1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate information gleaned from the 11 // target register and register class definitions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenRegisters.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/IntEqClasses.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/TableGen/Error.h" 23 24 using namespace llvm; 25 26 //===----------------------------------------------------------------------===// 27 // CodeGenSubRegIndex 28 //===----------------------------------------------------------------------===// 29 30 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 31 : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 32 Name = R->getName(); 33 if (R->getValue("Namespace")) 34 Namespace = R->getValueAsString("Namespace"); 35 Size = R->getValueAsInt("Size"); 36 Offset = R->getValueAsInt("Offset"); 37 } 38 39 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 40 unsigned Enum) 41 : TheDef(0), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 42 EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 43 } 44 45 std::string CodeGenSubRegIndex::getQualifiedName() const { 46 std::string N = getNamespace(); 47 if (!N.empty()) 48 N += "::"; 49 N += getName(); 50 return N; 51 } 52 53 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 54 if (!TheDef) 55 return; 56 57 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 58 if (!Comps.empty()) { 59 if (Comps.size() != 2) 60 PrintFatalError(TheDef->getLoc(), 61 "ComposedOf must have exactly two entries"); 62 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 63 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 64 CodeGenSubRegIndex *X = A->addComposite(B, this); 65 if (X) 66 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 67 } 68 69 std::vector<Record*> Parts = 70 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 71 if (!Parts.empty()) { 72 if (Parts.size() < 2) 73 PrintFatalError(TheDef->getLoc(), 74 "CoveredBySubRegs must have two or more entries"); 75 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 76 for (unsigned i = 0, e = Parts.size(); i != e; ++i) 77 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); 78 RegBank.addConcatSubRegIndex(IdxParts, this); 79 } 80 } 81 82 unsigned CodeGenSubRegIndex::computeLaneMask() { 83 // Already computed? 84 if (LaneMask) 85 return LaneMask; 86 87 // Recursion guard, shouldn't be required. 88 LaneMask = ~0u; 89 90 // The lane mask is simply the union of all sub-indices. 91 unsigned M = 0; 92 for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I) 93 M |= I->second->computeLaneMask(); 94 assert(M && "Missing lane mask, sub-register cycle?"); 95 LaneMask = M; 96 return LaneMask; 97 } 98 99 //===----------------------------------------------------------------------===// 100 // CodeGenRegister 101 //===----------------------------------------------------------------------===// 102 103 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 104 : TheDef(R), 105 EnumValue(Enum), 106 CostPerUse(R->getValueAsInt("CostPerUse")), 107 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 108 NumNativeRegUnits(0), 109 SubRegsComplete(false), 110 SuperRegsComplete(false), 111 TopoSig(~0u) 112 {} 113 114 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 115 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 116 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 117 118 if (SRIs.size() != SRs.size()) 119 PrintFatalError(TheDef->getLoc(), 120 "SubRegs and SubRegIndices must have the same size"); 121 122 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 123 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 124 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 125 } 126 127 // Also compute leading super-registers. Each register has a list of 128 // covered-by-subregs super-registers where it appears as the first explicit 129 // sub-register. 130 // 131 // This is used by computeSecondarySubRegs() to find candidates. 132 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 133 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 134 135 // Add ad hoc alias links. This is a symmetric relationship between two 136 // registers, so build a symmetric graph by adding links in both ends. 137 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 138 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { 139 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); 140 ExplicitAliases.push_back(Reg); 141 Reg->ExplicitAliases.push_back(this); 142 } 143 } 144 145 const std::string &CodeGenRegister::getName() const { 146 return TheDef->getName(); 147 } 148 149 namespace { 150 // Iterate over all register units in a set of registers. 151 class RegUnitIterator { 152 CodeGenRegister::Set::const_iterator RegI, RegE; 153 CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE; 154 155 public: 156 RegUnitIterator(const CodeGenRegister::Set &Regs): 157 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { 158 159 if (RegI != RegE) { 160 UnitI = (*RegI)->getRegUnits().begin(); 161 UnitE = (*RegI)->getRegUnits().end(); 162 advance(); 163 } 164 } 165 166 bool isValid() const { return UnitI != UnitE; } 167 168 unsigned operator* () const { assert(isValid()); return *UnitI; } 169 170 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 171 172 /// Preincrement. Move to the next unit. 173 void operator++() { 174 assert(isValid() && "Cannot advance beyond the last operand"); 175 ++UnitI; 176 advance(); 177 } 178 179 protected: 180 void advance() { 181 while (UnitI == UnitE) { 182 if (++RegI == RegE) 183 break; 184 UnitI = (*RegI)->getRegUnits().begin(); 185 UnitE = (*RegI)->getRegUnits().end(); 186 } 187 } 188 }; 189 } // namespace 190 191 // Merge two RegUnitLists maintaining the order and removing duplicates. 192 // Overwrites MergedRU in the process. 193 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU, 194 const CodeGenRegister::RegUnitList &RRU) { 195 CodeGenRegister::RegUnitList LRU = MergedRU; 196 MergedRU.clear(); 197 std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(), 198 std::back_inserter(MergedRU)); 199 } 200 201 // Return true of this unit appears in RegUnits. 202 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 203 return std::count(RegUnits.begin(), RegUnits.end(), Unit); 204 } 205 206 // Inherit register units from subregisters. 207 // Return true if the RegUnits changed. 208 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 209 unsigned OldNumUnits = RegUnits.size(); 210 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 211 I != E; ++I) { 212 CodeGenRegister *SR = I->second; 213 // Merge the subregister's units into this register's RegUnits. 214 mergeRegUnits(RegUnits, SR->RegUnits); 215 } 216 return OldNumUnits != RegUnits.size(); 217 } 218 219 const CodeGenRegister::SubRegMap & 220 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 221 // Only compute this map once. 222 if (SubRegsComplete) 223 return SubRegs; 224 SubRegsComplete = true; 225 226 // First insert the explicit subregs and make sure they are fully indexed. 227 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 228 CodeGenRegister *SR = ExplicitSubRegs[i]; 229 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 230 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 231 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 232 " appears twice in Register " + getName()); 233 // Map explicit sub-registers first, so the names take precedence. 234 // The inherited sub-registers are mapped below. 235 SubReg2Idx.insert(std::make_pair(SR, Idx)); 236 } 237 238 // Keep track of inherited subregs and how they can be reached. 239 SmallPtrSet<CodeGenRegister*, 8> Orphans; 240 241 // Clone inherited subregs and place duplicate entries in Orphans. 242 // Here the order is important - earlier subregs take precedence. 243 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 244 CodeGenRegister *SR = ExplicitSubRegs[i]; 245 const SubRegMap &Map = SR->computeSubRegs(RegBank); 246 247 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 248 ++SI) { 249 if (!SubRegs.insert(*SI).second) 250 Orphans.insert(SI->second); 251 } 252 } 253 254 // Expand any composed subreg indices. 255 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 256 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 257 // expanded subreg indices recursively. 258 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 259 for (unsigned i = 0; i != Indices.size(); ++i) { 260 CodeGenSubRegIndex *Idx = Indices[i]; 261 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 262 CodeGenRegister *SR = SubRegs[Idx]; 263 const SubRegMap &Map = SR->computeSubRegs(RegBank); 264 265 // Look at the possible compositions of Idx. 266 // They may not all be supported by SR. 267 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 268 E = Comps.end(); I != E; ++I) { 269 SubRegMap::const_iterator SRI = Map.find(I->first); 270 if (SRI == Map.end()) 271 continue; // Idx + I->first doesn't exist in SR. 272 // Add I->second as a name for the subreg SRI->second, assuming it is 273 // orphaned, and the name isn't already used for something else. 274 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 275 continue; 276 // We found a new name for the orphaned sub-register. 277 SubRegs.insert(std::make_pair(I->second, SRI->second)); 278 Indices.push_back(I->second); 279 } 280 } 281 282 // Now Orphans contains the inherited subregisters without a direct index. 283 // Create inferred indexes for all missing entries. 284 // Work backwards in the Indices vector in order to compose subregs bottom-up. 285 // Consider this subreg sequence: 286 // 287 // qsub_1 -> dsub_0 -> ssub_0 288 // 289 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 290 // can be reached in two different ways: 291 // 292 // qsub_1 -> ssub_0 293 // dsub_2 -> ssub_0 294 // 295 // We pick the latter composition because another register may have [dsub_0, 296 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 297 // dsub_2 -> ssub_0 composition can be shared. 298 while (!Indices.empty() && !Orphans.empty()) { 299 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 300 CodeGenRegister *SR = SubRegs[Idx]; 301 const SubRegMap &Map = SR->computeSubRegs(RegBank); 302 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 303 ++SI) 304 if (Orphans.erase(SI->second)) 305 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; 306 } 307 308 // Compute the inverse SubReg -> Idx map. 309 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); 310 SI != SE; ++SI) { 311 if (SI->second == this) { 312 ArrayRef<SMLoc> Loc; 313 if (TheDef) 314 Loc = TheDef->getLoc(); 315 PrintFatalError(Loc, "Register " + getName() + 316 " has itself as a sub-register"); 317 } 318 319 // Compute AllSuperRegsCovered. 320 if (!CoveredBySubRegs) 321 SI->first->AllSuperRegsCovered = false; 322 323 // Ensure that every sub-register has a unique name. 324 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 325 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; 326 if (Ins->second == SI->first) 327 continue; 328 // Trouble: Two different names for SI->second. 329 ArrayRef<SMLoc> Loc; 330 if (TheDef) 331 Loc = TheDef->getLoc(); 332 PrintFatalError(Loc, "Sub-register can't have two names: " + 333 SI->second->getName() + " available as " + 334 SI->first->getName() + " and " + Ins->second->getName()); 335 } 336 337 // Derive possible names for sub-register concatenations from any explicit 338 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 339 // that getConcatSubRegIndex() won't invent any concatenated indices that the 340 // user already specified. 341 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 342 CodeGenRegister *SR = ExplicitSubRegs[i]; 343 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) 344 continue; 345 346 // SR is composed of multiple sub-regs. Find their names in this register. 347 SmallVector<CodeGenSubRegIndex*, 8> Parts; 348 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) 349 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 350 351 // Offer this as an existing spelling for the concatenation of Parts. 352 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); 353 } 354 355 // Initialize RegUnitList. Because getSubRegs is called recursively, this 356 // processes the register hierarchy in postorder. 357 // 358 // Inherit all sub-register units. It is good enough to look at the explicit 359 // sub-registers, the other registers won't contribute any more units. 360 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 361 CodeGenRegister *SR = ExplicitSubRegs[i]; 362 // Explicit sub-registers are usually disjoint, so this is a good way of 363 // computing the union. We may pick up a few duplicates that will be 364 // eliminated below. 365 unsigned N = RegUnits.size(); 366 RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end()); 367 std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end()); 368 } 369 RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end()); 370 371 // Absent any ad hoc aliasing, we create one register unit per leaf register. 372 // These units correspond to the maximal cliques in the register overlap 373 // graph which is optimal. 374 // 375 // When there is ad hoc aliasing, we simply create one unit per edge in the 376 // undirected ad hoc aliasing graph. Technically, we could do better by 377 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 378 // are extremely rare anyway (I've never seen one), so we don't bother with 379 // the added complexity. 380 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 381 CodeGenRegister *AR = ExplicitAliases[i]; 382 // Only visit each edge once. 383 if (AR->SubRegsComplete) 384 continue; 385 // Create a RegUnit representing this alias edge, and add it to both 386 // registers. 387 unsigned Unit = RegBank.newRegUnit(this, AR); 388 RegUnits.push_back(Unit); 389 AR->RegUnits.push_back(Unit); 390 } 391 392 // Finally, create units for leaf registers without ad hoc aliases. Note that 393 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 394 // necessary. This means the aliasing leaf registers can share a single unit. 395 if (RegUnits.empty()) 396 RegUnits.push_back(RegBank.newRegUnit(this)); 397 398 // We have now computed the native register units. More may be adopted later 399 // for balancing purposes. 400 NumNativeRegUnits = RegUnits.size(); 401 402 return SubRegs; 403 } 404 405 // In a register that is covered by its sub-registers, try to find redundant 406 // sub-registers. For example: 407 // 408 // QQ0 = {Q0, Q1} 409 // Q0 = {D0, D1} 410 // Q1 = {D2, D3} 411 // 412 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 413 // the register definition. 414 // 415 // The explicitly specified registers form a tree. This function discovers 416 // sub-register relationships that would force a DAG. 417 // 418 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 419 // Collect new sub-registers first, add them later. 420 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 421 422 // Look at the leading super-registers of each sub-register. Those are the 423 // candidates for new sub-registers, assuming they are fully contained in 424 // this register. 425 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ 426 const CodeGenRegister *SubReg = I->second; 427 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 428 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 429 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 430 // Already got this sub-register? 431 if (Cand == this || getSubRegIndex(Cand)) 432 continue; 433 // Check if each component of Cand is already a sub-register. 434 // We know that the first component is I->second, and is present with the 435 // name I->first. 436 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); 437 assert(!Cand->ExplicitSubRegs.empty() && 438 "Super-register has no sub-registers"); 439 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { 440 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) 441 Parts.push_back(Idx); 442 else { 443 // Sub-register doesn't exist. 444 Parts.clear(); 445 break; 446 } 447 } 448 // If some Cand sub-register is not part of this register, or if Cand only 449 // has one sub-register, there is nothing to do. 450 if (Parts.size() <= 1) 451 continue; 452 453 // Each part of Cand is a sub-register of this. Make the full Cand also 454 // a sub-register with a concatenated sub-register index. 455 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); 456 NewSubRegs.push_back(std::make_pair(Concat, Cand)); 457 } 458 } 459 460 // Now add all the new sub-registers. 461 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 462 // Don't add Cand if another sub-register is already using the index. 463 if (!SubRegs.insert(NewSubRegs[i]).second) 464 continue; 465 466 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 467 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 468 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); 469 } 470 471 // Create sub-register index composition maps for the synthesized indices. 472 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 473 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 474 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 475 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 476 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 477 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 478 if (!SubIdx) 479 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 480 SI->second->getName() + " in " + getName()); 481 NewIdx->addComposite(SI->first, SubIdx); 482 } 483 } 484 } 485 486 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 487 // Only visit each register once. 488 if (SuperRegsComplete) 489 return; 490 SuperRegsComplete = true; 491 492 // Make sure all sub-registers have been visited first, so the super-reg 493 // lists will be topologically ordered. 494 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 495 I != E; ++I) 496 I->second->computeSuperRegs(RegBank); 497 498 // Now add this as a super-register on all sub-registers. 499 // Also compute the TopoSigId in post-order. 500 TopoSigId Id; 501 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 502 I != E; ++I) { 503 // Topological signature computed from SubIdx, TopoId(SubReg). 504 // Loops and idempotent indices have TopoSig = ~0u. 505 Id.push_back(I->first->EnumValue); 506 Id.push_back(I->second->TopoSig); 507 508 // Don't add duplicate entries. 509 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 510 continue; 511 I->second->SuperRegs.push_back(this); 512 } 513 TopoSig = RegBank.getTopoSig(Id); 514 } 515 516 void 517 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 518 CodeGenRegBank &RegBank) const { 519 assert(SubRegsComplete && "Must precompute sub-registers"); 520 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 521 CodeGenRegister *SR = ExplicitSubRegs[i]; 522 if (OSet.insert(SR)) 523 SR->addSubRegsPreOrder(OSet, RegBank); 524 } 525 // Add any secondary sub-registers that weren't part of the explicit tree. 526 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 527 I != E; ++I) 528 OSet.insert(I->second); 529 } 530 531 // Get the sum of this register's unit weights. 532 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 533 unsigned Weight = 0; 534 for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end(); 535 I != E; ++I) { 536 Weight += RegBank.getRegUnit(*I).Weight; 537 } 538 return Weight; 539 } 540 541 //===----------------------------------------------------------------------===// 542 // RegisterTuples 543 //===----------------------------------------------------------------------===// 544 545 // A RegisterTuples def is used to generate pseudo-registers from lists of 546 // sub-registers. We provide a SetTheory expander class that returns the new 547 // registers. 548 namespace { 549 struct TupleExpander : SetTheory::Expander { 550 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) { 551 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 552 unsigned Dim = Indices.size(); 553 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 554 if (Dim != SubRegs->getSize()) 555 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 556 if (Dim < 2) 557 PrintFatalError(Def->getLoc(), 558 "Tuples must have at least 2 sub-registers"); 559 560 // Evaluate the sub-register lists to be zipped. 561 unsigned Length = ~0u; 562 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 563 for (unsigned i = 0; i != Dim; ++i) { 564 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 565 Length = std::min(Length, unsigned(Lists[i].size())); 566 } 567 568 if (Length == 0) 569 return; 570 571 // Precompute some types. 572 Record *RegisterCl = Def->getRecords().getClass("Register"); 573 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 574 StringInit *BlankName = StringInit::get(""); 575 576 // Zip them up. 577 for (unsigned n = 0; n != Length; ++n) { 578 std::string Name; 579 Record *Proto = Lists[0][n]; 580 std::vector<Init*> Tuple; 581 unsigned CostPerUse = 0; 582 for (unsigned i = 0; i != Dim; ++i) { 583 Record *Reg = Lists[i][n]; 584 if (i) Name += '_'; 585 Name += Reg->getName(); 586 Tuple.push_back(DefInit::get(Reg)); 587 CostPerUse = std::max(CostPerUse, 588 unsigned(Reg->getValueAsInt("CostPerUse"))); 589 } 590 591 // Create a new Record representing the synthesized register. This record 592 // is only for consumption by CodeGenRegister, it is not added to the 593 // RecordKeeper. 594 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); 595 Elts.insert(NewReg); 596 597 // Copy Proto super-classes. 598 ArrayRef<Record *> Supers = Proto->getSuperClasses(); 599 ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges(); 600 for (unsigned i = 0, e = Supers.size(); i != e; ++i) 601 NewReg->addSuperClass(Supers[i], Ranges[i]); 602 603 // Copy Proto fields. 604 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 605 RecordVal RV = Proto->getValues()[i]; 606 607 // Skip existing fields, like NAME. 608 if (NewReg->getValue(RV.getNameInit())) 609 continue; 610 611 StringRef Field = RV.getName(); 612 613 // Replace the sub-register list with Tuple. 614 if (Field == "SubRegs") 615 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 616 617 // Provide a blank AsmName. MC hacks are required anyway. 618 if (Field == "AsmName") 619 RV.setValue(BlankName); 620 621 // CostPerUse is aggregated from all Tuple members. 622 if (Field == "CostPerUse") 623 RV.setValue(IntInit::get(CostPerUse)); 624 625 // Composite registers are always covered by sub-registers. 626 if (Field == "CoveredBySubRegs") 627 RV.setValue(BitInit::get(true)); 628 629 // Copy fields from the RegisterTuples def. 630 if (Field == "SubRegIndices" || 631 Field == "CompositeIndices") { 632 NewReg->addValue(*Def->getValue(Field)); 633 continue; 634 } 635 636 // Some fields get their default uninitialized value. 637 if (Field == "DwarfNumbers" || 638 Field == "DwarfAlias" || 639 Field == "Aliases") { 640 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 641 NewReg->addValue(*DefRV); 642 continue; 643 } 644 645 // Everything else is copied from Proto. 646 NewReg->addValue(RV); 647 } 648 } 649 } 650 }; 651 } 652 653 //===----------------------------------------------------------------------===// 654 // CodeGenRegisterClass 655 //===----------------------------------------------------------------------===// 656 657 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 658 : TheDef(R), 659 Name(R->getName()), 660 TopoSigs(RegBank.getNumTopoSigs()), 661 EnumValue(-1) { 662 // Rename anonymous register classes. 663 if (R->getName().size() > 9 && R->getName()[9] == '.') { 664 static unsigned AnonCounter = 0; 665 R->setName("AnonRegClass_" + utostr(AnonCounter)); 666 // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr. 667 ++AnonCounter; 668 } 669 670 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 671 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 672 Record *Type = TypeList[i]; 673 if (!Type->isSubClassOf("ValueType")) 674 PrintFatalError("RegTypes list member '" + Type->getName() + 675 "' does not derive from the ValueType class!"); 676 VTs.push_back(getValueType(Type)); 677 } 678 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 679 680 // Allocation order 0 is the full set. AltOrders provides others. 681 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 682 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 683 Orders.resize(1 + AltOrders->size()); 684 685 // Default allocation order always contains all registers. 686 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 687 Orders[0].push_back((*Elements)[i]); 688 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 689 Members.insert(Reg); 690 TopoSigs.set(Reg->getTopoSig()); 691 } 692 693 // Alternative allocation orders may be subsets. 694 SetTheory::RecSet Order; 695 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 696 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 697 Orders[1 + i].append(Order.begin(), Order.end()); 698 // Verify that all altorder members are regclass members. 699 while (!Order.empty()) { 700 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 701 Order.pop_back(); 702 if (!contains(Reg)) 703 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 704 " is not a class member"); 705 } 706 } 707 708 // Allow targets to override the size in bits of the RegisterClass. 709 unsigned Size = R->getValueAsInt("Size"); 710 711 Namespace = R->getValueAsString("Namespace"); 712 SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits(); 713 SpillAlignment = R->getValueAsInt("Alignment"); 714 CopyCost = R->getValueAsInt("CopyCost"); 715 Allocatable = R->getValueAsBit("isAllocatable"); 716 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 717 } 718 719 // Create an inferred register class that was missing from the .td files. 720 // Most properties will be inherited from the closest super-class after the 721 // class structure has been computed. 722 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 723 StringRef Name, Key Props) 724 : Members(*Props.Members), 725 TheDef(0), 726 Name(Name), 727 TopoSigs(RegBank.getNumTopoSigs()), 728 EnumValue(-1), 729 SpillSize(Props.SpillSize), 730 SpillAlignment(Props.SpillAlignment), 731 CopyCost(0), 732 Allocatable(true) { 733 for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end(); 734 I != E; ++I) 735 TopoSigs.set((*I)->getTopoSig()); 736 } 737 738 // Compute inherited propertied for a synthesized register class. 739 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 740 assert(!getDef() && "Only synthesized classes can inherit properties"); 741 assert(!SuperClasses.empty() && "Synthesized class without super class"); 742 743 // The last super-class is the smallest one. 744 CodeGenRegisterClass &Super = *SuperClasses.back(); 745 746 // Most properties are copied directly. 747 // Exceptions are members, size, and alignment 748 Namespace = Super.Namespace; 749 VTs = Super.VTs; 750 CopyCost = Super.CopyCost; 751 Allocatable = Super.Allocatable; 752 AltOrderSelect = Super.AltOrderSelect; 753 754 // Copy all allocation orders, filter out foreign registers from the larger 755 // super-class. 756 Orders.resize(Super.Orders.size()); 757 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 758 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 759 if (contains(RegBank.getReg(Super.Orders[i][j]))) 760 Orders[i].push_back(Super.Orders[i][j]); 761 } 762 763 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 764 return Members.count(Reg); 765 } 766 767 namespace llvm { 768 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 769 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; 770 for (CodeGenRegister::Set::const_iterator I = K.Members->begin(), 771 E = K.Members->end(); I != E; ++I) 772 OS << ", " << (*I)->getName(); 773 return OS << " }"; 774 } 775 } 776 777 // This is a simple lexicographical order that can be used to search for sets. 778 // It is not the same as the topological order provided by TopoOrderRC. 779 bool CodeGenRegisterClass::Key:: 780 operator<(const CodeGenRegisterClass::Key &B) const { 781 assert(Members && B.Members); 782 if (*Members != *B.Members) 783 return *Members < *B.Members; 784 if (SpillSize != B.SpillSize) 785 return SpillSize < B.SpillSize; 786 return SpillAlignment < B.SpillAlignment; 787 } 788 789 // Returns true if RC is a strict subclass. 790 // RC is a sub-class of this class if it is a valid replacement for any 791 // instruction operand where a register of this classis required. It must 792 // satisfy these conditions: 793 // 794 // 1. All RC registers are also in this. 795 // 2. The RC spill size must not be smaller than our spill size. 796 // 3. RC spill alignment must be compatible with ours. 797 // 798 static bool testSubClass(const CodeGenRegisterClass *A, 799 const CodeGenRegisterClass *B) { 800 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && 801 A->SpillSize <= B->SpillSize && 802 std::includes(A->getMembers().begin(), A->getMembers().end(), 803 B->getMembers().begin(), B->getMembers().end(), 804 CodeGenRegister::Less()); 805 } 806 807 /// Sorting predicate for register classes. This provides a topological 808 /// ordering that arranges all register classes before their sub-classes. 809 /// 810 /// Register classes with the same registers, spill size, and alignment form a 811 /// clique. They will be ordered alphabetically. 812 /// 813 static int TopoOrderRC(const void *PA, const void *PB) { 814 const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA; 815 const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB; 816 if (A == B) 817 return 0; 818 819 // Order by ascending spill size. 820 if (A->SpillSize < B->SpillSize) 821 return -1; 822 if (A->SpillSize > B->SpillSize) 823 return 1; 824 825 // Order by ascending spill alignment. 826 if (A->SpillAlignment < B->SpillAlignment) 827 return -1; 828 if (A->SpillAlignment > B->SpillAlignment) 829 return 1; 830 831 // Order by descending set size. Note that the classes' allocation order may 832 // not have been computed yet. The Members set is always vaild. 833 if (A->getMembers().size() > B->getMembers().size()) 834 return -1; 835 if (A->getMembers().size() < B->getMembers().size()) 836 return 1; 837 838 // Finally order by name as a tie breaker. 839 return StringRef(A->getName()).compare(B->getName()); 840 } 841 842 std::string CodeGenRegisterClass::getQualifiedName() const { 843 if (Namespace.empty()) 844 return getName(); 845 else 846 return Namespace + "::" + getName(); 847 } 848 849 // Compute sub-classes of all register classes. 850 // Assume the classes are ordered topologically. 851 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 852 ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses(); 853 854 // Visit backwards so sub-classes are seen first. 855 for (unsigned rci = RegClasses.size(); rci; --rci) { 856 CodeGenRegisterClass &RC = *RegClasses[rci - 1]; 857 RC.SubClasses.resize(RegClasses.size()); 858 RC.SubClasses.set(RC.EnumValue); 859 860 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 861 for (unsigned s = rci; s != RegClasses.size(); ++s) { 862 if (RC.SubClasses.test(s)) 863 continue; 864 CodeGenRegisterClass *SubRC = RegClasses[s]; 865 if (!testSubClass(&RC, SubRC)) 866 continue; 867 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 868 // check them again. 869 RC.SubClasses |= SubRC->SubClasses; 870 } 871 872 // Sweep up missed clique members. They will be immediately preceding RC. 873 for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s) 874 RC.SubClasses.set(s - 1); 875 } 876 877 // Compute the SuperClasses lists from the SubClasses vectors. 878 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { 879 const BitVector &SC = RegClasses[rci]->getSubClasses(); 880 for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) { 881 if (unsigned(s) == rci) 882 continue; 883 RegClasses[s]->SuperClasses.push_back(RegClasses[rci]); 884 } 885 } 886 887 // With the class hierarchy in place, let synthesized register classes inherit 888 // properties from their closest super-class. The iteration order here can 889 // propagate properties down multiple levels. 890 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) 891 if (!RegClasses[rci]->getDef()) 892 RegClasses[rci]->inheritProperties(RegBank); 893 } 894 895 void 896 CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx, 897 BitVector &Out) const { 898 DenseMap<CodeGenSubRegIndex*, 899 SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator 900 FindI = SuperRegClasses.find(SubIdx); 901 if (FindI == SuperRegClasses.end()) 902 return; 903 for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I = 904 FindI->second.begin(), E = FindI->second.end(); I != E; ++I) 905 Out.set((*I)->EnumValue); 906 } 907 908 // Populate a unique sorted list of units from a register set. 909 void CodeGenRegisterClass::buildRegUnitSet( 910 std::vector<unsigned> &RegUnits) const { 911 std::vector<unsigned> TmpUnits; 912 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) 913 TmpUnits.push_back(*UnitI); 914 std::sort(TmpUnits.begin(), TmpUnits.end()); 915 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 916 std::back_inserter(RegUnits)); 917 } 918 919 //===----------------------------------------------------------------------===// 920 // CodeGenRegBank 921 //===----------------------------------------------------------------------===// 922 923 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { 924 // Configure register Sets to understand register classes and tuples. 925 Sets.addFieldExpander("RegisterClass", "MemberList"); 926 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 927 Sets.addExpander("RegisterTuples", new TupleExpander()); 928 929 // Read in the user-defined (named) sub-register indices. 930 // More indices will be synthesized later. 931 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 932 std::sort(SRIs.begin(), SRIs.end(), LessRecord()); 933 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 934 getSubRegIdx(SRIs[i]); 935 // Build composite maps from ComposedOf fields. 936 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) 937 SubRegIndices[i]->updateComponents(*this); 938 939 // Read in the register definitions. 940 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 941 std::sort(Regs.begin(), Regs.end(), LessRecordRegister()); 942 Registers.reserve(Regs.size()); 943 // Assign the enumeration values. 944 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 945 getReg(Regs[i]); 946 947 // Expand tuples and number the new registers. 948 std::vector<Record*> Tups = 949 Records.getAllDerivedDefinitions("RegisterTuples"); 950 951 std::vector<Record*> TupRegsCopy; 952 for (unsigned i = 0, e = Tups.size(); i != e; ++i) { 953 const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]); 954 TupRegsCopy.reserve(TupRegs->size()); 955 TupRegsCopy.assign(TupRegs->begin(), TupRegs->end()); 956 std::sort(TupRegsCopy.begin(), TupRegsCopy.end(), LessRecordRegister()); 957 for (unsigned j = 0, je = TupRegsCopy.size(); j != je; ++j) 958 getReg((TupRegsCopy)[j]); 959 TupRegsCopy.clear(); 960 } 961 962 // Now all the registers are known. Build the object graph of explicit 963 // register-register references. 964 for (unsigned i = 0, e = Registers.size(); i != e; ++i) 965 Registers[i]->buildObjectGraph(*this); 966 967 // Compute register name map. 968 for (unsigned i = 0, e = Registers.size(); i != e; ++i) 969 RegistersByName.GetOrCreateValue( 970 Registers[i]->TheDef->getValueAsString("AsmName"), 971 Registers[i]); 972 973 // Precompute all sub-register maps. 974 // This will create Composite entries for all inferred sub-register indices. 975 for (unsigned i = 0, e = Registers.size(); i != e; ++i) 976 Registers[i]->computeSubRegs(*this); 977 978 // Infer even more sub-registers by combining leading super-registers. 979 for (unsigned i = 0, e = Registers.size(); i != e; ++i) 980 if (Registers[i]->CoveredBySubRegs) 981 Registers[i]->computeSecondarySubRegs(*this); 982 983 // After the sub-register graph is complete, compute the topologically 984 // ordered SuperRegs list. 985 for (unsigned i = 0, e = Registers.size(); i != e; ++i) 986 Registers[i]->computeSuperRegs(*this); 987 988 // Native register units are associated with a leaf register. They've all been 989 // discovered now. 990 NumNativeRegUnits = RegUnits.size(); 991 992 // Read in register class definitions. 993 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 994 if (RCs.empty()) 995 PrintFatalError(std::string("No 'RegisterClass' subclasses defined!")); 996 997 // Allocate user-defined register classes. 998 RegClasses.reserve(RCs.size()); 999 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 1000 addToMaps(new CodeGenRegisterClass(*this, RCs[i])); 1001 1002 // Infer missing classes to create a full algebra. 1003 computeInferredRegisterClasses(); 1004 1005 // Order register classes topologically and assign enum values. 1006 array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC); 1007 for (unsigned i = 0, e = RegClasses.size(); i != e; ++i) 1008 RegClasses[i]->EnumValue = i; 1009 CodeGenRegisterClass::computeSubClasses(*this); 1010 } 1011 1012 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1013 CodeGenSubRegIndex* 1014 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1015 CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace, 1016 SubRegIndices.size() + 1); 1017 SubRegIndices.push_back(Idx); 1018 return Idx; 1019 } 1020 1021 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1022 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1023 if (Idx) 1024 return Idx; 1025 Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1); 1026 SubRegIndices.push_back(Idx); 1027 return Idx; 1028 } 1029 1030 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1031 CodeGenRegister *&Reg = Def2Reg[Def]; 1032 if (Reg) 1033 return Reg; 1034 Reg = new CodeGenRegister(Def, Registers.size() + 1); 1035 Registers.push_back(Reg); 1036 return Reg; 1037 } 1038 1039 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1040 RegClasses.push_back(RC); 1041 1042 if (Record *Def = RC->getDef()) 1043 Def2RC.insert(std::make_pair(Def, RC)); 1044 1045 // Duplicate classes are rejected by insert(). 1046 // That's OK, we only care about the properties handled by CGRC::Key. 1047 CodeGenRegisterClass::Key K(*RC); 1048 Key2RC.insert(std::make_pair(K, RC)); 1049 } 1050 1051 // Create a synthetic sub-class if it is missing. 1052 CodeGenRegisterClass* 1053 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1054 const CodeGenRegister::Set *Members, 1055 StringRef Name) { 1056 // Synthetic sub-class has the same size and alignment as RC. 1057 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); 1058 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1059 if (FoundI != Key2RC.end()) 1060 return FoundI->second; 1061 1062 // Sub-class doesn't exist, create a new one. 1063 CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K); 1064 addToMaps(NewRC); 1065 return NewRC; 1066 } 1067 1068 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1069 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1070 return RC; 1071 1072 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1073 } 1074 1075 CodeGenSubRegIndex* 1076 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1077 CodeGenSubRegIndex *B) { 1078 // Look for an existing entry. 1079 CodeGenSubRegIndex *Comp = A->compose(B); 1080 if (Comp) 1081 return Comp; 1082 1083 // None exists, synthesize one. 1084 std::string Name = A->getName() + "_then_" + B->getName(); 1085 Comp = createSubRegIndex(Name, A->getNamespace()); 1086 A->addComposite(B, Comp); 1087 return Comp; 1088 } 1089 1090 CodeGenSubRegIndex *CodeGenRegBank:: 1091 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex*, 8> &Parts) { 1092 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1093 1094 // Look for an existing entry. 1095 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1096 if (Idx) 1097 return Idx; 1098 1099 // None exists, synthesize one. 1100 std::string Name = Parts.front()->getName(); 1101 // Determine whether all parts are contiguous. 1102 bool isContinuous = true; 1103 unsigned Size = Parts.front()->Size; 1104 unsigned LastOffset = Parts.front()->Offset; 1105 unsigned LastSize = Parts.front()->Size; 1106 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1107 Name += '_'; 1108 Name += Parts[i]->getName(); 1109 Size += Parts[i]->Size; 1110 if (Parts[i]->Offset != (LastOffset + LastSize)) 1111 isContinuous = false; 1112 LastOffset = Parts[i]->Offset; 1113 LastSize = Parts[i]->Size; 1114 } 1115 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1116 Idx->Size = Size; 1117 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1118 return Idx; 1119 } 1120 1121 void CodeGenRegBank::computeComposites() { 1122 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1123 // and many registers will share TopoSigs on regular architectures. 1124 BitVector TopoSigs(getNumTopoSigs()); 1125 1126 for (unsigned i = 0, e = Registers.size(); i != e; ++i) { 1127 CodeGenRegister *Reg1 = Registers[i]; 1128 1129 // Skip identical subreg structures already processed. 1130 if (TopoSigs.test(Reg1->getTopoSig())) 1131 continue; 1132 TopoSigs.set(Reg1->getTopoSig()); 1133 1134 const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs(); 1135 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1136 e1 = SRM1.end(); i1 != e1; ++i1) { 1137 CodeGenSubRegIndex *Idx1 = i1->first; 1138 CodeGenRegister *Reg2 = i1->second; 1139 // Ignore identity compositions. 1140 if (Reg1 == Reg2) 1141 continue; 1142 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1143 // Try composing Idx1 with another SubRegIndex. 1144 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1145 e2 = SRM2.end(); i2 != e2; ++i2) { 1146 CodeGenSubRegIndex *Idx2 = i2->first; 1147 CodeGenRegister *Reg3 = i2->second; 1148 // Ignore identity compositions. 1149 if (Reg2 == Reg3) 1150 continue; 1151 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1152 CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3); 1153 assert(Idx3 && "Sub-register doesn't have an index"); 1154 1155 // Conflicting composition? Emit a warning but allow it. 1156 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) 1157 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1158 " and " + Idx2->getQualifiedName() + 1159 " compose ambiguously as " + Prev->getQualifiedName() + 1160 " or " + Idx3->getQualifiedName()); 1161 } 1162 } 1163 } 1164 } 1165 1166 // Compute lane masks. This is similar to register units, but at the 1167 // sub-register index level. Each bit in the lane mask is like a register unit 1168 // class, and two lane masks will have a bit in common if two sub-register 1169 // indices overlap in some register. 1170 // 1171 // Conservatively share a lane mask bit if two sub-register indices overlap in 1172 // some registers, but not in others. That shouldn't happen a lot. 1173 void CodeGenRegBank::computeSubRegIndexLaneMasks() { 1174 // First assign individual bits to all the leaf indices. 1175 unsigned Bit = 0; 1176 // Determine mask of lanes that cover their registers. 1177 CoveringLanes = ~0u; 1178 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { 1179 CodeGenSubRegIndex *Idx = SubRegIndices[i]; 1180 if (Idx->getComposites().empty()) { 1181 Idx->LaneMask = 1u << Bit; 1182 // Share bit 31 in the unlikely case there are more than 32 leafs. 1183 // 1184 // Sharing bits is harmless; it allows graceful degradation in targets 1185 // with more than 32 vector lanes. They simply get a limited resolution 1186 // view of lanes beyond the 32nd. 1187 // 1188 // See also the comment for getSubRegIndexLaneMask(). 1189 if (Bit < 31) 1190 ++Bit; 1191 else 1192 // Once bit 31 is shared among multiple leafs, the 'lane' it represents 1193 // is no longer covering its registers. 1194 CoveringLanes &= ~(1u << Bit); 1195 } else { 1196 Idx->LaneMask = 0; 1197 } 1198 } 1199 1200 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1201 // by the sub-register graph? This doesn't occur in any known targets. 1202 1203 // Inherit lanes from composites. 1204 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { 1205 unsigned Mask = SubRegIndices[i]->computeLaneMask(); 1206 // If some super-registers without CoveredBySubRegs use this index, we can 1207 // no longer assume that the lanes are covering their registers. 1208 if (!SubRegIndices[i]->AllSuperRegsCovered) 1209 CoveringLanes &= ~Mask; 1210 } 1211 } 1212 1213 namespace { 1214 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1215 // the transitive closure of the union of overlapping register 1216 // classes. Together, the UberRegSets form a partition of the registers. If we 1217 // consider overlapping register classes to be connected, then each UberRegSet 1218 // is a set of connected components. 1219 // 1220 // An UberRegSet will likely be a horizontal slice of register names of 1221 // the same width. Nontrivial subregisters should then be in a separate 1222 // UberRegSet. But this property isn't required for valid computation of 1223 // register unit weights. 1224 // 1225 // A Weight field caches the max per-register unit weight in each UberRegSet. 1226 // 1227 // A set of SingularDeterminants flags single units of some register in this set 1228 // for which the unit weight equals the set weight. These units should not have 1229 // their weight increased. 1230 struct UberRegSet { 1231 CodeGenRegister::Set Regs; 1232 unsigned Weight; 1233 CodeGenRegister::RegUnitList SingularDeterminants; 1234 1235 UberRegSet(): Weight(0) {} 1236 }; 1237 } // namespace 1238 1239 // Partition registers into UberRegSets, where each set is the transitive 1240 // closure of the union of overlapping register classes. 1241 // 1242 // UberRegSets[0] is a special non-allocatable set. 1243 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1244 std::vector<UberRegSet*> &RegSets, 1245 CodeGenRegBank &RegBank) { 1246 1247 const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters(); 1248 1249 // The Register EnumValue is one greater than its index into Registers. 1250 assert(Registers.size() == Registers[Registers.size()-1]->EnumValue && 1251 "register enum value mismatch"); 1252 1253 // For simplicitly make the SetID the same as EnumValue. 1254 IntEqClasses UberSetIDs(Registers.size()+1); 1255 std::set<unsigned> AllocatableRegs; 1256 for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) { 1257 1258 CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i]; 1259 if (!RegClass->Allocatable) 1260 continue; 1261 1262 const CodeGenRegister::Set &Regs = RegClass->getMembers(); 1263 if (Regs.empty()) 1264 continue; 1265 1266 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1267 assert(USetID && "register number 0 is invalid"); 1268 1269 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1270 for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()), 1271 E = Regs.end(); I != E; ++I) { 1272 AllocatableRegs.insert((*I)->EnumValue); 1273 UberSetIDs.join(USetID, (*I)->EnumValue); 1274 } 1275 } 1276 // Combine non-allocatable regs. 1277 for (unsigned i = 0, e = Registers.size(); i != e; ++i) { 1278 unsigned RegNum = Registers[i]->EnumValue; 1279 if (AllocatableRegs.count(RegNum)) 1280 continue; 1281 1282 UberSetIDs.join(0, RegNum); 1283 } 1284 UberSetIDs.compress(); 1285 1286 // Make the first UberSet a special unallocatable set. 1287 unsigned ZeroID = UberSetIDs[0]; 1288 1289 // Insert Registers into the UberSets formed by union-find. 1290 // Do not resize after this. 1291 UberSets.resize(UberSetIDs.getNumClasses()); 1292 for (unsigned i = 0, e = Registers.size(); i != e; ++i) { 1293 const CodeGenRegister *Reg = Registers[i]; 1294 unsigned USetID = UberSetIDs[Reg->EnumValue]; 1295 if (!USetID) 1296 USetID = ZeroID; 1297 else if (USetID == ZeroID) 1298 USetID = 0; 1299 1300 UberRegSet *USet = &UberSets[USetID]; 1301 USet->Regs.insert(Reg); 1302 RegSets[i] = USet; 1303 } 1304 } 1305 1306 // Recompute each UberSet weight after changing unit weights. 1307 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1308 CodeGenRegBank &RegBank) { 1309 // Skip the first unallocatable set. 1310 for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()), 1311 E = UberSets.end(); I != E; ++I) { 1312 1313 // Initialize all unit weights in this set, and remember the max units/reg. 1314 const CodeGenRegister *Reg = 0; 1315 unsigned MaxWeight = 0, Weight = 0; 1316 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1317 if (Reg != UnitI.getReg()) { 1318 if (Weight > MaxWeight) 1319 MaxWeight = Weight; 1320 Reg = UnitI.getReg(); 1321 Weight = 0; 1322 } 1323 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1324 if (!UWeight) { 1325 UWeight = 1; 1326 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1327 } 1328 Weight += UWeight; 1329 } 1330 if (Weight > MaxWeight) 1331 MaxWeight = Weight; 1332 1333 // Update the set weight. 1334 I->Weight = MaxWeight; 1335 1336 // Find singular determinants. 1337 for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(), 1338 RegE = I->Regs.end(); RegI != RegE; ++RegI) { 1339 if ((*RegI)->getRegUnits().size() == 1 1340 && (*RegI)->getWeight(RegBank) == I->Weight) 1341 mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits()); 1342 } 1343 } 1344 } 1345 1346 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1347 // a register and its subregisters so that they have the same weight as their 1348 // UberSet. Self-recursion processes the subregister tree in postorder so 1349 // subregisters are normalized first. 1350 // 1351 // Side effects: 1352 // - creates new adopted register units 1353 // - causes superregisters to inherit adopted units 1354 // - increases the weight of "singular" units 1355 // - induces recomputation of UberWeights. 1356 static bool normalizeWeight(CodeGenRegister *Reg, 1357 std::vector<UberRegSet> &UberSets, 1358 std::vector<UberRegSet*> &RegSets, 1359 std::set<unsigned> &NormalRegs, 1360 CodeGenRegister::RegUnitList &NormalUnits, 1361 CodeGenRegBank &RegBank) { 1362 bool Changed = false; 1363 if (!NormalRegs.insert(Reg->EnumValue).second) 1364 return Changed; 1365 1366 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1367 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1368 SRE = SRM.end(); SRI != SRE; ++SRI) { 1369 if (SRI->second == Reg) 1370 continue; // self-cycles happen 1371 1372 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1373 NormalRegs, NormalUnits, RegBank); 1374 } 1375 // Postorder register normalization. 1376 1377 // Inherit register units newly adopted by subregisters. 1378 if (Reg->inheritRegUnits(RegBank)) 1379 computeUberWeights(UberSets, RegBank); 1380 1381 // Check if this register is too skinny for its UberRegSet. 1382 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1383 1384 unsigned RegWeight = Reg->getWeight(RegBank); 1385 if (UberSet->Weight > RegWeight) { 1386 // A register unit's weight can be adjusted only if it is the singular unit 1387 // for this register, has not been used to normalize a subregister's set, 1388 // and has not already been used to singularly determine this UberRegSet. 1389 unsigned AdjustUnit = Reg->getRegUnits().front(); 1390 if (Reg->getRegUnits().size() != 1 1391 || hasRegUnit(NormalUnits, AdjustUnit) 1392 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1393 // We don't have an adjustable unit, so adopt a new one. 1394 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1395 Reg->adoptRegUnit(AdjustUnit); 1396 // Adopting a unit does not immediately require recomputing set weights. 1397 } 1398 else { 1399 // Adjust the existing single unit. 1400 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1401 // The unit may be shared among sets and registers within this set. 1402 computeUberWeights(UberSets, RegBank); 1403 } 1404 Changed = true; 1405 } 1406 1407 // Mark these units normalized so superregisters can't change their weights. 1408 mergeRegUnits(NormalUnits, Reg->getRegUnits()); 1409 1410 return Changed; 1411 } 1412 1413 // Compute a weight for each register unit created during getSubRegs. 1414 // 1415 // The goal is that two registers in the same class will have the same weight, 1416 // where each register's weight is defined as sum of its units' weights. 1417 void CodeGenRegBank::computeRegUnitWeights() { 1418 std::vector<UberRegSet> UberSets; 1419 std::vector<UberRegSet*> RegSets(Registers.size()); 1420 computeUberSets(UberSets, RegSets, *this); 1421 // UberSets and RegSets are now immutable. 1422 1423 computeUberWeights(UberSets, *this); 1424 1425 // Iterate over each Register, normalizing the unit weights until reaching 1426 // a fix point. 1427 unsigned NumIters = 0; 1428 for (bool Changed = true; Changed; ++NumIters) { 1429 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1430 Changed = false; 1431 for (unsigned i = 0, e = Registers.size(); i != e; ++i) { 1432 CodeGenRegister::RegUnitList NormalUnits; 1433 std::set<unsigned> NormalRegs; 1434 Changed |= normalizeWeight(Registers[i], UberSets, RegSets, 1435 NormalRegs, NormalUnits, *this); 1436 } 1437 } 1438 } 1439 1440 // Find a set in UniqueSets with the same elements as Set. 1441 // Return an iterator into UniqueSets. 1442 static std::vector<RegUnitSet>::const_iterator 1443 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1444 const RegUnitSet &Set) { 1445 std::vector<RegUnitSet>::const_iterator 1446 I = UniqueSets.begin(), E = UniqueSets.end(); 1447 for(;I != E; ++I) { 1448 if (I->Units == Set.Units) 1449 break; 1450 } 1451 return I; 1452 } 1453 1454 // Return true if the RUSubSet is a subset of RUSuperSet. 1455 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1456 const std::vector<unsigned> &RUSuperSet) { 1457 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1458 RUSubSet.begin(), RUSubSet.end()); 1459 } 1460 1461 // Iteratively prune unit sets. 1462 void CodeGenRegBank::pruneUnitSets() { 1463 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1464 1465 // Form an equivalence class of UnitSets with no significant difference. 1466 std::vector<unsigned> SuperSetIDs; 1467 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1468 SubIdx != EndIdx; ++SubIdx) { 1469 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1470 unsigned SuperIdx = 0; 1471 for (; SuperIdx != EndIdx; ++SuperIdx) { 1472 if (SuperIdx == SubIdx) 1473 continue; 1474 1475 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1476 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1477 && (SubSet.Units.size() + 3 > SuperSet.Units.size())) { 1478 break; 1479 } 1480 } 1481 if (SuperIdx == EndIdx) 1482 SuperSetIDs.push_back(SubIdx); 1483 } 1484 // Populate PrunedUnitSets with each equivalence class's superset. 1485 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1486 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1487 unsigned SuperIdx = SuperSetIDs[i]; 1488 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1489 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1490 } 1491 RegUnitSets.swap(PrunedUnitSets); 1492 } 1493 1494 // Create a RegUnitSet for each RegClass that contains all units in the class 1495 // including adopted units that are necessary to model register pressure. Then 1496 // iteratively compute RegUnitSets such that the union of any two overlapping 1497 // RegUnitSets is repreresented. 1498 // 1499 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1500 // RegUnitSet that is a superset of that RegUnitClass. 1501 void CodeGenRegBank::computeRegUnitSets() { 1502 1503 // Compute a unique RegUnitSet for each RegClass. 1504 const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses(); 1505 unsigned NumRegClasses = RegClasses.size(); 1506 for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) { 1507 if (!RegClasses[RCIdx]->Allocatable) 1508 continue; 1509 1510 // Speculatively grow the RegUnitSets to hold the new set. 1511 RegUnitSets.resize(RegUnitSets.size() + 1); 1512 RegUnitSets.back().Name = RegClasses[RCIdx]->getName(); 1513 1514 // Compute a sorted list of units in this class. 1515 RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units); 1516 1517 // Find an existing RegUnitSet. 1518 std::vector<RegUnitSet>::const_iterator SetI = 1519 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1520 if (SetI != llvm::prior(RegUnitSets.end())) 1521 RegUnitSets.pop_back(); 1522 } 1523 1524 // Iteratively prune unit sets. 1525 pruneUnitSets(); 1526 1527 // Iterate over all unit sets, including new ones added by this loop. 1528 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1529 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1530 // In theory, this is combinatorial. In practice, it needs to be bounded 1531 // by a small number of sets for regpressure to be efficient. 1532 // If the assert is hit, we need to implement pruning. 1533 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1534 1535 // Compare new sets with all original classes. 1536 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1537 SearchIdx != EndIdx; ++SearchIdx) { 1538 std::set<unsigned> Intersection; 1539 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1540 RegUnitSets[Idx].Units.end(), 1541 RegUnitSets[SearchIdx].Units.begin(), 1542 RegUnitSets[SearchIdx].Units.end(), 1543 std::inserter(Intersection, Intersection.begin())); 1544 if (Intersection.empty()) 1545 continue; 1546 1547 // Speculatively grow the RegUnitSets to hold the new set. 1548 RegUnitSets.resize(RegUnitSets.size() + 1); 1549 RegUnitSets.back().Name = 1550 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1551 1552 std::set_union(RegUnitSets[Idx].Units.begin(), 1553 RegUnitSets[Idx].Units.end(), 1554 RegUnitSets[SearchIdx].Units.begin(), 1555 RegUnitSets[SearchIdx].Units.end(), 1556 std::inserter(RegUnitSets.back().Units, 1557 RegUnitSets.back().Units.begin())); 1558 1559 // Find an existing RegUnitSet, or add the union to the unique sets. 1560 std::vector<RegUnitSet>::const_iterator SetI = 1561 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1562 if (SetI != llvm::prior(RegUnitSets.end())) 1563 RegUnitSets.pop_back(); 1564 } 1565 } 1566 1567 // Iteratively prune unit sets after inferring supersets. 1568 pruneUnitSets(); 1569 1570 // For each register class, list the UnitSets that are supersets. 1571 RegClassUnitSets.resize(NumRegClasses); 1572 for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) { 1573 if (!RegClasses[RCIdx]->Allocatable) 1574 continue; 1575 1576 // Recompute the sorted list of units in this class. 1577 std::vector<unsigned> RegUnits; 1578 RegClasses[RCIdx]->buildRegUnitSet(RegUnits); 1579 1580 // Don't increase pressure for unallocatable regclasses. 1581 if (RegUnits.empty()) 1582 continue; 1583 1584 // Find all supersets. 1585 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1586 USIdx != USEnd; ++USIdx) { 1587 if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units)) 1588 RegClassUnitSets[RCIdx].push_back(USIdx); 1589 } 1590 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 1591 } 1592 1593 // For each register unit, ensure that we have the list of UnitSets that 1594 // contain the unit. Normally, this matches an existing list of UnitSets for a 1595 // register class. If not, we create a new entry in RegClassUnitSets as a 1596 // "fake" register class. 1597 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 1598 UnitIdx < UnitEnd; ++UnitIdx) { 1599 std::vector<unsigned> RUSets; 1600 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 1601 RegUnitSet &RUSet = RegUnitSets[i]; 1602 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx) 1603 == RUSet.Units.end()) 1604 continue; 1605 RUSets.push_back(i); 1606 } 1607 unsigned RCUnitSetsIdx = 0; 1608 for (unsigned e = RegClassUnitSets.size(); 1609 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 1610 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 1611 break; 1612 } 1613 } 1614 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 1615 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 1616 // Create a new list of UnitSets as a "fake" register class. 1617 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 1618 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 1619 } 1620 } 1621 } 1622 1623 void CodeGenRegBank::computeDerivedInfo() { 1624 computeComposites(); 1625 computeSubRegIndexLaneMasks(); 1626 1627 // Compute a weight for each register unit created during getSubRegs. 1628 // This may create adopted register units (with unit # >= NumNativeRegUnits). 1629 computeRegUnitWeights(); 1630 1631 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 1632 // supersets for the union of overlapping sets. 1633 computeRegUnitSets(); 1634 } 1635 1636 // 1637 // Synthesize missing register class intersections. 1638 // 1639 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 1640 // returns a maximal register class for all X. 1641 // 1642 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 1643 for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) { 1644 CodeGenRegisterClass *RC1 = RC; 1645 CodeGenRegisterClass *RC2 = RegClasses[rci]; 1646 if (RC1 == RC2) 1647 continue; 1648 1649 // Compute the set intersection of RC1 and RC2. 1650 const CodeGenRegister::Set &Memb1 = RC1->getMembers(); 1651 const CodeGenRegister::Set &Memb2 = RC2->getMembers(); 1652 CodeGenRegister::Set Intersection; 1653 std::set_intersection(Memb1.begin(), Memb1.end(), 1654 Memb2.begin(), Memb2.end(), 1655 std::inserter(Intersection, Intersection.begin()), 1656 CodeGenRegister::Less()); 1657 1658 // Skip disjoint class pairs. 1659 if (Intersection.empty()) 1660 continue; 1661 1662 // If RC1 and RC2 have different spill sizes or alignments, use the 1663 // larger size for sub-classing. If they are equal, prefer RC1. 1664 if (RC2->SpillSize > RC1->SpillSize || 1665 (RC2->SpillSize == RC1->SpillSize && 1666 RC2->SpillAlignment > RC1->SpillAlignment)) 1667 std::swap(RC1, RC2); 1668 1669 getOrCreateSubClass(RC1, &Intersection, 1670 RC1->getName() + "_and_" + RC2->getName()); 1671 } 1672 } 1673 1674 // 1675 // Synthesize missing sub-classes for getSubClassWithSubReg(). 1676 // 1677 // Make sure that the set of registers in RC with a given SubIdx sub-register 1678 // form a register class. Update RC->SubClassWithSubReg. 1679 // 1680 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 1681 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 1682 typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set, 1683 CodeGenSubRegIndex::Less> SubReg2SetMap; 1684 1685 // Compute the set of registers supporting each SubRegIndex. 1686 SubReg2SetMap SRSets; 1687 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), 1688 RE = RC->getMembers().end(); RI != RE; ++RI) { 1689 const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs(); 1690 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 1691 E = SRM.end(); I != E; ++I) 1692 SRSets[I->first].insert(*RI); 1693 } 1694 1695 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 1696 // numerical order to visit synthetic indices last. 1697 for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { 1698 CodeGenSubRegIndex *SubIdx = SubRegIndices[sri]; 1699 SubReg2SetMap::const_iterator I = SRSets.find(SubIdx); 1700 // Unsupported SubRegIndex. Skip it. 1701 if (I == SRSets.end()) 1702 continue; 1703 // In most cases, all RC registers support the SubRegIndex. 1704 if (I->second.size() == RC->getMembers().size()) { 1705 RC->setSubClassWithSubReg(SubIdx, RC); 1706 continue; 1707 } 1708 // This is a real subset. See if we have a matching class. 1709 CodeGenRegisterClass *SubRC = 1710 getOrCreateSubClass(RC, &I->second, 1711 RC->getName() + "_with_" + I->first->getName()); 1712 RC->setSubClassWithSubReg(SubIdx, SubRC); 1713 } 1714 } 1715 1716 // 1717 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 1718 // 1719 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 1720 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 1721 // 1722 1723 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 1724 unsigned FirstSubRegRC) { 1725 SmallVector<std::pair<const CodeGenRegister*, 1726 const CodeGenRegister*>, 16> SSPairs; 1727 BitVector TopoSigs(getNumTopoSigs()); 1728 1729 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 1730 for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { 1731 CodeGenSubRegIndex *SubIdx = SubRegIndices[sri]; 1732 // Skip indexes that aren't fully supported by RC's registers. This was 1733 // computed by inferSubClassWithSubReg() above which should have been 1734 // called first. 1735 if (RC->getSubClassWithSubReg(SubIdx) != RC) 1736 continue; 1737 1738 // Build list of (Super, Sub) pairs for this SubIdx. 1739 SSPairs.clear(); 1740 TopoSigs.reset(); 1741 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), 1742 RE = RC->getMembers().end(); RI != RE; ++RI) { 1743 const CodeGenRegister *Super = *RI; 1744 const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second; 1745 assert(Sub && "Missing sub-register"); 1746 SSPairs.push_back(std::make_pair(Super, Sub)); 1747 TopoSigs.set(Sub->getTopoSig()); 1748 } 1749 1750 // Iterate over sub-register class candidates. Ignore classes created by 1751 // this loop. They will never be useful. 1752 for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce; 1753 ++rci) { 1754 CodeGenRegisterClass *SubRC = RegClasses[rci]; 1755 // Topological shortcut: SubRC members have the wrong shape. 1756 if (!TopoSigs.anyCommon(SubRC->getTopoSigs())) 1757 continue; 1758 // Compute the subset of RC that maps into SubRC. 1759 CodeGenRegister::Set SubSet; 1760 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 1761 if (SubRC->contains(SSPairs[i].second)) 1762 SubSet.insert(SSPairs[i].first); 1763 if (SubSet.empty()) 1764 continue; 1765 // RC injects completely into SubRC. 1766 if (SubSet.size() == SSPairs.size()) { 1767 SubRC->addSuperRegClass(SubIdx, RC); 1768 continue; 1769 } 1770 // Only a subset of RC maps into SubRC. Make sure it is represented by a 1771 // class. 1772 getOrCreateSubClass(RC, &SubSet, RC->getName() + 1773 "_with_" + SubIdx->getName() + 1774 "_in_" + SubRC->getName()); 1775 } 1776 } 1777 } 1778 1779 1780 // 1781 // Infer missing register classes. 1782 // 1783 void CodeGenRegBank::computeInferredRegisterClasses() { 1784 // When this function is called, the register classes have not been sorted 1785 // and assigned EnumValues yet. That means getSubClasses(), 1786 // getSuperClasses(), and hasSubClass() functions are defunct. 1787 unsigned FirstNewRC = RegClasses.size(); 1788 1789 // Visit all register classes, including the ones being added by the loop. 1790 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { 1791 CodeGenRegisterClass *RC = RegClasses[rci]; 1792 1793 // Synthesize answers for getSubClassWithSubReg(). 1794 inferSubClassWithSubReg(RC); 1795 1796 // Synthesize answers for getCommonSubClass(). 1797 inferCommonSubClass(RC); 1798 1799 // Synthesize answers for getMatchingSuperRegClass(). 1800 inferMatchingSuperRegClass(RC); 1801 1802 // New register classes are created while this loop is running, and we need 1803 // to visit all of them. I particular, inferMatchingSuperRegClass needs 1804 // to match old super-register classes with sub-register classes created 1805 // after inferMatchingSuperRegClass was called. At this point, 1806 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 1807 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 1808 if (rci + 1 == FirstNewRC) { 1809 unsigned NextNewRC = RegClasses.size(); 1810 for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2) 1811 inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC); 1812 FirstNewRC = NextNewRC; 1813 } 1814 } 1815 } 1816 1817 /// getRegisterClassForRegister - Find the register class that contains the 1818 /// specified physical register. If the register is not in a register class, 1819 /// return null. If the register is in multiple classes, and the classes have a 1820 /// superset-subset relationship and the same set of types, return the 1821 /// superclass. Otherwise return null. 1822 const CodeGenRegisterClass* 1823 CodeGenRegBank::getRegClassForRegister(Record *R) { 1824 const CodeGenRegister *Reg = getReg(R); 1825 ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses(); 1826 const CodeGenRegisterClass *FoundRC = 0; 1827 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 1828 const CodeGenRegisterClass &RC = *RCs[i]; 1829 if (!RC.contains(Reg)) 1830 continue; 1831 1832 // If this is the first class that contains the register, 1833 // make a note of it and go on to the next class. 1834 if (!FoundRC) { 1835 FoundRC = &RC; 1836 continue; 1837 } 1838 1839 // If a register's classes have different types, return null. 1840 if (RC.getValueTypes() != FoundRC->getValueTypes()) 1841 return 0; 1842 1843 // Check to see if the previously found class that contains 1844 // the register is a subclass of the current class. If so, 1845 // prefer the superclass. 1846 if (RC.hasSubClass(FoundRC)) { 1847 FoundRC = &RC; 1848 continue; 1849 } 1850 1851 // Check to see if the previously found class that contains 1852 // the register is a superclass of the current class. If so, 1853 // prefer the superclass. 1854 if (FoundRC->hasSubClass(&RC)) 1855 continue; 1856 1857 // Multiple classes, and neither is a superclass of the other. 1858 // Return null. 1859 return 0; 1860 } 1861 return FoundRC; 1862 } 1863 1864 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 1865 SetVector<const CodeGenRegister*> Set; 1866 1867 // First add Regs with all sub-registers. 1868 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 1869 CodeGenRegister *Reg = getReg(Regs[i]); 1870 if (Set.insert(Reg)) 1871 // Reg is new, add all sub-registers. 1872 // The pre-ordering is not important here. 1873 Reg->addSubRegsPreOrder(Set, *this); 1874 } 1875 1876 // Second, find all super-registers that are completely covered by the set. 1877 for (unsigned i = 0; i != Set.size(); ++i) { 1878 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 1879 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 1880 const CodeGenRegister *Super = SR[j]; 1881 if (!Super->CoveredBySubRegs || Set.count(Super)) 1882 continue; 1883 // This new super-register is covered by its sub-registers. 1884 bool AllSubsInSet = true; 1885 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 1886 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 1887 E = SRM.end(); I != E; ++I) 1888 if (!Set.count(I->second)) { 1889 AllSubsInSet = false; 1890 break; 1891 } 1892 // All sub-registers in Set, add Super as well. 1893 // We will visit Super later to recheck its super-registers. 1894 if (AllSubsInSet) 1895 Set.insert(Super); 1896 } 1897 } 1898 1899 // Convert to BitVector. 1900 BitVector BV(Registers.size() + 1); 1901 for (unsigned i = 0, e = Set.size(); i != e; ++i) 1902 BV.set(Set[i]->EnumValue); 1903 return BV; 1904 } 1905