prev(RegClasses.end()); 2325 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2326 ++I2) 2327 inferMatchingSuperRegClass(&*I2, E2); 2328 FirstNewRC = NextNewRC; 2329 } 2330 } 2331 } 2332 2333 /// getRegisterClassForRegister - Find the register class that contains the 2334 /// specified physical register. If the register is not in a register class, 2335 /// return null. If the register is in multiple classes, and the classes have a 2336 /// superset-subset relationship and the same set of types, return the 2337 /// superclass. Otherwise return null. 2338 const CodeGenRegisterClass* 2339 CodeGenRegBank::getRegClassForRegister(Record *R) { 2340 const CodeGenRegister *Reg = getReg(R); 2341 const CodeGenRegisterClass *FoundRC = nullptr; 2342 for (const auto &RC : getRegClasses()) { 2343 if (!RC.contains(Reg)) 2344 continue; 2345 2346 // If this is the first class that contains the register, 2347 // make a note of it and go on to the next class. 2348 if (!FoundRC) { 2349 FoundRC = &RC; 2350 continue; 2351 } 2352 2353 // If a register's classes have different types, return null. 2354 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2355 return nullptr; 2356 2357 // Check to see if the previously found class that contains 2358 // the register is a subclass of the current class. If so, 2359 // prefer the superclass. 2360 if (RC.hasSubClass(FoundRC)) { 2361 FoundRC = &RC; 2362 continue; 2363 } 2364 2365 // Check to see if the previously found class that contains 2366 // the register is a superclass of the current class. If so, 2367 // prefer the superclass. 2368 if (FoundRC->hasSubClass(&RC)) 2369 continue; 2370 2371 // Multiple classes, and neither is a superclass of the other. 2372 // Return null. 2373 return nullptr; 2374 } 2375 return FoundRC; 2376 } 2377 2378 const CodeGenRegisterClass * 2379 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord, 2380 ValueTypeByHwMode *VT) { 2381 const CodeGenRegister *Reg = getReg(RegRecord); 2382 const CodeGenRegisterClass *BestRC = nullptr; 2383 for (const auto &RC : getRegClasses()) { 2384 if ((!VT || RC.hasType(*VT)) && 2385 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC))) 2386 BestRC = &RC; 2387 } 2388 2389 assert(BestRC && "Couldn't find the register class"); 2390 return BestRC; 2391 } 2392 2393 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2394 SetVector<const CodeGenRegister*> Set; 2395 2396 // First add Regs with all sub-registers. 2397 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2398 CodeGenRegister *Reg = getReg(Regs[i]); 2399 if (Set.insert(Reg)) 2400 // Reg is new, add all sub-registers. 2401 // The pre-ordering is not important here. 2402 Reg->addSubRegsPreOrder(Set, *this); 2403 } 2404 2405 // Second, find all super-registers that are completely covered by the set. 2406 for (unsigned i = 0; i != Set.size(); ++i) { 2407 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2408 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2409 const CodeGenRegister *Super = SR[j]; 2410 if (!Super->CoveredBySubRegs || Set.count(Super)) 2411 continue; 2412 // This new super-register is covered by its sub-registers. 2413 bool AllSubsInSet = true; 2414 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2415 for (auto I : SRM) 2416 if (!Set.count(I.second)) { 2417 AllSubsInSet = false; 2418 break; 2419 } 2420 // All sub-registers in Set, add Super as well. 2421 // We will visit Super later to recheck its super-registers. 2422 if (AllSubsInSet) 2423 Set.insert(Super); 2424 } 2425 } 2426 2427 // Convert to BitVector. 2428 BitVector BV(Registers.size() + 1); 2429 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2430 BV.set(Set[i]->EnumValue); 2431 return BV; 2432 } 2433 2434 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2435 if (Unit < NumNativeRegUnits) 2436 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2437 else 2438 dbgs() << " #" << Unit; 2439 } 2440