1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines structures to encapsulate information gleaned from the 10 // target register and register class definitions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenRegisters.h" 15 #include "CodeGenTarget.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/IntEqClasses.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/TableGen/Error.h" 32 #include "llvm/TableGen/Record.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <queue> 39 #include <set> 40 #include <string> 41 #include <tuple> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "regalloc-emitter" 48 49 //===----------------------------------------------------------------------===// 50 // CodeGenSubRegIndex 51 //===----------------------------------------------------------------------===// 52 53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 54 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 55 Name = std::string(R->getName()); 56 if (R->getValue("Namespace")) 57 Namespace = std::string(R->getValueAsString("Namespace")); 58 Size = R->getValueAsInt("Size"); 59 Offset = R->getValueAsInt("Offset"); 60 } 61 62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 63 unsigned Enum) 64 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)), 65 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true), 66 Artificial(true) {} 67 68 std::string CodeGenSubRegIndex::getQualifiedName() const { 69 std::string N = getNamespace(); 70 if (!N.empty()) 71 N += "::"; 72 N += getName(); 73 return N; 74 } 75 76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 77 if (!TheDef) 78 return; 79 80 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 81 if (!Comps.empty()) { 82 if (Comps.size() != 2) 83 PrintFatalError(TheDef->getLoc(), 84 "ComposedOf must have exactly two entries"); 85 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 86 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 87 CodeGenSubRegIndex *X = A->addComposite(B, this); 88 if (X) 89 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 90 } 91 92 std::vector<Record*> Parts = 93 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 94 if (!Parts.empty()) { 95 if (Parts.size() < 2) 96 PrintFatalError(TheDef->getLoc(), 97 "CoveredBySubRegs must have two or more entries"); 98 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 99 for (Record *Part : Parts) 100 IdxParts.push_back(RegBank.getSubRegIdx(Part)); 101 setConcatenationOf(IdxParts); 102 } 103 } 104 105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 106 // Already computed? 107 if (LaneMask.any()) 108 return LaneMask; 109 110 // Recursion guard, shouldn't be required. 111 LaneMask = LaneBitmask::getAll(); 112 113 // The lane mask is simply the union of all sub-indices. 114 LaneBitmask M; 115 for (const auto &C : Composed) 116 M |= C.second->computeLaneMask(); 117 assert(M.any() && "Missing lane mask, sub-register cycle?"); 118 LaneMask = M; 119 return LaneMask; 120 } 121 122 void CodeGenSubRegIndex::setConcatenationOf( 123 ArrayRef<CodeGenSubRegIndex*> Parts) { 124 if (ConcatenationOf.empty()) 125 ConcatenationOf.assign(Parts.begin(), Parts.end()); 126 else 127 assert(std::equal(Parts.begin(), Parts.end(), 128 ConcatenationOf.begin()) && "parts consistent"); 129 } 130 131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() { 132 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator 133 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { 134 CodeGenSubRegIndex *SubIdx = *I; 135 SubIdx->computeConcatTransitiveClosure(); 136 #ifndef NDEBUG 137 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) 138 assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); 139 #endif 140 141 if (SubIdx->ConcatenationOf.empty()) { 142 ++I; 143 } else { 144 I = ConcatenationOf.erase(I); 145 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), 146 SubIdx->ConcatenationOf.end()); 147 I += SubIdx->ConcatenationOf.size(); 148 } 149 } 150 } 151 152 //===----------------------------------------------------------------------===// 153 // CodeGenRegister 154 //===----------------------------------------------------------------------===// 155 156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 157 : TheDef(R), EnumValue(Enum), 158 CostPerUse(R->getValueAsListOfInts("CostPerUse")), 159 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 160 HasDisjunctSubRegs(false), SubRegsComplete(false), 161 SuperRegsComplete(false), TopoSig(~0u) { 162 Artificial = R->getValueAsBit("isArtificial"); 163 } 164 165 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 166 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 167 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 168 169 if (SRIs.size() != SRs.size()) 170 PrintFatalError(TheDef->getLoc(), 171 "SubRegs and SubRegIndices must have the same size"); 172 173 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 174 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 175 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 176 } 177 178 // Also compute leading super-registers. Each register has a list of 179 // covered-by-subregs super-registers where it appears as the first explicit 180 // sub-register. 181 // 182 // This is used by computeSecondarySubRegs() to find candidates. 183 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 184 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 185 186 // Add ad hoc alias links. This is a symmetric relationship between two 187 // registers, so build a symmetric graph by adding links in both ends. 188 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 189 for (Record *Alias : Aliases) { 190 CodeGenRegister *Reg = RegBank.getReg(Alias); 191 ExplicitAliases.push_back(Reg); 192 Reg->ExplicitAliases.push_back(this); 193 } 194 } 195 196 StringRef CodeGenRegister::getName() const { 197 assert(TheDef && "no def"); 198 return TheDef->getName(); 199 } 200 201 namespace { 202 203 // Iterate over all register units in a set of registers. 204 class RegUnitIterator { 205 CodeGenRegister::Vec::const_iterator RegI, RegE; 206 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 207 208 public: 209 RegUnitIterator(const CodeGenRegister::Vec &Regs): 210 RegI(Regs.begin()), RegE(Regs.end()) { 211 212 if (RegI != RegE) { 213 UnitI = (*RegI)->getRegUnits().begin(); 214 UnitE = (*RegI)->getRegUnits().end(); 215 advance(); 216 } 217 } 218 219 bool isValid() const { return UnitI != UnitE; } 220 221 unsigned operator* () const { assert(isValid()); return *UnitI; } 222 223 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 224 225 /// Preincrement. Move to the next unit. 226 void operator++() { 227 assert(isValid() && "Cannot advance beyond the last operand"); 228 ++UnitI; 229 advance(); 230 } 231 232 protected: 233 void advance() { 234 while (UnitI == UnitE) { 235 if (++RegI == RegE) 236 break; 237 UnitI = (*RegI)->getRegUnits().begin(); 238 UnitE = (*RegI)->getRegUnits().end(); 239 } 240 } 241 }; 242 243 } // end anonymous namespace 244 245 // Return true of this unit appears in RegUnits. 246 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 247 return RegUnits.test(Unit); 248 } 249 250 // Inherit register units from subregisters. 251 // Return true if the RegUnits changed. 252 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 253 bool changed = false; 254 for (const auto &SubReg : SubRegs) { 255 CodeGenRegister *SR = SubReg.second; 256 // Merge the subregister's units into this register's RegUnits. 257 changed |= (RegUnits |= SR->RegUnits); 258 } 259 260 return changed; 261 } 262 263 const CodeGenRegister::SubRegMap & 264 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 265 // Only compute this map once. 266 if (SubRegsComplete) 267 return SubRegs; 268 SubRegsComplete = true; 269 270 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 271 272 // First insert the explicit subregs and make sure they are fully indexed. 273 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 274 CodeGenRegister *SR = ExplicitSubRegs[i]; 275 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 276 if (!SR->Artificial) 277 Idx->Artificial = false; 278 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 279 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 280 " appears twice in Register " + getName()); 281 // Map explicit sub-registers first, so the names take precedence. 282 // The inherited sub-registers are mapped below. 283 SubReg2Idx.insert(std::make_pair(SR, Idx)); 284 } 285 286 // Keep track of inherited subregs and how they can be reached. 287 SmallPtrSet<CodeGenRegister*, 8> Orphans; 288 289 // Clone inherited subregs and place duplicate entries in Orphans. 290 // Here the order is important - earlier subregs take precedence. 291 for (CodeGenRegister *ESR : ExplicitSubRegs) { 292 const SubRegMap &Map = ESR->computeSubRegs(RegBank); 293 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; 294 295 for (const auto &SR : Map) { 296 if (!SubRegs.insert(SR).second) 297 Orphans.insert(SR.second); 298 } 299 } 300 301 // Expand any composed subreg indices. 302 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 303 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 304 // expanded subreg indices recursively. 305 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 306 for (unsigned i = 0; i != Indices.size(); ++i) { 307 CodeGenSubRegIndex *Idx = Indices[i]; 308 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 309 CodeGenRegister *SR = SubRegs[Idx]; 310 const SubRegMap &Map = SR->computeSubRegs(RegBank); 311 312 // Look at the possible compositions of Idx. 313 // They may not all be supported by SR. 314 for (auto Comp : Comps) { 315 SubRegMap::const_iterator SRI = Map.find(Comp.first); 316 if (SRI == Map.end()) 317 continue; // Idx + I->first doesn't exist in SR. 318 // Add I->second as a name for the subreg SRI->second, assuming it is 319 // orphaned, and the name isn't already used for something else. 320 if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second)) 321 continue; 322 // We found a new name for the orphaned sub-register. 323 SubRegs.insert(std::make_pair(Comp.second, SRI->second)); 324 Indices.push_back(Comp.second); 325 } 326 } 327 328 // Now Orphans contains the inherited subregisters without a direct index. 329 // Create inferred indexes for all missing entries. 330 // Work backwards in the Indices vector in order to compose subregs bottom-up. 331 // Consider this subreg sequence: 332 // 333 // qsub_1 -> dsub_0 -> ssub_0 334 // 335 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 336 // can be reached in two different ways: 337 // 338 // qsub_1 -> ssub_0 339 // dsub_2 -> ssub_0 340 // 341 // We pick the latter composition because another register may have [dsub_0, 342 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 343 // dsub_2 -> ssub_0 composition can be shared. 344 while (!Indices.empty() && !Orphans.empty()) { 345 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 346 CodeGenRegister *SR = SubRegs[Idx]; 347 const SubRegMap &Map = SR->computeSubRegs(RegBank); 348 for (const auto &SubReg : Map) 349 if (Orphans.erase(SubReg.second)) 350 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; 351 } 352 353 // Compute the inverse SubReg -> Idx map. 354 for (const auto &SubReg : SubRegs) { 355 if (SubReg.second == this) { 356 ArrayRef<SMLoc> Loc; 357 if (TheDef) 358 Loc = TheDef->getLoc(); 359 PrintFatalError(Loc, "Register " + getName() + 360 " has itself as a sub-register"); 361 } 362 363 // Compute AllSuperRegsCovered. 364 if (!CoveredBySubRegs) 365 SubReg.first->AllSuperRegsCovered = false; 366 367 // Ensure that every sub-register has a unique name. 368 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 369 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; 370 if (Ins->second == SubReg.first) 371 continue; 372 // Trouble: Two different names for SubReg.second. 373 ArrayRef<SMLoc> Loc; 374 if (TheDef) 375 Loc = TheDef->getLoc(); 376 PrintFatalError(Loc, "Sub-register can't have two names: " + 377 SubReg.second->getName() + " available as " + 378 SubReg.first->getName() + " and " + Ins->second->getName()); 379 } 380 381 // Derive possible names for sub-register concatenations from any explicit 382 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 383 // that getConcatSubRegIndex() won't invent any concatenated indices that the 384 // user already specified. 385 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 386 CodeGenRegister *SR = ExplicitSubRegs[i]; 387 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 || 388 SR->Artificial) 389 continue; 390 391 // SR is composed of multiple sub-regs. Find their names in this register. 392 SmallVector<CodeGenSubRegIndex*, 8> Parts; 393 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) { 394 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j]; 395 if (!I.Artificial) 396 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 397 } 398 399 // Offer this as an existing spelling for the concatenation of Parts. 400 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; 401 Idx.setConcatenationOf(Parts); 402 } 403 404 // Initialize RegUnitList. Because getSubRegs is called recursively, this 405 // processes the register hierarchy in postorder. 406 // 407 // Inherit all sub-register units. It is good enough to look at the explicit 408 // sub-registers, the other registers won't contribute any more units. 409 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 410 CodeGenRegister *SR = ExplicitSubRegs[i]; 411 RegUnits |= SR->RegUnits; 412 } 413 414 // Absent any ad hoc aliasing, we create one register unit per leaf register. 415 // These units correspond to the maximal cliques in the register overlap 416 // graph which is optimal. 417 // 418 // When there is ad hoc aliasing, we simply create one unit per edge in the 419 // undirected ad hoc aliasing graph. Technically, we could do better by 420 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 421 // are extremely rare anyway (I've never seen one), so we don't bother with 422 // the added complexity. 423 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 424 CodeGenRegister *AR = ExplicitAliases[i]; 425 // Only visit each edge once. 426 if (AR->SubRegsComplete) 427 continue; 428 // Create a RegUnit representing this alias edge, and add it to both 429 // registers. 430 unsigned Unit = RegBank.newRegUnit(this, AR); 431 RegUnits.set(Unit); 432 AR->RegUnits.set(Unit); 433 } 434 435 // Finally, create units for leaf registers without ad hoc aliases. Note that 436 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 437 // necessary. This means the aliasing leaf registers can share a single unit. 438 if (RegUnits.empty()) 439 RegUnits.set(RegBank.newRegUnit(this)); 440 441 // We have now computed the native register units. More may be adopted later 442 // for balancing purposes. 443 NativeRegUnits = RegUnits; 444 445 return SubRegs; 446 } 447 448 // In a register that is covered by its sub-registers, try to find redundant 449 // sub-registers. For example: 450 // 451 // QQ0 = {Q0, Q1} 452 // Q0 = {D0, D1} 453 // Q1 = {D2, D3} 454 // 455 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 456 // the register definition. 457 // 458 // The explicitly specified registers form a tree. This function discovers 459 // sub-register relationships that would force a DAG. 460 // 461 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 462 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 463 464 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue; 465 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs) 466 SubRegQueue.push(P); 467 468 // Look at the leading super-registers of each sub-register. Those are the 469 // candidates for new sub-registers, assuming they are fully contained in 470 // this register. 471 while (!SubRegQueue.empty()) { 472 CodeGenSubRegIndex *SubRegIdx; 473 const CodeGenRegister *SubReg; 474 std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); 475 SubRegQueue.pop(); 476 477 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 478 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 479 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 480 // Already got this sub-register? 481 if (Cand == this || getSubRegIndex(Cand)) 482 continue; 483 // Check if each component of Cand is already a sub-register. 484 assert(!Cand->ExplicitSubRegs.empty() && 485 "Super-register has no sub-registers"); 486 if (Cand->ExplicitSubRegs.size() == 1) 487 continue; 488 SmallVector<CodeGenSubRegIndex*, 8> Parts; 489 // We know that the first component is (SubRegIdx,SubReg). However we 490 // may still need to split it into smaller subregister parts. 491 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); 492 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); 493 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { 494 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { 495 if (SubRegIdx->ConcatenationOf.empty()) 496 Parts.push_back(SubRegIdx); 497 else 498 append_range(Parts, SubRegIdx->ConcatenationOf); 499 } else { 500 // Sub-register doesn't exist. 501 Parts.clear(); 502 break; 503 } 504 } 505 // There is nothing to do if some Cand sub-register is not part of this 506 // register. 507 if (Parts.empty()) 508 continue; 509 510 // Each part of Cand is a sub-register of this. Make the full Cand also 511 // a sub-register with a concatenated sub-register index. 512 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); 513 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg = 514 std::make_pair(Concat, Cand); 515 516 if (!SubRegs.insert(NewSubReg).second) 517 continue; 518 519 // We inserted a new subregister. 520 NewSubRegs.push_back(NewSubReg); 521 SubRegQueue.push(NewSubReg); 522 SubReg2Idx.insert(std::make_pair(Cand, Concat)); 523 } 524 } 525 526 // Create sub-register index composition maps for the synthesized indices. 527 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 528 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 529 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 530 for (auto SubReg : NewSubReg->SubRegs) { 531 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second); 532 if (!SubIdx) 533 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 534 SubReg.second->getName() + 535 " in " + getName()); 536 NewIdx->addComposite(SubReg.first, SubIdx); 537 } 538 } 539 } 540 541 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 542 // Only visit each register once. 543 if (SuperRegsComplete) 544 return; 545 SuperRegsComplete = true; 546 547 // Make sure all sub-registers have been visited first, so the super-reg 548 // lists will be topologically ordered. 549 for (auto SubReg : SubRegs) 550 SubReg.second->computeSuperRegs(RegBank); 551 552 // Now add this as a super-register on all sub-registers. 553 // Also compute the TopoSigId in post-order. 554 TopoSigId Id; 555 for (auto SubReg : SubRegs) { 556 // Topological signature computed from SubIdx, TopoId(SubReg). 557 // Loops and idempotent indices have TopoSig = ~0u. 558 Id.push_back(SubReg.first->EnumValue); 559 Id.push_back(SubReg.second->TopoSig); 560 561 // Don't add duplicate entries. 562 if (!SubReg.second->SuperRegs.empty() && 563 SubReg.second->SuperRegs.back() == this) 564 continue; 565 SubReg.second->SuperRegs.push_back(this); 566 } 567 TopoSig = RegBank.getTopoSig(Id); 568 } 569 570 void 571 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 572 CodeGenRegBank &RegBank) const { 573 assert(SubRegsComplete && "Must precompute sub-registers"); 574 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 575 CodeGenRegister *SR = ExplicitSubRegs[i]; 576 if (OSet.insert(SR)) 577 SR->addSubRegsPreOrder(OSet, RegBank); 578 } 579 // Add any secondary sub-registers that weren't part of the explicit tree. 580 for (auto SubReg : SubRegs) 581 OSet.insert(SubReg.second); 582 } 583 584 // Get the sum of this register's unit weights. 585 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 586 unsigned Weight = 0; 587 for (unsigned RegUnit : RegUnits) { 588 Weight += RegBank.getRegUnit(RegUnit).Weight; 589 } 590 return Weight; 591 } 592 593 //===----------------------------------------------------------------------===// 594 // RegisterTuples 595 //===----------------------------------------------------------------------===// 596 597 // A RegisterTuples def is used to generate pseudo-registers from lists of 598 // sub-registers. We provide a SetTheory expander class that returns the new 599 // registers. 600 namespace { 601 602 struct TupleExpander : SetTheory::Expander { 603 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of 604 // the synthesized definitions for their lifetime. 605 std::vector<std::unique_ptr<Record>> &SynthDefs; 606 607 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs) 608 : SynthDefs(SynthDefs) {} 609 610 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 611 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 612 unsigned Dim = Indices.size(); 613 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 614 if (Dim != SubRegs->size()) 615 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 616 if (Dim < 2) 617 PrintFatalError(Def->getLoc(), 618 "Tuples must have at least 2 sub-registers"); 619 620 // Evaluate the sub-register lists to be zipped. 621 unsigned Length = ~0u; 622 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 623 for (unsigned i = 0; i != Dim; ++i) { 624 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 625 Length = std::min(Length, unsigned(Lists[i].size())); 626 } 627 628 if (Length == 0) 629 return; 630 631 // Precompute some types. 632 Record *RegisterCl = Def->getRecords().getClass("Register"); 633 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 634 std::vector<StringRef> RegNames = 635 Def->getValueAsListOfStrings("RegAsmNames"); 636 637 // Zip them up. 638 for (unsigned n = 0; n != Length; ++n) { 639 std::string Name; 640 Record *Proto = Lists[0][n]; 641 std::vector<Init*> Tuple; 642 for (unsigned i = 0; i != Dim; ++i) { 643 Record *Reg = Lists[i][n]; 644 if (i) Name += '_'; 645 Name += Reg->getName(); 646 Tuple.push_back(DefInit::get(Reg)); 647 } 648 649 // Take the cost list of the first register in the tuple. 650 ListInit *CostList = Proto->getValueAsListInit("CostPerUse"); 651 SmallVector<Init *, 2> CostPerUse; 652 CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end()); 653 654 StringInit *AsmName = StringInit::get(""); 655 if (!RegNames.empty()) { 656 if (RegNames.size() <= n) 657 PrintFatalError(Def->getLoc(), 658 "Register tuple definition missing name for '" + 659 Name + "'."); 660 AsmName = StringInit::get(RegNames[n]); 661 } 662 663 // Create a new Record representing the synthesized register. This record 664 // is only for consumption by CodeGenRegister, it is not added to the 665 // RecordKeeper. 666 SynthDefs.emplace_back( 667 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords())); 668 Record *NewReg = SynthDefs.back().get(); 669 Elts.insert(NewReg); 670 671 // Copy Proto super-classes. 672 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 673 for (const auto &SuperPair : Supers) 674 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 675 676 // Copy Proto fields. 677 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 678 RecordVal RV = Proto->getValues()[i]; 679 680 // Skip existing fields, like NAME. 681 if (NewReg->getValue(RV.getNameInit())) 682 continue; 683 684 StringRef Field = RV.getName(); 685 686 // Replace the sub-register list with Tuple. 687 if (Field == "SubRegs") 688 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 689 690 if (Field == "AsmName") 691 RV.setValue(AsmName); 692 693 // CostPerUse is aggregated from all Tuple members. 694 if (Field == "CostPerUse") 695 RV.setValue(ListInit::get(CostPerUse, CostList->getElementType())); 696 697 // Composite registers are always covered by sub-registers. 698 if (Field == "CoveredBySubRegs") 699 RV.setValue(BitInit::get(true)); 700 701 // Copy fields from the RegisterTuples def. 702 if (Field == "SubRegIndices" || 703 Field == "CompositeIndices") { 704 NewReg->addValue(*Def->getValue(Field)); 705 continue; 706 } 707 708 // Some fields get their default uninitialized value. 709 if (Field == "DwarfNumbers" || 710 Field == "DwarfAlias" || 711 Field == "Aliases") { 712 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 713 NewReg->addValue(*DefRV); 714 continue; 715 } 716 717 // Everything else is copied from Proto. 718 NewReg->addValue(RV); 719 } 720 } 721 } 722 }; 723 724 } // end anonymous namespace 725 726 //===----------------------------------------------------------------------===// 727 // CodeGenRegisterClass 728 //===----------------------------------------------------------------------===// 729 730 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 731 llvm::sort(M, deref<std::less<>>()); 732 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end()); 733 } 734 735 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 736 : TheDef(R), Name(std::string(R->getName())), 737 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) { 738 GeneratePressureSet = R->getValueAsBit("GeneratePressureSet"); 739 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 740 if (TypeList.empty()) 741 PrintFatalError(R->getLoc(), "RegTypes list must not be empty!"); 742 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 743 Record *Type = TypeList[i]; 744 if (!Type->isSubClassOf("ValueType")) 745 PrintFatalError(R->getLoc(), 746 "RegTypes list member '" + Type->getName() + 747 "' does not derive from the ValueType class!"); 748 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); 749 } 750 751 // Allocation order 0 is the full set. AltOrders provides others. 752 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 753 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 754 Orders.resize(1 + AltOrders->size()); 755 756 // Default allocation order always contains all registers. 757 Artificial = true; 758 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 759 Orders[0].push_back((*Elements)[i]); 760 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 761 Members.push_back(Reg); 762 Artificial &= Reg->Artificial; 763 TopoSigs.set(Reg->getTopoSig()); 764 } 765 sortAndUniqueRegisters(Members); 766 767 // Alternative allocation orders may be subsets. 768 SetTheory::RecSet Order; 769 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 770 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 771 Orders[1 + i].append(Order.begin(), Order.end()); 772 // Verify that all altorder members are regclass members. 773 while (!Order.empty()) { 774 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 775 Order.pop_back(); 776 if (!contains(Reg)) 777 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 778 " is not a class member"); 779 } 780 } 781 782 Namespace = R->getValueAsString("Namespace"); 783 784 if (const RecordVal *RV = R->getValue("RegInfos")) 785 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) 786 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); 787 unsigned Size = R->getValueAsInt("Size"); 788 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && 789 "Impossible to determine register size"); 790 if (!RSI.hasDefault()) { 791 RegSizeInfo RI; 792 RI.RegSize = RI.SpillSize = Size ? Size 793 : VTs[0].getSimple().getSizeInBits(); 794 RI.SpillAlignment = R->getValueAsInt("Alignment"); 795 RSI.insertRegSizeForMode(DefaultMode, RI); 796 } 797 798 CopyCost = R->getValueAsInt("CopyCost"); 799 Allocatable = R->getValueAsBit("isAllocatable"); 800 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 801 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 802 if (AllocationPriority < 0 || AllocationPriority > 63) 803 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 804 this->AllocationPriority = AllocationPriority; 805 806 BitsInit *TSF = R->getValueAsBitsInit("TSFlags"); 807 for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) { 808 BitInit *Bit = cast<BitInit>(TSF->getBit(I)); 809 TSFlags |= uint8_t(Bit->getValue()) << I; 810 } 811 } 812 813 // Create an inferred register class that was missing from the .td files. 814 // Most properties will be inherited from the closest super-class after the 815 // class structure has been computed. 816 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 817 StringRef Name, Key Props) 818 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)), 819 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI), 820 CopyCost(0), Allocatable(true), AllocationPriority(0), TSFlags(0) { 821 Artificial = true; 822 GeneratePressureSet = false; 823 for (const auto R : Members) { 824 TopoSigs.set(R->getTopoSig()); 825 Artificial &= R->Artificial; 826 } 827 } 828 829 // Compute inherited propertied for a synthesized register class. 830 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 831 assert(!getDef() && "Only synthesized classes can inherit properties"); 832 assert(!SuperClasses.empty() && "Synthesized class without super class"); 833 834 // The last super-class is the smallest one. 835 CodeGenRegisterClass &Super = *SuperClasses.back(); 836 837 // Most properties are copied directly. 838 // Exceptions are members, size, and alignment 839 Namespace = Super.Namespace; 840 VTs = Super.VTs; 841 CopyCost = Super.CopyCost; 842 // Check for allocatable superclasses. 843 Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) { 844 return S->Allocatable; 845 }); 846 AltOrderSelect = Super.AltOrderSelect; 847 AllocationPriority = Super.AllocationPriority; 848 TSFlags = Super.TSFlags; 849 GeneratePressureSet |= Super.GeneratePressureSet; 850 851 // Copy all allocation orders, filter out foreign registers from the larger 852 // super-class. 853 Orders.resize(Super.Orders.size()); 854 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 855 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 856 if (contains(RegBank.getReg(Super.Orders[i][j]))) 857 Orders[i].push_back(Super.Orders[i][j]); 858 } 859 860 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 861 return std::binary_search(Members.begin(), Members.end(), Reg, 862 deref<std::less<>>()); 863 } 864 865 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const { 866 if (TheDef && !TheDef->isValueUnset("Weight")) 867 return TheDef->getValueAsInt("Weight"); 868 869 if (Members.empty() || Artificial) 870 return 0; 871 872 return (*Members.begin())->getWeight(RegBank); 873 } 874 875 namespace llvm { 876 877 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 878 OS << "{ " << K.RSI; 879 for (const auto R : *K.Members) 880 OS << ", " << R->getName(); 881 return OS << " }"; 882 } 883 884 } // end namespace llvm 885 886 // This is a simple lexicographical order that can be used to search for sets. 887 // It is not the same as the topological order provided by TopoOrderRC. 888 bool CodeGenRegisterClass::Key:: 889 operator<(const CodeGenRegisterClass::Key &B) const { 890 assert(Members && B.Members); 891 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); 892 } 893 894 // Returns true if RC is a strict subclass. 895 // RC is a sub-class of this class if it is a valid replacement for any 896 // instruction operand where a register of this classis required. It must 897 // satisfy these conditions: 898 // 899 // 1. All RC registers are also in this. 900 // 2. The RC spill size must not be smaller than our spill size. 901 // 3. RC spill alignment must be compatible with ours. 902 // 903 static bool testSubClass(const CodeGenRegisterClass *A, 904 const CodeGenRegisterClass *B) { 905 return A->RSI.isSubClassOf(B->RSI) && 906 std::includes(A->getMembers().begin(), A->getMembers().end(), 907 B->getMembers().begin(), B->getMembers().end(), 908 deref<std::less<>>()); 909 } 910 911 /// Sorting predicate for register classes. This provides a topological 912 /// ordering that arranges all register classes before their sub-classes. 913 /// 914 /// Register classes with the same registers, spill size, and alignment form a 915 /// clique. They will be ordered alphabetically. 916 /// 917 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 918 const CodeGenRegisterClass &PB) { 919 auto *A = &PA; 920 auto *B = &PB; 921 if (A == B) 922 return false; 923 924 if (A->RSI < B->RSI) 925 return true; 926 if (A->RSI != B->RSI) 927 return false; 928 929 // Order by descending set size. Note that the classes' allocation order may 930 // not have been computed yet. The Members set is always vaild. 931 if (A->getMembers().size() > B->getMembers().size()) 932 return true; 933 if (A->getMembers().size() < B->getMembers().size()) 934 return false; 935 936 // Finally order by name as a tie breaker. 937 return StringRef(A->getName()) < B->getName(); 938 } 939 940 std::string CodeGenRegisterClass::getQualifiedName() const { 941 if (Namespace.empty()) 942 return getName(); 943 else 944 return (Namespace + "::" + getName()).str(); 945 } 946 947 // Compute sub-classes of all register classes. 948 // Assume the classes are ordered topologically. 949 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 950 auto &RegClasses = RegBank.getRegClasses(); 951 952 // Visit backwards so sub-classes are seen first. 953 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 954 CodeGenRegisterClass &RC = *I; 955 RC.SubClasses.resize(RegClasses.size()); 956 RC.SubClasses.set(RC.EnumValue); 957 if (RC.Artificial) 958 continue; 959 960 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 961 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 962 CodeGenRegisterClass &SubRC = *I2; 963 if (RC.SubClasses.test(SubRC.EnumValue)) 964 continue; 965 if (!testSubClass(&RC, &SubRC)) 966 continue; 967 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 968 // check them again. 969 RC.SubClasses |= SubRC.SubClasses; 970 } 971 972 // Sweep up missed clique members. They will be immediately preceding RC. 973 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 974 RC.SubClasses.set(I2->EnumValue); 975 } 976 977 // Compute the SuperClasses lists from the SubClasses vectors. 978 for (auto &RC : RegClasses) { 979 const BitVector &SC = RC.getSubClasses(); 980 auto I = RegClasses.begin(); 981 for (int s = 0, next_s = SC.find_first(); next_s != -1; 982 next_s = SC.find_next(s)) { 983 std::advance(I, next_s - s); 984 s = next_s; 985 if (&*I == &RC) 986 continue; 987 I->SuperClasses.push_back(&RC); 988 } 989 } 990 991 // With the class hierarchy in place, let synthesized register classes inherit 992 // properties from their closest super-class. The iteration order here can 993 // propagate properties down multiple levels. 994 for (auto &RC : RegClasses) 995 if (!RC.getDef()) 996 RC.inheritProperties(RegBank); 997 } 998 999 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>> 1000 CodeGenRegisterClass::getMatchingSubClassWithSubRegs( 1001 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { 1002 auto SizeOrder = [this](const CodeGenRegisterClass *A, 1003 const CodeGenRegisterClass *B) { 1004 // If there are multiple, identical register classes, prefer the original 1005 // register class. 1006 if (A == B) 1007 return false; 1008 if (A->getMembers().size() == B->getMembers().size()) 1009 return A == this; 1010 return A->getMembers().size() > B->getMembers().size(); 1011 }; 1012 1013 auto &RegClasses = RegBank.getRegClasses(); 1014 1015 // Find all the subclasses of this one that fully support the sub-register 1016 // index and order them by size. BiggestSuperRC should always be first. 1017 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); 1018 if (!BiggestSuperRegRC) 1019 return None; 1020 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); 1021 std::vector<CodeGenRegisterClass *> SuperRegRCs; 1022 for (auto &RC : RegClasses) 1023 if (SuperRegRCsBV[RC.EnumValue]) 1024 SuperRegRCs.emplace_back(&RC); 1025 llvm::stable_sort(SuperRegRCs, SizeOrder); 1026 1027 assert(SuperRegRCs.front() == BiggestSuperRegRC && 1028 "Biggest class wasn't first"); 1029 1030 // Find all the subreg classes and order them by size too. 1031 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses; 1032 for (auto &RC: RegClasses) { 1033 BitVector SuperRegClassesBV(RegClasses.size()); 1034 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); 1035 if (SuperRegClassesBV.any()) 1036 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); 1037 } 1038 llvm::sort(SuperRegClasses, 1039 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A, 1040 const std::pair<CodeGenRegisterClass *, BitVector> &B) { 1041 return SizeOrder(A.first, B.first); 1042 }); 1043 1044 // Find the biggest subclass and subreg class such that R:subidx is in the 1045 // subreg class for all R in subclass. 1046 // 1047 // For example: 1048 // All registers in X86's GR64 have a sub_32bit subregister but no class 1049 // exists that contains all the 32-bit subregisters because GR64 contains RIP 1050 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to 1051 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, 1052 // having excluded RIP, we are able to find a SubRegRC (GR32). 1053 CodeGenRegisterClass *ChosenSuperRegClass = nullptr; 1054 CodeGenRegisterClass *SubRegRC = nullptr; 1055 for (auto *SuperRegRC : SuperRegRCs) { 1056 for (const auto &SuperRegClassPair : SuperRegClasses) { 1057 const BitVector &SuperRegClassBV = SuperRegClassPair.second; 1058 if (SuperRegClassBV[SuperRegRC->EnumValue]) { 1059 SubRegRC = SuperRegClassPair.first; 1060 ChosenSuperRegClass = SuperRegRC; 1061 1062 // If SubRegRC is bigger than SuperRegRC then there are members of 1063 // SubRegRC that don't have super registers via SubIdx. Keep looking to 1064 // find a better fit and fall back on this one if there isn't one. 1065 // 1066 // This is intended to prevent X86 from making odd choices such as 1067 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. 1068 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that 1069 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 1070 // mapping. 1071 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) 1072 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1073 } 1074 } 1075 1076 // If we found a fit but it wasn't quite ideal because SubRegRC had excess 1077 // registers, then we're done. 1078 if (ChosenSuperRegClass) 1079 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1080 } 1081 1082 return None; 1083 } 1084 1085 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 1086 BitVector &Out) const { 1087 auto FindI = SuperRegClasses.find(SubIdx); 1088 if (FindI == SuperRegClasses.end()) 1089 return; 1090 for (CodeGenRegisterClass *RC : FindI->second) 1091 Out.set(RC->EnumValue); 1092 } 1093 1094 // Populate a unique sorted list of units from a register set. 1095 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, 1096 std::vector<unsigned> &RegUnits) const { 1097 std::vector<unsigned> TmpUnits; 1098 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { 1099 const RegUnit &RU = RegBank.getRegUnit(*UnitI); 1100 if (!RU.Artificial) 1101 TmpUnits.push_back(*UnitI); 1102 } 1103 llvm::sort(TmpUnits); 1104 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 1105 std::back_inserter(RegUnits)); 1106 } 1107 1108 //===----------------------------------------------------------------------===// 1109 // CodeGenRegisterCategory 1110 //===----------------------------------------------------------------------===// 1111 1112 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank, 1113 Record *R) 1114 : TheDef(R), Name(std::string(R->getName())) { 1115 for (Record *RegClass : R->getValueAsListOfDefs("Classes")) 1116 Classes.push_back(RegBank.getRegClass(RegClass)); 1117 } 1118 1119 //===----------------------------------------------------------------------===// 1120 // CodeGenRegBank 1121 //===----------------------------------------------------------------------===// 1122 1123 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, 1124 const CodeGenHwModes &Modes) : CGH(Modes) { 1125 // Configure register Sets to understand register classes and tuples. 1126 Sets.addFieldExpander("RegisterClass", "MemberList"); 1127 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 1128 Sets.addExpander("RegisterTuples", 1129 std::make_unique<TupleExpander>(SynthDefs)); 1130 1131 // Read in the user-defined (named) sub-register indices. 1132 // More indices will be synthesized later. 1133 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 1134 llvm::sort(SRIs, LessRecord()); 1135 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 1136 getSubRegIdx(SRIs[i]); 1137 // Build composite maps from ComposedOf fields. 1138 for (auto &Idx : SubRegIndices) 1139 Idx.updateComponents(*this); 1140 1141 // Read in the register definitions. 1142 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 1143 llvm::sort(Regs, LessRecordRegister()); 1144 // Assign the enumeration values. 1145 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 1146 getReg(Regs[i]); 1147 1148 // Expand tuples and number the new registers. 1149 std::vector<Record*> Tups = 1150 Records.getAllDerivedDefinitions("RegisterTuples"); 1151 1152 for (Record *R : Tups) { 1153 std::vector<Record *> TupRegs = *Sets.expand(R); 1154 llvm::sort(TupRegs, LessRecordRegister()); 1155 for (Record *RC : TupRegs) 1156 getReg(RC); 1157 } 1158 1159 // Now all the registers are known. Build the object graph of explicit 1160 // register-register references. 1161 for (auto &Reg : Registers) 1162 Reg.buildObjectGraph(*this); 1163 1164 // Compute register name map. 1165 for (auto &Reg : Registers) 1166 // FIXME: This could just be RegistersByName[name] = register, except that 1167 // causes some failures in MIPS - perhaps they have duplicate register name 1168 // entries? (or maybe there's a reason for it - I don't know much about this 1169 // code, just drive-by refactoring) 1170 RegistersByName.insert( 1171 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 1172 1173 // Precompute all sub-register maps. 1174 // This will create Composite entries for all inferred sub-register indices. 1175 for (auto &Reg : Registers) 1176 Reg.computeSubRegs(*this); 1177 1178 // Compute transitive closure of subregister index ConcatenationOf vectors 1179 // and initialize ConcatIdx map. 1180 for (CodeGenSubRegIndex &SRI : SubRegIndices) { 1181 SRI.computeConcatTransitiveClosure(); 1182 if (!SRI.ConcatenationOf.empty()) 1183 ConcatIdx.insert(std::make_pair( 1184 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(), 1185 SRI.ConcatenationOf.end()), &SRI)); 1186 } 1187 1188 // Infer even more sub-registers by combining leading super-registers. 1189 for (auto &Reg : Registers) 1190 if (Reg.CoveredBySubRegs) 1191 Reg.computeSecondarySubRegs(*this); 1192 1193 // After the sub-register graph is complete, compute the topologically 1194 // ordered SuperRegs list. 1195 for (auto &Reg : Registers) 1196 Reg.computeSuperRegs(*this); 1197 1198 // For each pair of Reg:SR, if both are non-artificial, mark the 1199 // corresponding sub-register index as non-artificial. 1200 for (auto &Reg : Registers) { 1201 if (Reg.Artificial) 1202 continue; 1203 for (auto P : Reg.getSubRegs()) { 1204 const CodeGenRegister *SR = P.second; 1205 if (!SR->Artificial) 1206 P.first->Artificial = false; 1207 } 1208 } 1209 1210 // Native register units are associated with a leaf register. They've all been 1211 // discovered now. 1212 NumNativeRegUnits = RegUnits.size(); 1213 1214 // Read in register class definitions. 1215 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1216 if (RCs.empty()) 1217 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1218 1219 // Allocate user-defined register classes. 1220 for (auto *R : RCs) { 1221 RegClasses.emplace_back(*this, R); 1222 CodeGenRegisterClass &RC = RegClasses.back(); 1223 if (!RC.Artificial) 1224 addToMaps(&RC); 1225 } 1226 1227 // Infer missing classes to create a full algebra. 1228 computeInferredRegisterClasses(); 1229 1230 // Order register classes topologically and assign enum values. 1231 RegClasses.sort(TopoOrderRC); 1232 unsigned i = 0; 1233 for (auto &RC : RegClasses) 1234 RC.EnumValue = i++; 1235 CodeGenRegisterClass::computeSubClasses(*this); 1236 1237 // Read in the register category definitions. 1238 std::vector<Record *> RCats = 1239 Records.getAllDerivedDefinitions("RegisterCategory"); 1240 for (auto *R : RCats) 1241 RegCategories.emplace_back(*this, R); 1242 } 1243 1244 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1245 CodeGenSubRegIndex* 1246 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1247 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1248 return &SubRegIndices.back(); 1249 } 1250 1251 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1252 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1253 if (Idx) 1254 return Idx; 1255 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1256 Idx = &SubRegIndices.back(); 1257 return Idx; 1258 } 1259 1260 const CodeGenSubRegIndex * 1261 CodeGenRegBank::findSubRegIdx(const Record* Def) const { 1262 return Def2SubRegIdx.lookup(Def); 1263 } 1264 1265 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1266 CodeGenRegister *&Reg = Def2Reg[Def]; 1267 if (Reg) 1268 return Reg; 1269 Registers.emplace_back(Def, Registers.size() + 1); 1270 Reg = &Registers.back(); 1271 return Reg; 1272 } 1273 1274 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1275 if (Record *Def = RC->getDef()) 1276 Def2RC.insert(std::make_pair(Def, RC)); 1277 1278 // Duplicate classes are rejected by insert(). 1279 // That's OK, we only care about the properties handled by CGRC::Key. 1280 CodeGenRegisterClass::Key K(*RC); 1281 Key2RC.insert(std::make_pair(K, RC)); 1282 } 1283 1284 // Create a synthetic sub-class if it is missing. 1285 CodeGenRegisterClass* 1286 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1287 const CodeGenRegister::Vec *Members, 1288 StringRef Name) { 1289 // Synthetic sub-class has the same size and alignment as RC. 1290 CodeGenRegisterClass::Key K(Members, RC->RSI); 1291 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1292 if (FoundI != Key2RC.end()) 1293 return FoundI->second; 1294 1295 // Sub-class doesn't exist, create a new one. 1296 RegClasses.emplace_back(*this, Name, K); 1297 addToMaps(&RegClasses.back()); 1298 return &RegClasses.back(); 1299 } 1300 1301 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const { 1302 if (CodeGenRegisterClass *RC = Def2RC.lookup(Def)) 1303 return RC; 1304 1305 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1306 } 1307 1308 CodeGenSubRegIndex* 1309 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1310 CodeGenSubRegIndex *B) { 1311 // Look for an existing entry. 1312 CodeGenSubRegIndex *Comp = A->compose(B); 1313 if (Comp) 1314 return Comp; 1315 1316 // None exists, synthesize one. 1317 std::string Name = A->getName() + "_then_" + B->getName(); 1318 Comp = createSubRegIndex(Name, A->getNamespace()); 1319 A->addComposite(B, Comp); 1320 return Comp; 1321 } 1322 1323 CodeGenSubRegIndex *CodeGenRegBank:: 1324 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1325 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1326 #ifndef NDEBUG 1327 for (CodeGenSubRegIndex *Idx : Parts) { 1328 assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); 1329 } 1330 #endif 1331 1332 // Look for an existing entry. 1333 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1334 if (Idx) 1335 return Idx; 1336 1337 // None exists, synthesize one. 1338 std::string Name = Parts.front()->getName(); 1339 // Determine whether all parts are contiguous. 1340 bool isContinuous = true; 1341 unsigned Size = Parts.front()->Size; 1342 unsigned LastOffset = Parts.front()->Offset; 1343 unsigned LastSize = Parts.front()->Size; 1344 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1345 Name += '_'; 1346 Name += Parts[i]->getName(); 1347 Size += Parts[i]->Size; 1348 if (Parts[i]->Offset != (LastOffset + LastSize)) 1349 isContinuous = false; 1350 LastOffset = Parts[i]->Offset; 1351 LastSize = Parts[i]->Size; 1352 } 1353 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1354 Idx->Size = Size; 1355 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1356 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); 1357 return Idx; 1358 } 1359 1360 void CodeGenRegBank::computeComposites() { 1361 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>; 1362 1363 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from 1364 // register to (sub)register associated with the action of the left-hand 1365 // side subregister. 1366 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction; 1367 for (const CodeGenRegister &R : Registers) { 1368 const CodeGenRegister::SubRegMap &SM = R.getSubRegs(); 1369 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM) 1370 SubRegAction[P.first].insert({&R, P.second}); 1371 } 1372 1373 // Calculate the composition of two subregisters as compositions of their 1374 // associated actions. 1375 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1, 1376 const CodeGenSubRegIndex *Sub2) { 1377 RegMap C; 1378 const RegMap &Img1 = SubRegAction.at(Sub1); 1379 const RegMap &Img2 = SubRegAction.at(Sub2); 1380 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) { 1381 auto F = Img2.find(P.second); 1382 if (F != Img2.end()) 1383 C.insert({P.first, F->second}); 1384 } 1385 return C; 1386 }; 1387 1388 // Check if the two maps agree on the intersection of their domains. 1389 auto agree = [] (const RegMap &Map1, const RegMap &Map2) { 1390 // Technically speaking, an empty map agrees with any other map, but 1391 // this could flag false positives. We're interested in non-vacuous 1392 // agreements. 1393 if (Map1.empty() || Map2.empty()) 1394 return false; 1395 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) { 1396 auto F = Map2.find(P.first); 1397 if (F == Map2.end() || P.second != F->second) 1398 return false; 1399 } 1400 return true; 1401 }; 1402 1403 using CompositePair = std::pair<const CodeGenSubRegIndex*, 1404 const CodeGenSubRegIndex*>; 1405 SmallSet<CompositePair,4> UserDefined; 1406 for (const CodeGenSubRegIndex &Idx : SubRegIndices) 1407 for (auto P : Idx.getComposites()) 1408 UserDefined.insert(std::make_pair(&Idx, P.first)); 1409 1410 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1411 // and many registers will share TopoSigs on regular architectures. 1412 BitVector TopoSigs(getNumTopoSigs()); 1413 1414 for (const auto &Reg1 : Registers) { 1415 // Skip identical subreg structures already processed. 1416 if (TopoSigs.test(Reg1.getTopoSig())) 1417 continue; 1418 TopoSigs.set(Reg1.getTopoSig()); 1419 1420 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1421 for (auto I1 : SRM1) { 1422 CodeGenSubRegIndex *Idx1 = I1.first; 1423 CodeGenRegister *Reg2 = I1.second; 1424 // Ignore identity compositions. 1425 if (&Reg1 == Reg2) 1426 continue; 1427 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1428 // Try composing Idx1 with another SubRegIndex. 1429 for (auto I2 : SRM2) { 1430 CodeGenSubRegIndex *Idx2 = I2.first; 1431 CodeGenRegister *Reg3 = I2.second; 1432 // Ignore identity compositions. 1433 if (Reg2 == Reg3) 1434 continue; 1435 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1436 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1437 assert(Idx3 && "Sub-register doesn't have an index"); 1438 1439 // Conflicting composition? Emit a warning but allow it. 1440 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) { 1441 // If the composition was not user-defined, always emit a warning. 1442 if (!UserDefined.count({Idx1, Idx2}) || 1443 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3))) 1444 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1445 " and " + Idx2->getQualifiedName() + 1446 " compose ambiguously as " + Prev->getQualifiedName() + 1447 " or " + Idx3->getQualifiedName()); 1448 } 1449 } 1450 } 1451 } 1452 } 1453 1454 // Compute lane masks. This is similar to register units, but at the 1455 // sub-register index level. Each bit in the lane mask is like a register unit 1456 // class, and two lane masks will have a bit in common if two sub-register 1457 // indices overlap in some register. 1458 // 1459 // Conservatively share a lane mask bit if two sub-register indices overlap in 1460 // some registers, but not in others. That shouldn't happen a lot. 1461 void CodeGenRegBank::computeSubRegLaneMasks() { 1462 // First assign individual bits to all the leaf indices. 1463 unsigned Bit = 0; 1464 // Determine mask of lanes that cover their registers. 1465 CoveringLanes = LaneBitmask::getAll(); 1466 for (auto &Idx : SubRegIndices) { 1467 if (Idx.getComposites().empty()) { 1468 if (Bit > LaneBitmask::BitWidth) { 1469 PrintFatalError( 1470 Twine("Ran out of lanemask bits to represent subregister ") 1471 + Idx.getName()); 1472 } 1473 Idx.LaneMask = LaneBitmask::getLane(Bit); 1474 ++Bit; 1475 } else { 1476 Idx.LaneMask = LaneBitmask::getNone(); 1477 } 1478 } 1479 1480 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1481 // here is that for each possible target subregister we look at the leafs 1482 // in the subregister graph that compose for this target and create 1483 // transformation sequences for the lanemasks. Each step in the sequence 1484 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1485 // are usually the same for many subregisters we can easily combine the steps 1486 // by combining the masks. 1487 for (const auto &Idx : SubRegIndices) { 1488 const auto &Composites = Idx.getComposites(); 1489 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1490 1491 if (Composites.empty()) { 1492 // Moving from a class with no subregisters we just had a single lane: 1493 // The subregister must be a leaf subregister and only occupies 1 bit. 1494 // Move the bit from the class without subregisters into that position. 1495 unsigned DstBit = Idx.LaneMask.getHighestLane(); 1496 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && 1497 "Must be a leaf subregister"); 1498 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; 1499 LaneTransforms.push_back(MaskRol); 1500 } else { 1501 // Go through all leaf subregisters and find the ones that compose with 1502 // Idx. These make out all possible valid bits in the lane mask we want to 1503 // transform. Looking only at the leafs ensure that only a single bit in 1504 // the mask is set. 1505 unsigned NextBit = 0; 1506 for (auto &Idx2 : SubRegIndices) { 1507 // Skip non-leaf subregisters. 1508 if (!Idx2.getComposites().empty()) 1509 continue; 1510 // Replicate the behaviour from the lane mask generation loop above. 1511 unsigned SrcBit = NextBit; 1512 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); 1513 if (NextBit < LaneBitmask::BitWidth-1) 1514 ++NextBit; 1515 assert(Idx2.LaneMask == SrcMask); 1516 1517 // Get the composed subregister if there is any. 1518 auto C = Composites.find(&Idx2); 1519 if (C == Composites.end()) 1520 continue; 1521 const CodeGenSubRegIndex *Composite = C->second; 1522 // The Composed subreg should be a leaf subreg too 1523 assert(Composite->getComposites().empty()); 1524 1525 // Create Mask+Rotate operation and merge with existing ops if possible. 1526 unsigned DstBit = Composite->LaneMask.getHighestLane(); 1527 int Shift = DstBit - SrcBit; 1528 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1529 : LaneBitmask::BitWidth + Shift; 1530 for (auto &I : LaneTransforms) { 1531 if (I.RotateLeft == RotateLeft) { 1532 I.Mask |= SrcMask; 1533 SrcMask = LaneBitmask::getNone(); 1534 } 1535 } 1536 if (SrcMask.any()) { 1537 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1538 LaneTransforms.push_back(MaskRol); 1539 } 1540 } 1541 } 1542 1543 // Optimize if the transformation consists of one step only: Set mask to 1544 // 0xffffffff (including some irrelevant invalid bits) so that it should 1545 // merge with more entries later while compressing the table. 1546 if (LaneTransforms.size() == 1) 1547 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1548 1549 // Further compression optimization: For invalid compositions resulting 1550 // in a sequence with 0 entries we can just pick any other. Choose 1551 // Mask 0xffffffff with Rotation 0. 1552 if (LaneTransforms.size() == 0) { 1553 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1554 LaneTransforms.push_back(P); 1555 } 1556 } 1557 1558 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1559 // by the sub-register graph? This doesn't occur in any known targets. 1560 1561 // Inherit lanes from composites. 1562 for (const auto &Idx : SubRegIndices) { 1563 LaneBitmask Mask = Idx.computeLaneMask(); 1564 // If some super-registers without CoveredBySubRegs use this index, we can 1565 // no longer assume that the lanes are covering their registers. 1566 if (!Idx.AllSuperRegsCovered) 1567 CoveringLanes &= ~Mask; 1568 } 1569 1570 // Compute lane mask combinations for register classes. 1571 for (auto &RegClass : RegClasses) { 1572 LaneBitmask LaneMask; 1573 for (const auto &SubRegIndex : SubRegIndices) { 1574 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1575 continue; 1576 LaneMask |= SubRegIndex.LaneMask; 1577 } 1578 1579 // For classes without any subregisters set LaneMask to 1 instead of 0. 1580 // This makes it easier for client code to handle classes uniformly. 1581 if (LaneMask.none()) 1582 LaneMask = LaneBitmask::getLane(0); 1583 1584 RegClass.LaneMask = LaneMask; 1585 } 1586 } 1587 1588 namespace { 1589 1590 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1591 // the transitive closure of the union of overlapping register 1592 // classes. Together, the UberRegSets form a partition of the registers. If we 1593 // consider overlapping register classes to be connected, then each UberRegSet 1594 // is a set of connected components. 1595 // 1596 // An UberRegSet will likely be a horizontal slice of register names of 1597 // the same width. Nontrivial subregisters should then be in a separate 1598 // UberRegSet. But this property isn't required for valid computation of 1599 // register unit weights. 1600 // 1601 // A Weight field caches the max per-register unit weight in each UberRegSet. 1602 // 1603 // A set of SingularDeterminants flags single units of some register in this set 1604 // for which the unit weight equals the set weight. These units should not have 1605 // their weight increased. 1606 struct UberRegSet { 1607 CodeGenRegister::Vec Regs; 1608 unsigned Weight = 0; 1609 CodeGenRegister::RegUnitList SingularDeterminants; 1610 1611 UberRegSet() = default; 1612 }; 1613 1614 } // end anonymous namespace 1615 1616 // Partition registers into UberRegSets, where each set is the transitive 1617 // closure of the union of overlapping register classes. 1618 // 1619 // UberRegSets[0] is a special non-allocatable set. 1620 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1621 std::vector<UberRegSet*> &RegSets, 1622 CodeGenRegBank &RegBank) { 1623 const auto &Registers = RegBank.getRegisters(); 1624 1625 // The Register EnumValue is one greater than its index into Registers. 1626 assert(Registers.size() == Registers.back().EnumValue && 1627 "register enum value mismatch"); 1628 1629 // For simplicitly make the SetID the same as EnumValue. 1630 IntEqClasses UberSetIDs(Registers.size()+1); 1631 std::set<unsigned> AllocatableRegs; 1632 for (auto &RegClass : RegBank.getRegClasses()) { 1633 if (!RegClass.Allocatable) 1634 continue; 1635 1636 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1637 if (Regs.empty()) 1638 continue; 1639 1640 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1641 assert(USetID && "register number 0 is invalid"); 1642 1643 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1644 for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) { 1645 AllocatableRegs.insert(CGR->EnumValue); 1646 UberSetIDs.join(USetID, CGR->EnumValue); 1647 } 1648 } 1649 // Combine non-allocatable regs. 1650 for (const auto &Reg : Registers) { 1651 unsigned RegNum = Reg.EnumValue; 1652 if (AllocatableRegs.count(RegNum)) 1653 continue; 1654 1655 UberSetIDs.join(0, RegNum); 1656 } 1657 UberSetIDs.compress(); 1658 1659 // Make the first UberSet a special unallocatable set. 1660 unsigned ZeroID = UberSetIDs[0]; 1661 1662 // Insert Registers into the UberSets formed by union-find. 1663 // Do not resize after this. 1664 UberSets.resize(UberSetIDs.getNumClasses()); 1665 unsigned i = 0; 1666 for (const CodeGenRegister &Reg : Registers) { 1667 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1668 if (!USetID) 1669 USetID = ZeroID; 1670 else if (USetID == ZeroID) 1671 USetID = 0; 1672 1673 UberRegSet *USet = &UberSets[USetID]; 1674 USet->Regs.push_back(&Reg); 1675 sortAndUniqueRegisters(USet->Regs); 1676 RegSets[i++] = USet; 1677 } 1678 } 1679 1680 // Recompute each UberSet weight after changing unit weights. 1681 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1682 CodeGenRegBank &RegBank) { 1683 // Skip the first unallocatable set. 1684 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1685 E = UberSets.end(); I != E; ++I) { 1686 1687 // Initialize all unit weights in this set, and remember the max units/reg. 1688 const CodeGenRegister *Reg = nullptr; 1689 unsigned MaxWeight = 0, Weight = 0; 1690 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1691 if (Reg != UnitI.getReg()) { 1692 if (Weight > MaxWeight) 1693 MaxWeight = Weight; 1694 Reg = UnitI.getReg(); 1695 Weight = 0; 1696 } 1697 if (!RegBank.getRegUnit(*UnitI).Artificial) { 1698 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1699 if (!UWeight) { 1700 UWeight = 1; 1701 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1702 } 1703 Weight += UWeight; 1704 } 1705 } 1706 if (Weight > MaxWeight) 1707 MaxWeight = Weight; 1708 if (I->Weight != MaxWeight) { 1709 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " 1710 << MaxWeight; 1711 for (auto &Unit 1712 : I->Regs) dbgs() 1713 << " " << Unit->getName(); 1714 dbgs() << "\n"); 1715 // Update the set weight. 1716 I->Weight = MaxWeight; 1717 } 1718 1719 // Find singular determinants. 1720 for (const auto R : I->Regs) { 1721 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1722 I->SingularDeterminants |= R->getRegUnits(); 1723 } 1724 } 1725 } 1726 } 1727 1728 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1729 // a register and its subregisters so that they have the same weight as their 1730 // UberSet. Self-recursion processes the subregister tree in postorder so 1731 // subregisters are normalized first. 1732 // 1733 // Side effects: 1734 // - creates new adopted register units 1735 // - causes superregisters to inherit adopted units 1736 // - increases the weight of "singular" units 1737 // - induces recomputation of UberWeights. 1738 static bool normalizeWeight(CodeGenRegister *Reg, 1739 std::vector<UberRegSet> &UberSets, 1740 std::vector<UberRegSet*> &RegSets, 1741 BitVector &NormalRegs, 1742 CodeGenRegister::RegUnitList &NormalUnits, 1743 CodeGenRegBank &RegBank) { 1744 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size())); 1745 if (NormalRegs.test(Reg->EnumValue)) 1746 return false; 1747 NormalRegs.set(Reg->EnumValue); 1748 1749 bool Changed = false; 1750 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1751 for (auto SRI : SRM) { 1752 if (SRI.second == Reg) 1753 continue; // self-cycles happen 1754 1755 Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs, 1756 NormalUnits, RegBank); 1757 } 1758 // Postorder register normalization. 1759 1760 // Inherit register units newly adopted by subregisters. 1761 if (Reg->inheritRegUnits(RegBank)) 1762 computeUberWeights(UberSets, RegBank); 1763 1764 // Check if this register is too skinny for its UberRegSet. 1765 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1766 1767 unsigned RegWeight = Reg->getWeight(RegBank); 1768 if (UberSet->Weight > RegWeight) { 1769 // A register unit's weight can be adjusted only if it is the singular unit 1770 // for this register, has not been used to normalize a subregister's set, 1771 // and has not already been used to singularly determine this UberRegSet. 1772 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1773 if (Reg->getRegUnits().count() != 1 1774 || hasRegUnit(NormalUnits, AdjustUnit) 1775 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1776 // We don't have an adjustable unit, so adopt a new one. 1777 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1778 Reg->adoptRegUnit(AdjustUnit); 1779 // Adopting a unit does not immediately require recomputing set weights. 1780 } 1781 else { 1782 // Adjust the existing single unit. 1783 if (!RegBank.getRegUnit(AdjustUnit).Artificial) 1784 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1785 // The unit may be shared among sets and registers within this set. 1786 computeUberWeights(UberSets, RegBank); 1787 } 1788 Changed = true; 1789 } 1790 1791 // Mark these units normalized so superregisters can't change their weights. 1792 NormalUnits |= Reg->getRegUnits(); 1793 1794 return Changed; 1795 } 1796 1797 // Compute a weight for each register unit created during getSubRegs. 1798 // 1799 // The goal is that two registers in the same class will have the same weight, 1800 // where each register's weight is defined as sum of its units' weights. 1801 void CodeGenRegBank::computeRegUnitWeights() { 1802 std::vector<UberRegSet> UberSets; 1803 std::vector<UberRegSet*> RegSets(Registers.size()); 1804 computeUberSets(UberSets, RegSets, *this); 1805 // UberSets and RegSets are now immutable. 1806 1807 computeUberWeights(UberSets, *this); 1808 1809 // Iterate over each Register, normalizing the unit weights until reaching 1810 // a fix point. 1811 unsigned NumIters = 0; 1812 for (bool Changed = true; Changed; ++NumIters) { 1813 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1814 Changed = false; 1815 for (auto &Reg : Registers) { 1816 CodeGenRegister::RegUnitList NormalUnits; 1817 BitVector NormalRegs; 1818 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1819 NormalUnits, *this); 1820 } 1821 } 1822 } 1823 1824 // Find a set in UniqueSets with the same elements as Set. 1825 // Return an iterator into UniqueSets. 1826 static std::vector<RegUnitSet>::const_iterator 1827 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1828 const RegUnitSet &Set) { 1829 std::vector<RegUnitSet>::const_iterator 1830 I = UniqueSets.begin(), E = UniqueSets.end(); 1831 for(;I != E; ++I) { 1832 if (I->Units == Set.Units) 1833 break; 1834 } 1835 return I; 1836 } 1837 1838 // Return true if the RUSubSet is a subset of RUSuperSet. 1839 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1840 const std::vector<unsigned> &RUSuperSet) { 1841 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1842 RUSubSet.begin(), RUSubSet.end()); 1843 } 1844 1845 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1846 /// but with one or two registers removed. We occasionally have registers like 1847 /// APSR and PC thrown in with the general registers. We also see many 1848 /// special-purpose register subsets, such as tail-call and Thumb 1849 /// encodings. Generating all possible overlapping sets is combinatorial and 1850 /// overkill for modeling pressure. Ideally we could fix this statically in 1851 /// tablegen by (1) having the target define register classes that only include 1852 /// the allocatable registers and marking other classes as non-allocatable and 1853 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1854 /// the purpose of pressure. However, we make an attempt to handle targets that 1855 /// are not nicely defined by merging nearly identical register unit sets 1856 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1857 /// set limit by filtering the reserved registers. 1858 /// 1859 /// Merge sets only if the units have the same weight. For example, on ARM, 1860 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1861 /// should not expand the S set to include D regs. 1862 void CodeGenRegBank::pruneUnitSets() { 1863 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1864 1865 // Form an equivalence class of UnitSets with no significant difference. 1866 std::vector<unsigned> SuperSetIDs; 1867 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1868 SubIdx != EndIdx; ++SubIdx) { 1869 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1870 unsigned SuperIdx = 0; 1871 for (; SuperIdx != EndIdx; ++SuperIdx) { 1872 if (SuperIdx == SubIdx) 1873 continue; 1874 1875 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1876 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1877 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1878 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1879 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1880 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1881 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1882 << "\n"); 1883 // We can pick any of the set names for the merged set. Go for the 1884 // shortest one to avoid picking the name of one of the classes that are 1885 // artificially created by tablegen. So "FPR128_lo" instead of 1886 // "QQQQ_with_qsub3_in_FPR128_lo". 1887 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1888 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1889 break; 1890 } 1891 } 1892 if (SuperIdx == EndIdx) 1893 SuperSetIDs.push_back(SubIdx); 1894 } 1895 // Populate PrunedUnitSets with each equivalence class's superset. 1896 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1897 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1898 unsigned SuperIdx = SuperSetIDs[i]; 1899 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1900 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1901 } 1902 RegUnitSets.swap(PrunedUnitSets); 1903 } 1904 1905 // Create a RegUnitSet for each RegClass that contains all units in the class 1906 // including adopted units that are necessary to model register pressure. Then 1907 // iteratively compute RegUnitSets such that the union of any two overlapping 1908 // RegUnitSets is repreresented. 1909 // 1910 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1911 // RegUnitSet that is a superset of that RegUnitClass. 1912 void CodeGenRegBank::computeRegUnitSets() { 1913 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1914 1915 // Compute a unique RegUnitSet for each RegClass. 1916 auto &RegClasses = getRegClasses(); 1917 for (auto &RC : RegClasses) { 1918 if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet) 1919 continue; 1920 1921 // Speculatively grow the RegUnitSets to hold the new set. 1922 RegUnitSets.resize(RegUnitSets.size() + 1); 1923 RegUnitSets.back().Name = RC.getName(); 1924 1925 // Compute a sorted list of units in this class. 1926 RC.buildRegUnitSet(*this, RegUnitSets.back().Units); 1927 1928 // Find an existing RegUnitSet. 1929 std::vector<RegUnitSet>::const_iterator SetI = 1930 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1931 if (SetI != std::prev(RegUnitSets.end())) 1932 RegUnitSets.pop_back(); 1933 } 1934 1935 if (RegUnitSets.empty()) 1936 PrintFatalError("RegUnitSets cannot be empty!"); 1937 1938 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, 1939 USEnd = RegUnitSets.size(); 1940 USIdx < USEnd; ++USIdx) { 1941 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1942 for (auto &U : RegUnitSets[USIdx].Units) 1943 printRegUnitName(U); 1944 dbgs() << "\n"; 1945 }); 1946 1947 // Iteratively prune unit sets. 1948 pruneUnitSets(); 1949 1950 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, 1951 USEnd = RegUnitSets.size(); 1952 USIdx < USEnd; ++USIdx) { 1953 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1954 for (auto &U : RegUnitSets[USIdx].Units) 1955 printRegUnitName(U); 1956 dbgs() << "\n"; 1957 } dbgs() << "\nUnion sets:\n"); 1958 1959 // Iterate over all unit sets, including new ones added by this loop. 1960 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1961 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1962 // In theory, this is combinatorial. In practice, it needs to be bounded 1963 // by a small number of sets for regpressure to be efficient. 1964 // If the assert is hit, we need to implement pruning. 1965 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1966 1967 // Compare new sets with all original classes. 1968 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1969 SearchIdx != EndIdx; ++SearchIdx) { 1970 std::set<unsigned> Intersection; 1971 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1972 RegUnitSets[Idx].Units.end(), 1973 RegUnitSets[SearchIdx].Units.begin(), 1974 RegUnitSets[SearchIdx].Units.end(), 1975 std::inserter(Intersection, Intersection.begin())); 1976 if (Intersection.empty()) 1977 continue; 1978 1979 // Speculatively grow the RegUnitSets to hold the new set. 1980 RegUnitSets.resize(RegUnitSets.size() + 1); 1981 RegUnitSets.back().Name = 1982 RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name; 1983 1984 std::set_union(RegUnitSets[Idx].Units.begin(), 1985 RegUnitSets[Idx].Units.end(), 1986 RegUnitSets[SearchIdx].Units.begin(), 1987 RegUnitSets[SearchIdx].Units.end(), 1988 std::inserter(RegUnitSets.back().Units, 1989 RegUnitSets.back().Units.begin())); 1990 1991 // Find an existing RegUnitSet, or add the union to the unique sets. 1992 std::vector<RegUnitSet>::const_iterator SetI = 1993 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1994 if (SetI != std::prev(RegUnitSets.end())) 1995 RegUnitSets.pop_back(); 1996 else { 1997 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " 1998 << RegUnitSets.back().Name << ":"; 1999 for (auto &U 2000 : RegUnitSets.back().Units) printRegUnitName(U); 2001 dbgs() << "\n";); 2002 } 2003 } 2004 } 2005 2006 // Iteratively prune unit sets after inferring supersets. 2007 pruneUnitSets(); 2008 2009 LLVM_DEBUG( 2010 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2011 USIdx < USEnd; ++USIdx) { 2012 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 2013 for (auto &U : RegUnitSets[USIdx].Units) 2014 printRegUnitName(U); 2015 dbgs() << "\n"; 2016 }); 2017 2018 // For each register class, list the UnitSets that are supersets. 2019 RegClassUnitSets.resize(RegClasses.size()); 2020 int RCIdx = -1; 2021 for (auto &RC : RegClasses) { 2022 ++RCIdx; 2023 if (!RC.Allocatable) 2024 continue; 2025 2026 // Recompute the sorted list of units in this class. 2027 std::vector<unsigned> RCRegUnits; 2028 RC.buildRegUnitSet(*this, RCRegUnits); 2029 2030 // Don't increase pressure for unallocatable regclasses. 2031 if (RCRegUnits.empty()) 2032 continue; 2033 2034 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n"; 2035 for (auto U 2036 : RCRegUnits) printRegUnitName(U); 2037 dbgs() << "\n UnitSetIDs:"); 2038 2039 // Find all supersets. 2040 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2041 USIdx != USEnd; ++USIdx) { 2042 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 2043 LLVM_DEBUG(dbgs() << " " << USIdx); 2044 RegClassUnitSets[RCIdx].push_back(USIdx); 2045 } 2046 } 2047 LLVM_DEBUG(dbgs() << "\n"); 2048 assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) && 2049 "missing unit set for regclass"); 2050 } 2051 2052 // For each register unit, ensure that we have the list of UnitSets that 2053 // contain the unit. Normally, this matches an existing list of UnitSets for a 2054 // register class. If not, we create a new entry in RegClassUnitSets as a 2055 // "fake" register class. 2056 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 2057 UnitIdx < UnitEnd; ++UnitIdx) { 2058 std::vector<unsigned> RUSets; 2059 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 2060 RegUnitSet &RUSet = RegUnitSets[i]; 2061 if (!is_contained(RUSet.Units, UnitIdx)) 2062 continue; 2063 RUSets.push_back(i); 2064 } 2065 unsigned RCUnitSetsIdx = 0; 2066 for (unsigned e = RegClassUnitSets.size(); 2067 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 2068 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 2069 break; 2070 } 2071 } 2072 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 2073 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 2074 // Create a new list of UnitSets as a "fake" register class. 2075 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 2076 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 2077 } 2078 } 2079 } 2080 2081 void CodeGenRegBank::computeRegUnitLaneMasks() { 2082 for (auto &Register : Registers) { 2083 // Create an initial lane mask for all register units. 2084 const auto &RegUnits = Register.getRegUnits(); 2085 CodeGenRegister::RegUnitLaneMaskList 2086 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 2087 // Iterate through SubRegisters. 2088 typedef CodeGenRegister::SubRegMap SubRegMap; 2089 const SubRegMap &SubRegs = Register.getSubRegs(); 2090 for (auto S : SubRegs) { 2091 CodeGenRegister *SubReg = S.second; 2092 // Ignore non-leaf subregisters, their lane masks are fully covered by 2093 // the leaf subregisters anyway. 2094 if (!SubReg->getSubRegs().empty()) 2095 continue; 2096 CodeGenSubRegIndex *SubRegIndex = S.first; 2097 const CodeGenRegister *SubRegister = S.second; 2098 LaneBitmask LaneMask = SubRegIndex->LaneMask; 2099 // Distribute LaneMask to Register Units touched. 2100 for (unsigned SUI : SubRegister->getRegUnits()) { 2101 bool Found = false; 2102 unsigned u = 0; 2103 for (unsigned RU : RegUnits) { 2104 if (SUI == RU) { 2105 RegUnitLaneMasks[u] |= LaneMask; 2106 assert(!Found); 2107 Found = true; 2108 } 2109 ++u; 2110 } 2111 (void)Found; 2112 assert(Found); 2113 } 2114 } 2115 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 2116 } 2117 } 2118 2119 void CodeGenRegBank::computeDerivedInfo() { 2120 computeComposites(); 2121 computeSubRegLaneMasks(); 2122 2123 // Compute a weight for each register unit created during getSubRegs. 2124 // This may create adopted register units (with unit # >= NumNativeRegUnits). 2125 computeRegUnitWeights(); 2126 2127 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 2128 // supersets for the union of overlapping sets. 2129 computeRegUnitSets(); 2130 2131 computeRegUnitLaneMasks(); 2132 2133 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 2134 for (CodeGenRegisterClass &RC : RegClasses) { 2135 RC.HasDisjunctSubRegs = false; 2136 RC.CoveredBySubRegs = true; 2137 for (const CodeGenRegister *Reg : RC.getMembers()) { 2138 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 2139 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 2140 } 2141 } 2142 2143 // Get the weight of each set. 2144 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2145 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 2146 2147 // Find the order of each set. 2148 RegUnitSetOrder.reserve(RegUnitSets.size()); 2149 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2150 RegUnitSetOrder.push_back(Idx); 2151 2152 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) { 2153 return getRegPressureSet(ID1).Units.size() < 2154 getRegPressureSet(ID2).Units.size(); 2155 }); 2156 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 2157 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 2158 } 2159 } 2160 2161 // 2162 // Synthesize missing register class intersections. 2163 // 2164 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 2165 // returns a maximal register class for all X. 2166 // 2167 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 2168 assert(!RegClasses.empty()); 2169 // Stash the iterator to the last element so that this loop doesn't visit 2170 // elements added by the getOrCreateSubClass call within it. 2171 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 2172 I != std::next(E); ++I) { 2173 CodeGenRegisterClass *RC1 = RC; 2174 CodeGenRegisterClass *RC2 = &*I; 2175 if (RC1 == RC2) 2176 continue; 2177 2178 // Compute the set intersection of RC1 and RC2. 2179 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 2180 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 2181 CodeGenRegister::Vec Intersection; 2182 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(), 2183 Memb2.end(), 2184 std::inserter(Intersection, Intersection.begin()), 2185 deref<std::less<>>()); 2186 2187 // Skip disjoint class pairs. 2188 if (Intersection.empty()) 2189 continue; 2190 2191 // If RC1 and RC2 have different spill sizes or alignments, use the 2192 // stricter one for sub-classing. If they are equal, prefer RC1. 2193 if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) 2194 std::swap(RC1, RC2); 2195 2196 getOrCreateSubClass(RC1, &Intersection, 2197 RC1->getName() + "_and_" + RC2->getName()); 2198 } 2199 } 2200 2201 // 2202 // Synthesize missing sub-classes for getSubClassWithSubReg(). 2203 // 2204 // Make sure that the set of registers in RC with a given SubIdx sub-register 2205 // form a register class. Update RC->SubClassWithSubReg. 2206 // 2207 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 2208 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 2209 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 2210 deref<std::less<>>> 2211 SubReg2SetMap; 2212 2213 // Compute the set of registers supporting each SubRegIndex. 2214 SubReg2SetMap SRSets; 2215 for (const auto R : RC->getMembers()) { 2216 if (R->Artificial) 2217 continue; 2218 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 2219 for (auto I : SRM) { 2220 if (!I.first->Artificial) 2221 SRSets[I.first].push_back(R); 2222 } 2223 } 2224 2225 for (auto I : SRSets) 2226 sortAndUniqueRegisters(I.second); 2227 2228 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 2229 // numerical order to visit synthetic indices last. 2230 for (const auto &SubIdx : SubRegIndices) { 2231 if (SubIdx.Artificial) 2232 continue; 2233 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 2234 // Unsupported SubRegIndex. Skip it. 2235 if (I == SRSets.end()) 2236 continue; 2237 // In most cases, all RC registers support the SubRegIndex. 2238 if (I->second.size() == RC->getMembers().size()) { 2239 RC->setSubClassWithSubReg(&SubIdx, RC); 2240 continue; 2241 } 2242 // This is a real subset. See if we have a matching class. 2243 CodeGenRegisterClass *SubRC = 2244 getOrCreateSubClass(RC, &I->second, 2245 RC->getName() + "_with_" + I->first->getName()); 2246 RC->setSubClassWithSubReg(&SubIdx, SubRC); 2247 } 2248 } 2249 2250 // 2251 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 2252 // 2253 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 2254 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 2255 // 2256 2257 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 2258 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 2259 SmallVector<std::pair<const CodeGenRegister*, 2260 const CodeGenRegister*>, 16> SSPairs; 2261 BitVector TopoSigs(getNumTopoSigs()); 2262 2263 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 2264 for (auto &SubIdx : SubRegIndices) { 2265 // Skip indexes that aren't fully supported by RC's registers. This was 2266 // computed by inferSubClassWithSubReg() above which should have been 2267 // called first. 2268 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 2269 continue; 2270 2271 // Build list of (Super, Sub) pairs for this SubIdx. 2272 SSPairs.clear(); 2273 TopoSigs.reset(); 2274 for (const auto Super : RC->getMembers()) { 2275 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 2276 assert(Sub && "Missing sub-register"); 2277 SSPairs.push_back(std::make_pair(Super, Sub)); 2278 TopoSigs.set(Sub->getTopoSig()); 2279 } 2280 2281 // Iterate over sub-register class candidates. Ignore classes created by 2282 // this loop. They will never be useful. 2283 // Store an iterator to the last element (not end) so that this loop doesn't 2284 // visit newly inserted elements. 2285 assert(!RegClasses.empty()); 2286 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2287 I != std::next(E); ++I) { 2288 CodeGenRegisterClass &SubRC = *I; 2289 if (SubRC.Artificial) 2290 continue; 2291 // Topological shortcut: SubRC members have the wrong shape. 2292 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2293 continue; 2294 // Compute the subset of RC that maps into SubRC. 2295 CodeGenRegister::Vec SubSetVec; 2296 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2297 if (SubRC.contains(SSPairs[i].second)) 2298 SubSetVec.push_back(SSPairs[i].first); 2299 2300 if (SubSetVec.empty()) 2301 continue; 2302 2303 // RC injects completely into SubRC. 2304 sortAndUniqueRegisters(SubSetVec); 2305 if (SubSetVec.size() == SSPairs.size()) { 2306 SubRC.addSuperRegClass(&SubIdx, RC); 2307 continue; 2308 } 2309 2310 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2311 // class. 2312 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2313 SubIdx.getName() + "_in_" + 2314 SubRC.getName()); 2315 } 2316 } 2317 } 2318 2319 // 2320 // Infer missing register classes. 2321 // 2322 void CodeGenRegBank::computeInferredRegisterClasses() { 2323 assert(!RegClasses.empty()); 2324 // When this function is called, the register classes have not been sorted 2325 // and assigned EnumValues yet. That means getSubClasses(), 2326 // getSuperClasses(), and hasSubClass() functions are defunct. 2327 2328 // Use one-before-the-end so it doesn't move forward when new elements are 2329 // added. 2330 auto FirstNewRC = std::prev(RegClasses.end()); 2331 2332 // Visit all register classes, including the ones being added by the loop. 2333 // Watch out for iterator invalidation here. 2334 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2335 CodeGenRegisterClass *RC = &*I; 2336 if (RC->Artificial) 2337 continue; 2338 2339 // Synthesize answers for getSubClassWithSubReg(). 2340 inferSubClassWithSubReg(RC); 2341 2342 // Synthesize answers for getCommonSubClass(). 2343 inferCommonSubClass(RC); 2344 2345 // Synthesize answers for getMatchingSuperRegClass(). 2346 inferMatchingSuperRegClass(RC); 2347 2348 // New register classes are created while this loop is running, and we need 2349 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2350 // to match old super-register classes with sub-register classes created 2351 // after inferMatchingSuperRegClass was called. At this point, 2352 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2353 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2354 if (I == FirstNewRC) { 2355 auto NextNewRC = std::prev(RegClasses.end()); 2356 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2357 ++I2) 2358 inferMatchingSuperRegClass(&*I2, E2); 2359 FirstNewRC = NextNewRC; 2360 } 2361 } 2362 } 2363 2364 /// getRegisterClassForRegister - Find the register class that contains the 2365 /// specified physical register. If the register is not in a register class, 2366 /// return null. If the register is in multiple classes, and the classes have a 2367 /// superset-subset relationship and the same set of types, return the 2368 /// superclass. Otherwise return null. 2369 const CodeGenRegisterClass* 2370 CodeGenRegBank::getRegClassForRegister(Record *R) { 2371 const CodeGenRegister *Reg = getReg(R); 2372 const CodeGenRegisterClass *FoundRC = nullptr; 2373 for (const auto &RC : getRegClasses()) { 2374 if (!RC.contains(Reg)) 2375 continue; 2376 2377 // If this is the first class that contains the register, 2378 // make a note of it and go on to the next class. 2379 if (!FoundRC) { 2380 FoundRC = &RC; 2381 continue; 2382 } 2383 2384 // If a register's classes have different types, return null. 2385 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2386 return nullptr; 2387 2388 // Check to see if the previously found class that contains 2389 // the register is a subclass of the current class. If so, 2390 // prefer the superclass. 2391 if (RC.hasSubClass(FoundRC)) { 2392 FoundRC = &RC; 2393 continue; 2394 } 2395 2396 // Check to see if the previously found class that contains 2397 // the register is a superclass of the current class. If so, 2398 // prefer the superclass. 2399 if (FoundRC->hasSubClass(&RC)) 2400 continue; 2401 2402 // Multiple classes, and neither is a superclass of the other. 2403 // Return null. 2404 return nullptr; 2405 } 2406 return FoundRC; 2407 } 2408 2409 const CodeGenRegisterClass * 2410 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord, 2411 ValueTypeByHwMode *VT) { 2412 const CodeGenRegister *Reg = getReg(RegRecord); 2413 const CodeGenRegisterClass *BestRC = nullptr; 2414 for (const auto &RC : getRegClasses()) { 2415 if ((!VT || RC.hasType(*VT)) && 2416 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC))) 2417 BestRC = &RC; 2418 } 2419 2420 assert(BestRC && "Couldn't find the register class"); 2421 return BestRC; 2422 } 2423 2424 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2425 SetVector<const CodeGenRegister*> Set; 2426 2427 // First add Regs with all sub-registers. 2428 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2429 CodeGenRegister *Reg = getReg(Regs[i]); 2430 if (Set.insert(Reg)) 2431 // Reg is new, add all sub-registers. 2432 // The pre-ordering is not important here. 2433 Reg->addSubRegsPreOrder(Set, *this); 2434 } 2435 2436 // Second, find all super-registers that are completely covered by the set. 2437 for (unsigned i = 0; i != Set.size(); ++i) { 2438 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2439 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2440 const CodeGenRegister *Super = SR[j]; 2441 if (!Super->CoveredBySubRegs || Set.count(Super)) 2442 continue; 2443 // This new super-register is covered by its sub-registers. 2444 bool AllSubsInSet = true; 2445 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2446 for (auto I : SRM) 2447 if (!Set.count(I.second)) { 2448 AllSubsInSet = false; 2449 break; 2450 } 2451 // All sub-registers in Set, add Super as well. 2452 // We will visit Super later to recheck its super-registers. 2453 if (AllSubsInSet) 2454 Set.insert(Super); 2455 } 2456 } 2457 2458 // Convert to BitVector. 2459 BitVector BV(Registers.size() + 1); 2460 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2461 BV.set(Set[i]->EnumValue); 2462 return BV; 2463 } 2464 2465 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2466 if (Unit < NumNativeRegUnits) 2467 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2468 else 2469 dbgs() << " #" << Unit; 2470 } 2471