1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines structures to encapsulate information gleaned from the 10 // target register and register class definitions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenRegisters.h" 15 #include "CodeGenTarget.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/IntEqClasses.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/TableGen/Error.h" 32 #include "llvm/TableGen/Record.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <queue> 39 #include <set> 40 #include <string> 41 #include <tuple> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "regalloc-emitter" 48 49 //===----------------------------------------------------------------------===// 50 // CodeGenSubRegIndex 51 //===----------------------------------------------------------------------===// 52 53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 54 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 55 Name = std::string(R->getName()); 56 if (R->getValue("Namespace")) 57 Namespace = std::string(R->getValueAsString("Namespace")); 58 Size = R->getValueAsInt("Size"); 59 Offset = R->getValueAsInt("Offset"); 60 } 61 62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 63 unsigned Enum) 64 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)), 65 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true), 66 Artificial(true) {} 67 68 std::string CodeGenSubRegIndex::getQualifiedName() const { 69 std::string N = getNamespace(); 70 if (!N.empty()) 71 N += "::"; 72 N += getName(); 73 return N; 74 } 75 76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 77 if (!TheDef) 78 return; 79 80 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 81 if (!Comps.empty()) { 82 if (Comps.size() != 2) 83 PrintFatalError(TheDef->getLoc(), 84 "ComposedOf must have exactly two entries"); 85 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 86 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 87 CodeGenSubRegIndex *X = A->addComposite(B, this); 88 if (X) 89 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 90 } 91 92 std::vector<Record*> Parts = 93 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 94 if (!Parts.empty()) { 95 if (Parts.size() < 2) 96 PrintFatalError(TheDef->getLoc(), 97 "CoveredBySubRegs must have two or more entries"); 98 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 99 for (Record *Part : Parts) 100 IdxParts.push_back(RegBank.getSubRegIdx(Part)); 101 setConcatenationOf(IdxParts); 102 } 103 } 104 105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 106 // Already computed? 107 if (LaneMask.any()) 108 return LaneMask; 109 110 // Recursion guard, shouldn't be required. 111 LaneMask = LaneBitmask::getAll(); 112 113 // The lane mask is simply the union of all sub-indices. 114 LaneBitmask M; 115 for (const auto &C : Composed) 116 M |= C.second->computeLaneMask(); 117 assert(M.any() && "Missing lane mask, sub-register cycle?"); 118 LaneMask = M; 119 return LaneMask; 120 } 121 122 void CodeGenSubRegIndex::setConcatenationOf( 123 ArrayRef<CodeGenSubRegIndex*> Parts) { 124 if (ConcatenationOf.empty()) 125 ConcatenationOf.assign(Parts.begin(), Parts.end()); 126 else 127 assert(std::equal(Parts.begin(), Parts.end(), 128 ConcatenationOf.begin()) && "parts consistent"); 129 } 130 131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() { 132 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator 133 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { 134 CodeGenSubRegIndex *SubIdx = *I; 135 SubIdx->computeConcatTransitiveClosure(); 136 #ifndef NDEBUG 137 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) 138 assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); 139 #endif 140 141 if (SubIdx->ConcatenationOf.empty()) { 142 ++I; 143 } else { 144 I = ConcatenationOf.erase(I); 145 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), 146 SubIdx->ConcatenationOf.end()); 147 I += SubIdx->ConcatenationOf.size(); 148 } 149 } 150 } 151 152 //===----------------------------------------------------------------------===// 153 // CodeGenRegister 154 //===----------------------------------------------------------------------===// 155 156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 157 : TheDef(R), EnumValue(Enum), 158 CostPerUse(R->getValueAsListOfInts("CostPerUse")), 159 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 160 HasDisjunctSubRegs(false), SubRegsComplete(false), 161 SuperRegsComplete(false), TopoSig(~0u) { 162 Artificial = R->getValueAsBit("isArtificial"); 163 } 164 165 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 166 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 167 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 168 169 if (SRIs.size() != SRs.size()) 170 PrintFatalError(TheDef->getLoc(), 171 "SubRegs and SubRegIndices must have the same size"); 172 173 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 174 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 175 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 176 } 177 178 // Also compute leading super-registers. Each register has a list of 179 // covered-by-subregs super-registers where it appears as the first explicit 180 // sub-register. 181 // 182 // This is used by computeSecondarySubRegs() to find candidates. 183 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 184 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 185 186 // Add ad hoc alias links. This is a symmetric relationship between two 187 // registers, so build a symmetric graph by adding links in both ends. 188 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 189 for (Record *Alias : Aliases) { 190 CodeGenRegister *Reg = RegBank.getReg(Alias); 191 ExplicitAliases.push_back(Reg); 192 Reg->ExplicitAliases.push_back(this); 193 } 194 } 195 196 StringRef CodeGenRegister::getName() const { 197 assert(TheDef && "no def"); 198 return TheDef->getName(); 199 } 200 201 namespace { 202 203 // Iterate over all register units in a set of registers. 204 class RegUnitIterator { 205 CodeGenRegister::Vec::const_iterator RegI, RegE; 206 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 207 208 public: 209 RegUnitIterator(const CodeGenRegister::Vec &Regs): 210 RegI(Regs.begin()), RegE(Regs.end()) { 211 212 if (RegI != RegE) { 213 UnitI = (*RegI)->getRegUnits().begin(); 214 UnitE = (*RegI)->getRegUnits().end(); 215 advance(); 216 } 217 } 218 219 bool isValid() const { return UnitI != UnitE; } 220 221 unsigned operator* () const { assert(isValid()); return *UnitI; } 222 223 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 224 225 /// Preincrement. Move to the next unit. 226 void operator++() { 227 assert(isValid() && "Cannot advance beyond the last operand"); 228 ++UnitI; 229 advance(); 230 } 231 232 protected: 233 void advance() { 234 while (UnitI == UnitE) { 235 if (++RegI == RegE) 236 break; 237 UnitI = (*RegI)->getRegUnits().begin(); 238 UnitE = (*RegI)->getRegUnits().end(); 239 } 240 } 241 }; 242 243 } // end anonymous namespace 244 245 // Return true of this unit appears in RegUnits. 246 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 247 return RegUnits.test(Unit); 248 } 249 250 // Inherit register units from subregisters. 251 // Return true if the RegUnits changed. 252 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 253 bool changed = false; 254 for (const auto &SubReg : SubRegs) { 255 CodeGenRegister *SR = SubReg.second; 256 // Merge the subregister's units into this register's RegUnits. 257 changed |= (RegUnits |= SR->RegUnits); 258 } 259 260 return changed; 261 } 262 263 const CodeGenRegister::SubRegMap & 264 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 265 // Only compute this map once. 266 if (SubRegsComplete) 267 return SubRegs; 268 SubRegsComplete = true; 269 270 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 271 272 // First insert the explicit subregs and make sure they are fully indexed. 273 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 274 CodeGenRegister *SR = ExplicitSubRegs[i]; 275 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 276 if (!SR->Artificial) 277 Idx->Artificial = false; 278 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 279 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 280 " appears twice in Register " + getName()); 281 // Map explicit sub-registers first, so the names take precedence. 282 // The inherited sub-registers are mapped below. 283 SubReg2Idx.insert(std::make_pair(SR, Idx)); 284 } 285 286 // Keep track of inherited subregs and how they can be reached. 287 SmallPtrSet<CodeGenRegister*, 8> Orphans; 288 289 // Clone inherited subregs and place duplicate entries in Orphans. 290 // Here the order is important - earlier subregs take precedence. 291 for (CodeGenRegister *ESR : ExplicitSubRegs) { 292 const SubRegMap &Map = ESR->computeSubRegs(RegBank); 293 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; 294 295 for (const auto &SR : Map) { 296 if (!SubRegs.insert(SR).second) 297 Orphans.insert(SR.second); 298 } 299 } 300 301 // Expand any composed subreg indices. 302 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 303 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 304 // expanded subreg indices recursively. 305 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 306 for (unsigned i = 0; i != Indices.size(); ++i) { 307 CodeGenSubRegIndex *Idx = Indices[i]; 308 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 309 CodeGenRegister *SR = SubRegs[Idx]; 310 const SubRegMap &Map = SR->computeSubRegs(RegBank); 311 312 // Look at the possible compositions of Idx. 313 // They may not all be supported by SR. 314 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 315 E = Comps.end(); I != E; ++I) { 316 SubRegMap::const_iterator SRI = Map.find(I->first); 317 if (SRI == Map.end()) 318 continue; // Idx + I->first doesn't exist in SR. 319 // Add I->second as a name for the subreg SRI->second, assuming it is 320 // orphaned, and the name isn't already used for something else. 321 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 322 continue; 323 // We found a new name for the orphaned sub-register. 324 SubRegs.insert(std::make_pair(I->second, SRI->second)); 325 Indices.push_back(I->second); 326 } 327 } 328 329 // Now Orphans contains the inherited subregisters without a direct index. 330 // Create inferred indexes for all missing entries. 331 // Work backwards in the Indices vector in order to compose subregs bottom-up. 332 // Consider this subreg sequence: 333 // 334 // qsub_1 -> dsub_0 -> ssub_0 335 // 336 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 337 // can be reached in two different ways: 338 // 339 // qsub_1 -> ssub_0 340 // dsub_2 -> ssub_0 341 // 342 // We pick the latter composition because another register may have [dsub_0, 343 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 344 // dsub_2 -> ssub_0 composition can be shared. 345 while (!Indices.empty() && !Orphans.empty()) { 346 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 347 CodeGenRegister *SR = SubRegs[Idx]; 348 const SubRegMap &Map = SR->computeSubRegs(RegBank); 349 for (const auto &SubReg : Map) 350 if (Orphans.erase(SubReg.second)) 351 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; 352 } 353 354 // Compute the inverse SubReg -> Idx map. 355 for (const auto &SubReg : SubRegs) { 356 if (SubReg.second == this) { 357 ArrayRef<SMLoc> Loc; 358 if (TheDef) 359 Loc = TheDef->getLoc(); 360 PrintFatalError(Loc, "Register " + getName() + 361 " has itself as a sub-register"); 362 } 363 364 // Compute AllSuperRegsCovered. 365 if (!CoveredBySubRegs) 366 SubReg.first->AllSuperRegsCovered = false; 367 368 // Ensure that every sub-register has a unique name. 369 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 370 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; 371 if (Ins->second == SubReg.first) 372 continue; 373 // Trouble: Two different names for SubReg.second. 374 ArrayRef<SMLoc> Loc; 375 if (TheDef) 376 Loc = TheDef->getLoc(); 377 PrintFatalError(Loc, "Sub-register can't have two names: " + 378 SubReg.second->getName() + " available as " + 379 SubReg.first->getName() + " and " + Ins->second->getName()); 380 } 381 382 // Derive possible names for sub-register concatenations from any explicit 383 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 384 // that getConcatSubRegIndex() won't invent any concatenated indices that the 385 // user already specified. 386 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 387 CodeGenRegister *SR = ExplicitSubRegs[i]; 388 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 || 389 SR->Artificial) 390 continue; 391 392 // SR is composed of multiple sub-regs. Find their names in this register. 393 SmallVector<CodeGenSubRegIndex*, 8> Parts; 394 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) { 395 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j]; 396 if (!I.Artificial) 397 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 398 } 399 400 // Offer this as an existing spelling for the concatenation of Parts. 401 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; 402 Idx.setConcatenationOf(Parts); 403 } 404 405 // Initialize RegUnitList. Because getSubRegs is called recursively, this 406 // processes the register hierarchy in postorder. 407 // 408 // Inherit all sub-register units. It is good enough to look at the explicit 409 // sub-registers, the other registers won't contribute any more units. 410 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 411 CodeGenRegister *SR = ExplicitSubRegs[i]; 412 RegUnits |= SR->RegUnits; 413 } 414 415 // Absent any ad hoc aliasing, we create one register unit per leaf register. 416 // These units correspond to the maximal cliques in the register overlap 417 // graph which is optimal. 418 // 419 // When there is ad hoc aliasing, we simply create one unit per edge in the 420 // undirected ad hoc aliasing graph. Technically, we could do better by 421 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 422 // are extremely rare anyway (I've never seen one), so we don't bother with 423 // the added complexity. 424 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 425 CodeGenRegister *AR = ExplicitAliases[i]; 426 // Only visit each edge once. 427 if (AR->SubRegsComplete) 428 continue; 429 // Create a RegUnit representing this alias edge, and add it to both 430 // registers. 431 unsigned Unit = RegBank.newRegUnit(this, AR); 432 RegUnits.set(Unit); 433 AR->RegUnits.set(Unit); 434 } 435 436 // Finally, create units for leaf registers without ad hoc aliases. Note that 437 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 438 // necessary. This means the aliasing leaf registers can share a single unit. 439 if (RegUnits.empty()) 440 RegUnits.set(RegBank.newRegUnit(this)); 441 442 // We have now computed the native register units. More may be adopted later 443 // for balancing purposes. 444 NativeRegUnits = RegUnits; 445 446 return SubRegs; 447 } 448 449 // In a register that is covered by its sub-registers, try to find redundant 450 // sub-registers. For example: 451 // 452 // QQ0 = {Q0, Q1} 453 // Q0 = {D0, D1} 454 // Q1 = {D2, D3} 455 // 456 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 457 // the register definition. 458 // 459 // The explicitly specified registers form a tree. This function discovers 460 // sub-register relationships that would force a DAG. 461 // 462 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 463 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 464 465 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue; 466 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs) 467 SubRegQueue.push(P); 468 469 // Look at the leading super-registers of each sub-register. Those are the 470 // candidates for new sub-registers, assuming they are fully contained in 471 // this register. 472 while (!SubRegQueue.empty()) { 473 CodeGenSubRegIndex *SubRegIdx; 474 const CodeGenRegister *SubReg; 475 std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); 476 SubRegQueue.pop(); 477 478 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 479 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 480 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 481 // Already got this sub-register? 482 if (Cand == this || getSubRegIndex(Cand)) 483 continue; 484 // Check if each component of Cand is already a sub-register. 485 assert(!Cand->ExplicitSubRegs.empty() && 486 "Super-register has no sub-registers"); 487 if (Cand->ExplicitSubRegs.size() == 1) 488 continue; 489 SmallVector<CodeGenSubRegIndex*, 8> Parts; 490 // We know that the first component is (SubRegIdx,SubReg). However we 491 // may still need to split it into smaller subregister parts. 492 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); 493 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); 494 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { 495 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { 496 if (SubRegIdx->ConcatenationOf.empty()) 497 Parts.push_back(SubRegIdx); 498 else 499 append_range(Parts, SubRegIdx->ConcatenationOf); 500 } else { 501 // Sub-register doesn't exist. 502 Parts.clear(); 503 break; 504 } 505 } 506 // There is nothing to do if some Cand sub-register is not part of this 507 // register. 508 if (Parts.empty()) 509 continue; 510 511 // Each part of Cand is a sub-register of this. Make the full Cand also 512 // a sub-register with a concatenated sub-register index. 513 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); 514 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg = 515 std::make_pair(Concat, Cand); 516 517 if (!SubRegs.insert(NewSubReg).second) 518 continue; 519 520 // We inserted a new subregister. 521 NewSubRegs.push_back(NewSubReg); 522 SubRegQueue.push(NewSubReg); 523 SubReg2Idx.insert(std::make_pair(Cand, Concat)); 524 } 525 } 526 527 // Create sub-register index composition maps for the synthesized indices. 528 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 529 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 530 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 531 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 532 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 533 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 534 if (!SubIdx) 535 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 536 SI->second->getName() + " in " + getName()); 537 NewIdx->addComposite(SI->first, SubIdx); 538 } 539 } 540 } 541 542 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 543 // Only visit each register once. 544 if (SuperRegsComplete) 545 return; 546 SuperRegsComplete = true; 547 548 // Make sure all sub-registers have been visited first, so the super-reg 549 // lists will be topologically ordered. 550 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 551 I != E; ++I) 552 I->second->computeSuperRegs(RegBank); 553 554 // Now add this as a super-register on all sub-registers. 555 // Also compute the TopoSigId in post-order. 556 TopoSigId Id; 557 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 558 I != E; ++I) { 559 // Topological signature computed from SubIdx, TopoId(SubReg). 560 // Loops and idempotent indices have TopoSig = ~0u. 561 Id.push_back(I->first->EnumValue); 562 Id.push_back(I->second->TopoSig); 563 564 // Don't add duplicate entries. 565 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 566 continue; 567 I->second->SuperRegs.push_back(this); 568 } 569 TopoSig = RegBank.getTopoSig(Id); 570 } 571 572 void 573 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 574 CodeGenRegBank &RegBank) const { 575 assert(SubRegsComplete && "Must precompute sub-registers"); 576 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 577 CodeGenRegister *SR = ExplicitSubRegs[i]; 578 if (OSet.insert(SR)) 579 SR->addSubRegsPreOrder(OSet, RegBank); 580 } 581 // Add any secondary sub-registers that weren't part of the explicit tree. 582 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 583 I != E; ++I) 584 OSet.insert(I->second); 585 } 586 587 // Get the sum of this register's unit weights. 588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 589 unsigned Weight = 0; 590 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); 591 I != E; ++I) { 592 Weight += RegBank.getRegUnit(*I).Weight; 593 } 594 return Weight; 595 } 596 597 //===----------------------------------------------------------------------===// 598 // RegisterTuples 599 //===----------------------------------------------------------------------===// 600 601 // A RegisterTuples def is used to generate pseudo-registers from lists of 602 // sub-registers. We provide a SetTheory expander class that returns the new 603 // registers. 604 namespace { 605 606 struct TupleExpander : SetTheory::Expander { 607 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of 608 // the synthesized definitions for their lifetime. 609 std::vector<std::unique_ptr<Record>> &SynthDefs; 610 611 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs) 612 : SynthDefs(SynthDefs) {} 613 614 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 615 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 616 unsigned Dim = Indices.size(); 617 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 618 if (Dim != SubRegs->size()) 619 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 620 if (Dim < 2) 621 PrintFatalError(Def->getLoc(), 622 "Tuples must have at least 2 sub-registers"); 623 624 // Evaluate the sub-register lists to be zipped. 625 unsigned Length = ~0u; 626 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 627 for (unsigned i = 0; i != Dim; ++i) { 628 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 629 Length = std::min(Length, unsigned(Lists[i].size())); 630 } 631 632 if (Length == 0) 633 return; 634 635 // Precompute some types. 636 Record *RegisterCl = Def->getRecords().getClass("Register"); 637 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 638 std::vector<StringRef> RegNames = 639 Def->getValueAsListOfStrings("RegAsmNames"); 640 641 // Zip them up. 642 for (unsigned n = 0; n != Length; ++n) { 643 std::string Name; 644 Record *Proto = Lists[0][n]; 645 std::vector<Init*> Tuple; 646 for (unsigned i = 0; i != Dim; ++i) { 647 Record *Reg = Lists[i][n]; 648 if (i) Name += '_'; 649 Name += Reg->getName(); 650 Tuple.push_back(DefInit::get(Reg)); 651 } 652 653 // Take the cost list of the first register in the tuple. 654 ListInit *CostList = Proto->getValueAsListInit("CostPerUse"); 655 SmallVector<Init *, 2> CostPerUse; 656 CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end()); 657 658 StringInit *AsmName = StringInit::get(""); 659 if (!RegNames.empty()) { 660 if (RegNames.size() <= n) 661 PrintFatalError(Def->getLoc(), 662 "Register tuple definition missing name for '" + 663 Name + "'."); 664 AsmName = StringInit::get(RegNames[n]); 665 } 666 667 // Create a new Record representing the synthesized register. This record 668 // is only for consumption by CodeGenRegister, it is not added to the 669 // RecordKeeper. 670 SynthDefs.emplace_back( 671 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords())); 672 Record *NewReg = SynthDefs.back().get(); 673 Elts.insert(NewReg); 674 675 // Copy Proto super-classes. 676 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 677 for (const auto &SuperPair : Supers) 678 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 679 680 // Copy Proto fields. 681 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 682 RecordVal RV = Proto->getValues()[i]; 683 684 // Skip existing fields, like NAME. 685 if (NewReg->getValue(RV.getNameInit())) 686 continue; 687 688 StringRef Field = RV.getName(); 689 690 // Replace the sub-register list with Tuple. 691 if (Field == "SubRegs") 692 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 693 694 if (Field == "AsmName") 695 RV.setValue(AsmName); 696 697 // CostPerUse is aggregated from all Tuple members. 698 if (Field == "CostPerUse") 699 RV.setValue(ListInit::get(CostPerUse, CostList->getElementType())); 700 701 // Composite registers are always covered by sub-registers. 702 if (Field == "CoveredBySubRegs") 703 RV.setValue(BitInit::get(true)); 704 705 // Copy fields from the RegisterTuples def. 706 if (Field == "SubRegIndices" || 707 Field == "CompositeIndices") { 708 NewReg->addValue(*Def->getValue(Field)); 709 continue; 710 } 711 712 // Some fields get their default uninitialized value. 713 if (Field == "DwarfNumbers" || 714 Field == "DwarfAlias" || 715 Field == "Aliases") { 716 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 717 NewReg->addValue(*DefRV); 718 continue; 719 } 720 721 // Everything else is copied from Proto. 722 NewReg->addValue(RV); 723 } 724 } 725 } 726 }; 727 728 } // end anonymous namespace 729 730 //===----------------------------------------------------------------------===// 731 // CodeGenRegisterClass 732 //===----------------------------------------------------------------------===// 733 734 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 735 llvm::sort(M, deref<std::less<>>()); 736 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end()); 737 } 738 739 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 740 : TheDef(R), Name(std::string(R->getName())), 741 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1) { 742 GeneratePressureSet = R->getValueAsBit("GeneratePressureSet"); 743 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 744 if (TypeList.empty()) 745 PrintFatalError(R->getLoc(), "RegTypes list must not be empty!"); 746 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 747 Record *Type = TypeList[i]; 748 if (!Type->isSubClassOf("ValueType")) 749 PrintFatalError(R->getLoc(), 750 "RegTypes list member '" + Type->getName() + 751 "' does not derive from the ValueType class!"); 752 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); 753 } 754 755 // Allocation order 0 is the full set. AltOrders provides others. 756 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 757 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 758 Orders.resize(1 + AltOrders->size()); 759 760 // Default allocation order always contains all registers. 761 Artificial = true; 762 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 763 Orders[0].push_back((*Elements)[i]); 764 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 765 Members.push_back(Reg); 766 Artificial &= Reg->Artificial; 767 TopoSigs.set(Reg->getTopoSig()); 768 } 769 sortAndUniqueRegisters(Members); 770 771 // Alternative allocation orders may be subsets. 772 SetTheory::RecSet Order; 773 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 774 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 775 Orders[1 + i].append(Order.begin(), Order.end()); 776 // Verify that all altorder members are regclass members. 777 while (!Order.empty()) { 778 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 779 Order.pop_back(); 780 if (!contains(Reg)) 781 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 782 " is not a class member"); 783 } 784 } 785 786 Namespace = R->getValueAsString("Namespace"); 787 788 if (const RecordVal *RV = R->getValue("RegInfos")) 789 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) 790 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); 791 unsigned Size = R->getValueAsInt("Size"); 792 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && 793 "Impossible to determine register size"); 794 if (!RSI.hasDefault()) { 795 RegSizeInfo RI; 796 RI.RegSize = RI.SpillSize = Size ? Size 797 : VTs[0].getSimple().getSizeInBits(); 798 RI.SpillAlignment = R->getValueAsInt("Alignment"); 799 RSI.insertRegSizeForMode(DefaultMode, RI); 800 } 801 802 CopyCost = R->getValueAsInt("CopyCost"); 803 Allocatable = R->getValueAsBit("isAllocatable"); 804 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 805 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 806 if (AllocationPriority < 0 || AllocationPriority > 63) 807 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 808 this->AllocationPriority = AllocationPriority; 809 } 810 811 // Create an inferred register class that was missing from the .td files. 812 // Most properties will be inherited from the closest super-class after the 813 // class structure has been computed. 814 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 815 StringRef Name, Key Props) 816 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)), 817 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI), 818 CopyCost(0), Allocatable(true), AllocationPriority(0) { 819 Artificial = true; 820 GeneratePressureSet = false; 821 for (const auto R : Members) { 822 TopoSigs.set(R->getTopoSig()); 823 Artificial &= R->Artificial; 824 } 825 } 826 827 // Compute inherited propertied for a synthesized register class. 828 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 829 assert(!getDef() && "Only synthesized classes can inherit properties"); 830 assert(!SuperClasses.empty() && "Synthesized class without super class"); 831 832 // The last super-class is the smallest one. 833 CodeGenRegisterClass &Super = *SuperClasses.back(); 834 835 // Most properties are copied directly. 836 // Exceptions are members, size, and alignment 837 Namespace = Super.Namespace; 838 VTs = Super.VTs; 839 CopyCost = Super.CopyCost; 840 Allocatable = Super.Allocatable; 841 AltOrderSelect = Super.AltOrderSelect; 842 AllocationPriority = Super.AllocationPriority; 843 GeneratePressureSet |= Super.GeneratePressureSet; 844 845 // Copy all allocation orders, filter out foreign registers from the larger 846 // super-class. 847 Orders.resize(Super.Orders.size()); 848 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 849 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 850 if (contains(RegBank.getReg(Super.Orders[i][j]))) 851 Orders[i].push_back(Super.Orders[i][j]); 852 } 853 854 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 855 return std::binary_search(Members.begin(), Members.end(), Reg, 856 deref<std::less<>>()); 857 } 858 859 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const { 860 if (TheDef && !TheDef->isValueUnset("Weight")) 861 return TheDef->getValueAsInt("Weight"); 862 863 if (Members.empty() || Artificial) 864 return 0; 865 866 return (*Members.begin())->getWeight(RegBank); 867 } 868 869 namespace llvm { 870 871 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 872 OS << "{ " << K.RSI; 873 for (const auto R : *K.Members) 874 OS << ", " << R->getName(); 875 return OS << " }"; 876 } 877 878 } // end namespace llvm 879 880 // This is a simple lexicographical order that can be used to search for sets. 881 // It is not the same as the topological order provided by TopoOrderRC. 882 bool CodeGenRegisterClass::Key:: 883 operator<(const CodeGenRegisterClass::Key &B) const { 884 assert(Members && B.Members); 885 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); 886 } 887 888 // Returns true if RC is a strict subclass. 889 // RC is a sub-class of this class if it is a valid replacement for any 890 // instruction operand where a register of this classis required. It must 891 // satisfy these conditions: 892 // 893 // 1. All RC registers are also in this. 894 // 2. The RC spill size must not be smaller than our spill size. 895 // 3. RC spill alignment must be compatible with ours. 896 // 897 static bool testSubClass(const CodeGenRegisterClass *A, 898 const CodeGenRegisterClass *B) { 899 return A->RSI.isSubClassOf(B->RSI) && 900 std::includes(A->getMembers().begin(), A->getMembers().end(), 901 B->getMembers().begin(), B->getMembers().end(), 902 deref<std::less<>>()); 903 } 904 905 /// Sorting predicate for register classes. This provides a topological 906 /// ordering that arranges all register classes before their sub-classes. 907 /// 908 /// Register classes with the same registers, spill size, and alignment form a 909 /// clique. They will be ordered alphabetically. 910 /// 911 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 912 const CodeGenRegisterClass &PB) { 913 auto *A = &PA; 914 auto *B = &PB; 915 if (A == B) 916 return false; 917 918 if (A->RSI < B->RSI) 919 return true; 920 if (A->RSI != B->RSI) 921 return false; 922 923 // Order by descending set size. Note that the classes' allocation order may 924 // not have been computed yet. The Members set is always vaild. 925 if (A->getMembers().size() > B->getMembers().size()) 926 return true; 927 if (A->getMembers().size() < B->getMembers().size()) 928 return false; 929 930 // Finally order by name as a tie breaker. 931 return StringRef(A->getName()) < B->getName(); 932 } 933 934 std::string CodeGenRegisterClass::getQualifiedName() const { 935 if (Namespace.empty()) 936 return getName(); 937 else 938 return (Namespace + "::" + getName()).str(); 939 } 940 941 // Compute sub-classes of all register classes. 942 // Assume the classes are ordered topologically. 943 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 944 auto &RegClasses = RegBank.getRegClasses(); 945 946 // Visit backwards so sub-classes are seen first. 947 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 948 CodeGenRegisterClass &RC = *I; 949 RC.SubClasses.resize(RegClasses.size()); 950 RC.SubClasses.set(RC.EnumValue); 951 if (RC.Artificial) 952 continue; 953 954 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 955 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 956 CodeGenRegisterClass &SubRC = *I2; 957 if (RC.SubClasses.test(SubRC.EnumValue)) 958 continue; 959 if (!testSubClass(&RC, &SubRC)) 960 continue; 961 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 962 // check them again. 963 RC.SubClasses |= SubRC.SubClasses; 964 } 965 966 // Sweep up missed clique members. They will be immediately preceding RC. 967 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 968 RC.SubClasses.set(I2->EnumValue); 969 } 970 971 // Compute the SuperClasses lists from the SubClasses vectors. 972 for (auto &RC : RegClasses) { 973 const BitVector &SC = RC.getSubClasses(); 974 auto I = RegClasses.begin(); 975 for (int s = 0, next_s = SC.find_first(); next_s != -1; 976 next_s = SC.find_next(s)) { 977 std::advance(I, next_s - s); 978 s = next_s; 979 if (&*I == &RC) 980 continue; 981 I->SuperClasses.push_back(&RC); 982 } 983 } 984 985 // With the class hierarchy in place, let synthesized register classes inherit 986 // properties from their closest super-class. The iteration order here can 987 // propagate properties down multiple levels. 988 for (auto &RC : RegClasses) 989 if (!RC.getDef()) 990 RC.inheritProperties(RegBank); 991 } 992 993 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>> 994 CodeGenRegisterClass::getMatchingSubClassWithSubRegs( 995 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { 996 auto SizeOrder = [this](const CodeGenRegisterClass *A, 997 const CodeGenRegisterClass *B) { 998 // If there are multiple, identical register classes, prefer the original 999 // register class. 1000 if (A == B) 1001 return false; 1002 if (A->getMembers().size() == B->getMembers().size()) 1003 return A == this; 1004 return A->getMembers().size() > B->getMembers().size(); 1005 }; 1006 1007 auto &RegClasses = RegBank.getRegClasses(); 1008 1009 // Find all the subclasses of this one that fully support the sub-register 1010 // index and order them by size. BiggestSuperRC should always be first. 1011 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); 1012 if (!BiggestSuperRegRC) 1013 return None; 1014 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); 1015 std::vector<CodeGenRegisterClass *> SuperRegRCs; 1016 for (auto &RC : RegClasses) 1017 if (SuperRegRCsBV[RC.EnumValue]) 1018 SuperRegRCs.emplace_back(&RC); 1019 llvm::stable_sort(SuperRegRCs, SizeOrder); 1020 1021 assert(SuperRegRCs.front() == BiggestSuperRegRC && 1022 "Biggest class wasn't first"); 1023 1024 // Find all the subreg classes and order them by size too. 1025 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses; 1026 for (auto &RC: RegClasses) { 1027 BitVector SuperRegClassesBV(RegClasses.size()); 1028 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); 1029 if (SuperRegClassesBV.any()) 1030 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); 1031 } 1032 llvm::sort(SuperRegClasses, 1033 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A, 1034 const std::pair<CodeGenRegisterClass *, BitVector> &B) { 1035 return SizeOrder(A.first, B.first); 1036 }); 1037 1038 // Find the biggest subclass and subreg class such that R:subidx is in the 1039 // subreg class for all R in subclass. 1040 // 1041 // For example: 1042 // All registers in X86's GR64 have a sub_32bit subregister but no class 1043 // exists that contains all the 32-bit subregisters because GR64 contains RIP 1044 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to 1045 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, 1046 // having excluded RIP, we are able to find a SubRegRC (GR32). 1047 CodeGenRegisterClass *ChosenSuperRegClass = nullptr; 1048 CodeGenRegisterClass *SubRegRC = nullptr; 1049 for (auto *SuperRegRC : SuperRegRCs) { 1050 for (const auto &SuperRegClassPair : SuperRegClasses) { 1051 const BitVector &SuperRegClassBV = SuperRegClassPair.second; 1052 if (SuperRegClassBV[SuperRegRC->EnumValue]) { 1053 SubRegRC = SuperRegClassPair.first; 1054 ChosenSuperRegClass = SuperRegRC; 1055 1056 // If SubRegRC is bigger than SuperRegRC then there are members of 1057 // SubRegRC that don't have super registers via SubIdx. Keep looking to 1058 // find a better fit and fall back on this one if there isn't one. 1059 // 1060 // This is intended to prevent X86 from making odd choices such as 1061 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. 1062 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that 1063 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 1064 // mapping. 1065 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) 1066 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1067 } 1068 } 1069 1070 // If we found a fit but it wasn't quite ideal because SubRegRC had excess 1071 // registers, then we're done. 1072 if (ChosenSuperRegClass) 1073 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1074 } 1075 1076 return None; 1077 } 1078 1079 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 1080 BitVector &Out) const { 1081 auto FindI = SuperRegClasses.find(SubIdx); 1082 if (FindI == SuperRegClasses.end()) 1083 return; 1084 for (CodeGenRegisterClass *RC : FindI->second) 1085 Out.set(RC->EnumValue); 1086 } 1087 1088 // Populate a unique sorted list of units from a register set. 1089 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, 1090 std::vector<unsigned> &RegUnits) const { 1091 std::vector<unsigned> TmpUnits; 1092 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { 1093 const RegUnit &RU = RegBank.getRegUnit(*UnitI); 1094 if (!RU.Artificial) 1095 TmpUnits.push_back(*UnitI); 1096 } 1097 llvm::sort(TmpUnits); 1098 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 1099 std::back_inserter(RegUnits)); 1100 } 1101 1102 //===----------------------------------------------------------------------===// 1103 // CodeGenRegBank 1104 //===----------------------------------------------------------------------===// 1105 1106 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, 1107 const CodeGenHwModes &Modes) : CGH(Modes) { 1108 // Configure register Sets to understand register classes and tuples. 1109 Sets.addFieldExpander("RegisterClass", "MemberList"); 1110 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 1111 Sets.addExpander("RegisterTuples", 1112 std::make_unique<TupleExpander>(SynthDefs)); 1113 1114 // Read in the user-defined (named) sub-register indices. 1115 // More indices will be synthesized later. 1116 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 1117 llvm::sort(SRIs, LessRecord()); 1118 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 1119 getSubRegIdx(SRIs[i]); 1120 // Build composite maps from ComposedOf fields. 1121 for (auto &Idx : SubRegIndices) 1122 Idx.updateComponents(*this); 1123 1124 // Read in the register definitions. 1125 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 1126 llvm::sort(Regs, LessRecordRegister()); 1127 // Assign the enumeration values. 1128 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 1129 getReg(Regs[i]); 1130 1131 // Expand tuples and number the new registers. 1132 std::vector<Record*> Tups = 1133 Records.getAllDerivedDefinitions("RegisterTuples"); 1134 1135 for (Record *R : Tups) { 1136 std::vector<Record *> TupRegs = *Sets.expand(R); 1137 llvm::sort(TupRegs, LessRecordRegister()); 1138 for (Record *RC : TupRegs) 1139 getReg(RC); 1140 } 1141 1142 // Now all the registers are known. Build the object graph of explicit 1143 // register-register references. 1144 for (auto &Reg : Registers) 1145 Reg.buildObjectGraph(*this); 1146 1147 // Compute register name map. 1148 for (auto &Reg : Registers) 1149 // FIXME: This could just be RegistersByName[name] = register, except that 1150 // causes some failures in MIPS - perhaps they have duplicate register name 1151 // entries? (or maybe there's a reason for it - I don't know much about this 1152 // code, just drive-by refactoring) 1153 RegistersByName.insert( 1154 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 1155 1156 // Precompute all sub-register maps. 1157 // This will create Composite entries for all inferred sub-register indices. 1158 for (auto &Reg : Registers) 1159 Reg.computeSubRegs(*this); 1160 1161 // Compute transitive closure of subregister index ConcatenationOf vectors 1162 // and initialize ConcatIdx map. 1163 for (CodeGenSubRegIndex &SRI : SubRegIndices) { 1164 SRI.computeConcatTransitiveClosure(); 1165 if (!SRI.ConcatenationOf.empty()) 1166 ConcatIdx.insert(std::make_pair( 1167 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(), 1168 SRI.ConcatenationOf.end()), &SRI)); 1169 } 1170 1171 // Infer even more sub-registers by combining leading super-registers. 1172 for (auto &Reg : Registers) 1173 if (Reg.CoveredBySubRegs) 1174 Reg.computeSecondarySubRegs(*this); 1175 1176 // After the sub-register graph is complete, compute the topologically 1177 // ordered SuperRegs list. 1178 for (auto &Reg : Registers) 1179 Reg.computeSuperRegs(*this); 1180 1181 // For each pair of Reg:SR, if both are non-artificial, mark the 1182 // corresponding sub-register index as non-artificial. 1183 for (auto &Reg : Registers) { 1184 if (Reg.Artificial) 1185 continue; 1186 for (auto P : Reg.getSubRegs()) { 1187 const CodeGenRegister *SR = P.second; 1188 if (!SR->Artificial) 1189 P.first->Artificial = false; 1190 } 1191 } 1192 1193 // Native register units are associated with a leaf register. They've all been 1194 // discovered now. 1195 NumNativeRegUnits = RegUnits.size(); 1196 1197 // Read in register class definitions. 1198 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1199 if (RCs.empty()) 1200 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1201 1202 // Allocate user-defined register classes. 1203 for (auto *R : RCs) { 1204 RegClasses.emplace_back(*this, R); 1205 CodeGenRegisterClass &RC = RegClasses.back(); 1206 if (!RC.Artificial) 1207 addToMaps(&RC); 1208 } 1209 1210 // Infer missing classes to create a full algebra. 1211 computeInferredRegisterClasses(); 1212 1213 // Order register classes topologically and assign enum values. 1214 RegClasses.sort(TopoOrderRC); 1215 unsigned i = 0; 1216 for (auto &RC : RegClasses) 1217 RC.EnumValue = i++; 1218 CodeGenRegisterClass::computeSubClasses(*this); 1219 } 1220 1221 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1222 CodeGenSubRegIndex* 1223 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1224 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1225 return &SubRegIndices.back(); 1226 } 1227 1228 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1229 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1230 if (Idx) 1231 return Idx; 1232 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1233 Idx = &SubRegIndices.back(); 1234 return Idx; 1235 } 1236 1237 const CodeGenSubRegIndex * 1238 CodeGenRegBank::findSubRegIdx(const Record* Def) const { 1239 return Def2SubRegIdx.lookup(Def); 1240 } 1241 1242 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1243 CodeGenRegister *&Reg = Def2Reg[Def]; 1244 if (Reg) 1245 return Reg; 1246 Registers.emplace_back(Def, Registers.size() + 1); 1247 Reg = &Registers.back(); 1248 return Reg; 1249 } 1250 1251 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1252 if (Record *Def = RC->getDef()) 1253 Def2RC.insert(std::make_pair(Def, RC)); 1254 1255 // Duplicate classes are rejected by insert(). 1256 // That's OK, we only care about the properties handled by CGRC::Key. 1257 CodeGenRegisterClass::Key K(*RC); 1258 Key2RC.insert(std::make_pair(K, RC)); 1259 } 1260 1261 // Create a synthetic sub-class if it is missing. 1262 CodeGenRegisterClass* 1263 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1264 const CodeGenRegister::Vec *Members, 1265 StringRef Name) { 1266 // Synthetic sub-class has the same size and alignment as RC. 1267 CodeGenRegisterClass::Key K(Members, RC->RSI); 1268 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1269 if (FoundI != Key2RC.end()) 1270 return FoundI->second; 1271 1272 // Sub-class doesn't exist, create a new one. 1273 RegClasses.emplace_back(*this, Name, K); 1274 addToMaps(&RegClasses.back()); 1275 return &RegClasses.back(); 1276 } 1277 1278 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const { 1279 if (CodeGenRegisterClass *RC = Def2RC.lookup(Def)) 1280 return RC; 1281 1282 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1283 } 1284 1285 CodeGenSubRegIndex* 1286 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1287 CodeGenSubRegIndex *B) { 1288 // Look for an existing entry. 1289 CodeGenSubRegIndex *Comp = A->compose(B); 1290 if (Comp) 1291 return Comp; 1292 1293 // None exists, synthesize one. 1294 std::string Name = A->getName() + "_then_" + B->getName(); 1295 Comp = createSubRegIndex(Name, A->getNamespace()); 1296 A->addComposite(B, Comp); 1297 return Comp; 1298 } 1299 1300 CodeGenSubRegIndex *CodeGenRegBank:: 1301 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1302 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1303 #ifndef NDEBUG 1304 for (CodeGenSubRegIndex *Idx : Parts) { 1305 assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); 1306 } 1307 #endif 1308 1309 // Look for an existing entry. 1310 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1311 if (Idx) 1312 return Idx; 1313 1314 // None exists, synthesize one. 1315 std::string Name = Parts.front()->getName(); 1316 // Determine whether all parts are contiguous. 1317 bool isContinuous = true; 1318 unsigned Size = Parts.front()->Size; 1319 unsigned LastOffset = Parts.front()->Offset; 1320 unsigned LastSize = Parts.front()->Size; 1321 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1322 Name += '_'; 1323 Name += Parts[i]->getName(); 1324 Size += Parts[i]->Size; 1325 if (Parts[i]->Offset != (LastOffset + LastSize)) 1326 isContinuous = false; 1327 LastOffset = Parts[i]->Offset; 1328 LastSize = Parts[i]->Size; 1329 } 1330 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1331 Idx->Size = Size; 1332 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1333 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); 1334 return Idx; 1335 } 1336 1337 void CodeGenRegBank::computeComposites() { 1338 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>; 1339 1340 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from 1341 // register to (sub)register associated with the action of the left-hand 1342 // side subregister. 1343 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction; 1344 for (const CodeGenRegister &R : Registers) { 1345 const CodeGenRegister::SubRegMap &SM = R.getSubRegs(); 1346 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM) 1347 SubRegAction[P.first].insert({&R, P.second}); 1348 } 1349 1350 // Calculate the composition of two subregisters as compositions of their 1351 // associated actions. 1352 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1, 1353 const CodeGenSubRegIndex *Sub2) { 1354 RegMap C; 1355 const RegMap &Img1 = SubRegAction.at(Sub1); 1356 const RegMap &Img2 = SubRegAction.at(Sub2); 1357 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) { 1358 auto F = Img2.find(P.second); 1359 if (F != Img2.end()) 1360 C.insert({P.first, F->second}); 1361 } 1362 return C; 1363 }; 1364 1365 // Check if the two maps agree on the intersection of their domains. 1366 auto agree = [] (const RegMap &Map1, const RegMap &Map2) { 1367 // Technically speaking, an empty map agrees with any other map, but 1368 // this could flag false positives. We're interested in non-vacuous 1369 // agreements. 1370 if (Map1.empty() || Map2.empty()) 1371 return false; 1372 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) { 1373 auto F = Map2.find(P.first); 1374 if (F == Map2.end() || P.second != F->second) 1375 return false; 1376 } 1377 return true; 1378 }; 1379 1380 using CompositePair = std::pair<const CodeGenSubRegIndex*, 1381 const CodeGenSubRegIndex*>; 1382 SmallSet<CompositePair,4> UserDefined; 1383 for (const CodeGenSubRegIndex &Idx : SubRegIndices) 1384 for (auto P : Idx.getComposites()) 1385 UserDefined.insert(std::make_pair(&Idx, P.first)); 1386 1387 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1388 // and many registers will share TopoSigs on regular architectures. 1389 BitVector TopoSigs(getNumTopoSigs()); 1390 1391 for (const auto &Reg1 : Registers) { 1392 // Skip identical subreg structures already processed. 1393 if (TopoSigs.test(Reg1.getTopoSig())) 1394 continue; 1395 TopoSigs.set(Reg1.getTopoSig()); 1396 1397 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1398 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1399 e1 = SRM1.end(); i1 != e1; ++i1) { 1400 CodeGenSubRegIndex *Idx1 = i1->first; 1401 CodeGenRegister *Reg2 = i1->second; 1402 // Ignore identity compositions. 1403 if (&Reg1 == Reg2) 1404 continue; 1405 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1406 // Try composing Idx1 with another SubRegIndex. 1407 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1408 e2 = SRM2.end(); i2 != e2; ++i2) { 1409 CodeGenSubRegIndex *Idx2 = i2->first; 1410 CodeGenRegister *Reg3 = i2->second; 1411 // Ignore identity compositions. 1412 if (Reg2 == Reg3) 1413 continue; 1414 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1415 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1416 assert(Idx3 && "Sub-register doesn't have an index"); 1417 1418 // Conflicting composition? Emit a warning but allow it. 1419 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) { 1420 // If the composition was not user-defined, always emit a warning. 1421 if (!UserDefined.count({Idx1, Idx2}) || 1422 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3))) 1423 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1424 " and " + Idx2->getQualifiedName() + 1425 " compose ambiguously as " + Prev->getQualifiedName() + 1426 " or " + Idx3->getQualifiedName()); 1427 } 1428 } 1429 } 1430 } 1431 } 1432 1433 // Compute lane masks. This is similar to register units, but at the 1434 // sub-register index level. Each bit in the lane mask is like a register unit 1435 // class, and two lane masks will have a bit in common if two sub-register 1436 // indices overlap in some register. 1437 // 1438 // Conservatively share a lane mask bit if two sub-register indices overlap in 1439 // some registers, but not in others. That shouldn't happen a lot. 1440 void CodeGenRegBank::computeSubRegLaneMasks() { 1441 // First assign individual bits to all the leaf indices. 1442 unsigned Bit = 0; 1443 // Determine mask of lanes that cover their registers. 1444 CoveringLanes = LaneBitmask::getAll(); 1445 for (auto &Idx : SubRegIndices) { 1446 if (Idx.getComposites().empty()) { 1447 if (Bit > LaneBitmask::BitWidth) { 1448 PrintFatalError( 1449 Twine("Ran out of lanemask bits to represent subregister ") 1450 + Idx.getName()); 1451 } 1452 Idx.LaneMask = LaneBitmask::getLane(Bit); 1453 ++Bit; 1454 } else { 1455 Idx.LaneMask = LaneBitmask::getNone(); 1456 } 1457 } 1458 1459 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1460 // here is that for each possible target subregister we look at the leafs 1461 // in the subregister graph that compose for this target and create 1462 // transformation sequences for the lanemasks. Each step in the sequence 1463 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1464 // are usually the same for many subregisters we can easily combine the steps 1465 // by combining the masks. 1466 for (const auto &Idx : SubRegIndices) { 1467 const auto &Composites = Idx.getComposites(); 1468 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1469 1470 if (Composites.empty()) { 1471 // Moving from a class with no subregisters we just had a single lane: 1472 // The subregister must be a leaf subregister and only occupies 1 bit. 1473 // Move the bit from the class without subregisters into that position. 1474 unsigned DstBit = Idx.LaneMask.getHighestLane(); 1475 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && 1476 "Must be a leaf subregister"); 1477 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; 1478 LaneTransforms.push_back(MaskRol); 1479 } else { 1480 // Go through all leaf subregisters and find the ones that compose with 1481 // Idx. These make out all possible valid bits in the lane mask we want to 1482 // transform. Looking only at the leafs ensure that only a single bit in 1483 // the mask is set. 1484 unsigned NextBit = 0; 1485 for (auto &Idx2 : SubRegIndices) { 1486 // Skip non-leaf subregisters. 1487 if (!Idx2.getComposites().empty()) 1488 continue; 1489 // Replicate the behaviour from the lane mask generation loop above. 1490 unsigned SrcBit = NextBit; 1491 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); 1492 if (NextBit < LaneBitmask::BitWidth-1) 1493 ++NextBit; 1494 assert(Idx2.LaneMask == SrcMask); 1495 1496 // Get the composed subregister if there is any. 1497 auto C = Composites.find(&Idx2); 1498 if (C == Composites.end()) 1499 continue; 1500 const CodeGenSubRegIndex *Composite = C->second; 1501 // The Composed subreg should be a leaf subreg too 1502 assert(Composite->getComposites().empty()); 1503 1504 // Create Mask+Rotate operation and merge with existing ops if possible. 1505 unsigned DstBit = Composite->LaneMask.getHighestLane(); 1506 int Shift = DstBit - SrcBit; 1507 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1508 : LaneBitmask::BitWidth + Shift; 1509 for (auto &I : LaneTransforms) { 1510 if (I.RotateLeft == RotateLeft) { 1511 I.Mask |= SrcMask; 1512 SrcMask = LaneBitmask::getNone(); 1513 } 1514 } 1515 if (SrcMask.any()) { 1516 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1517 LaneTransforms.push_back(MaskRol); 1518 } 1519 } 1520 } 1521 1522 // Optimize if the transformation consists of one step only: Set mask to 1523 // 0xffffffff (including some irrelevant invalid bits) so that it should 1524 // merge with more entries later while compressing the table. 1525 if (LaneTransforms.size() == 1) 1526 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1527 1528 // Further compression optimization: For invalid compositions resulting 1529 // in a sequence with 0 entries we can just pick any other. Choose 1530 // Mask 0xffffffff with Rotation 0. 1531 if (LaneTransforms.size() == 0) { 1532 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1533 LaneTransforms.push_back(P); 1534 } 1535 } 1536 1537 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1538 // by the sub-register graph? This doesn't occur in any known targets. 1539 1540 // Inherit lanes from composites. 1541 for (const auto &Idx : SubRegIndices) { 1542 LaneBitmask Mask = Idx.computeLaneMask(); 1543 // If some super-registers without CoveredBySubRegs use this index, we can 1544 // no longer assume that the lanes are covering their registers. 1545 if (!Idx.AllSuperRegsCovered) 1546 CoveringLanes &= ~Mask; 1547 } 1548 1549 // Compute lane mask combinations for register classes. 1550 for (auto &RegClass : RegClasses) { 1551 LaneBitmask LaneMask; 1552 for (const auto &SubRegIndex : SubRegIndices) { 1553 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1554 continue; 1555 LaneMask |= SubRegIndex.LaneMask; 1556 } 1557 1558 // For classes without any subregisters set LaneMask to 1 instead of 0. 1559 // This makes it easier for client code to handle classes uniformly. 1560 if (LaneMask.none()) 1561 LaneMask = LaneBitmask::getLane(0); 1562 1563 RegClass.LaneMask = LaneMask; 1564 } 1565 } 1566 1567 namespace { 1568 1569 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1570 // the transitive closure of the union of overlapping register 1571 // classes. Together, the UberRegSets form a partition of the registers. If we 1572 // consider overlapping register classes to be connected, then each UberRegSet 1573 // is a set of connected components. 1574 // 1575 // An UberRegSet will likely be a horizontal slice of register names of 1576 // the same width. Nontrivial subregisters should then be in a separate 1577 // UberRegSet. But this property isn't required for valid computation of 1578 // register unit weights. 1579 // 1580 // A Weight field caches the max per-register unit weight in each UberRegSet. 1581 // 1582 // A set of SingularDeterminants flags single units of some register in this set 1583 // for which the unit weight equals the set weight. These units should not have 1584 // their weight increased. 1585 struct UberRegSet { 1586 CodeGenRegister::Vec Regs; 1587 unsigned Weight = 0; 1588 CodeGenRegister::RegUnitList SingularDeterminants; 1589 1590 UberRegSet() = default; 1591 }; 1592 1593 } // end anonymous namespace 1594 1595 // Partition registers into UberRegSets, where each set is the transitive 1596 // closure of the union of overlapping register classes. 1597 // 1598 // UberRegSets[0] is a special non-allocatable set. 1599 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1600 std::vector<UberRegSet*> &RegSets, 1601 CodeGenRegBank &RegBank) { 1602 const auto &Registers = RegBank.getRegisters(); 1603 1604 // The Register EnumValue is one greater than its index into Registers. 1605 assert(Registers.size() == Registers.back().EnumValue && 1606 "register enum value mismatch"); 1607 1608 // For simplicitly make the SetID the same as EnumValue. 1609 IntEqClasses UberSetIDs(Registers.size()+1); 1610 std::set<unsigned> AllocatableRegs; 1611 for (auto &RegClass : RegBank.getRegClasses()) { 1612 if (!RegClass.Allocatable) 1613 continue; 1614 1615 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1616 if (Regs.empty()) 1617 continue; 1618 1619 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1620 assert(USetID && "register number 0 is invalid"); 1621 1622 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1623 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1624 AllocatableRegs.insert((*I)->EnumValue); 1625 UberSetIDs.join(USetID, (*I)->EnumValue); 1626 } 1627 } 1628 // Combine non-allocatable regs. 1629 for (const auto &Reg : Registers) { 1630 unsigned RegNum = Reg.EnumValue; 1631 if (AllocatableRegs.count(RegNum)) 1632 continue; 1633 1634 UberSetIDs.join(0, RegNum); 1635 } 1636 UberSetIDs.compress(); 1637 1638 // Make the first UberSet a special unallocatable set. 1639 unsigned ZeroID = UberSetIDs[0]; 1640 1641 // Insert Registers into the UberSets formed by union-find. 1642 // Do not resize after this. 1643 UberSets.resize(UberSetIDs.getNumClasses()); 1644 unsigned i = 0; 1645 for (const CodeGenRegister &Reg : Registers) { 1646 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1647 if (!USetID) 1648 USetID = ZeroID; 1649 else if (USetID == ZeroID) 1650 USetID = 0; 1651 1652 UberRegSet *USet = &UberSets[USetID]; 1653 USet->Regs.push_back(&Reg); 1654 sortAndUniqueRegisters(USet->Regs); 1655 RegSets[i++] = USet; 1656 } 1657 } 1658 1659 // Recompute each UberSet weight after changing unit weights. 1660 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1661 CodeGenRegBank &RegBank) { 1662 // Skip the first unallocatable set. 1663 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1664 E = UberSets.end(); I != E; ++I) { 1665 1666 // Initialize all unit weights in this set, and remember the max units/reg. 1667 const CodeGenRegister *Reg = nullptr; 1668 unsigned MaxWeight = 0, Weight = 0; 1669 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1670 if (Reg != UnitI.getReg()) { 1671 if (Weight > MaxWeight) 1672 MaxWeight = Weight; 1673 Reg = UnitI.getReg(); 1674 Weight = 0; 1675 } 1676 if (!RegBank.getRegUnit(*UnitI).Artificial) { 1677 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1678 if (!UWeight) { 1679 UWeight = 1; 1680 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1681 } 1682 Weight += UWeight; 1683 } 1684 } 1685 if (Weight > MaxWeight) 1686 MaxWeight = Weight; 1687 if (I->Weight != MaxWeight) { 1688 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " 1689 << MaxWeight; 1690 for (auto &Unit 1691 : I->Regs) dbgs() 1692 << " " << Unit->getName(); 1693 dbgs() << "\n"); 1694 // Update the set weight. 1695 I->Weight = MaxWeight; 1696 } 1697 1698 // Find singular determinants. 1699 for (const auto R : I->Regs) { 1700 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1701 I->SingularDeterminants |= R->getRegUnits(); 1702 } 1703 } 1704 } 1705 } 1706 1707 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1708 // a register and its subregisters so that they have the same weight as their 1709 // UberSet. Self-recursion processes the subregister tree in postorder so 1710 // subregisters are normalized first. 1711 // 1712 // Side effects: 1713 // - creates new adopted register units 1714 // - causes superregisters to inherit adopted units 1715 // - increases the weight of "singular" units 1716 // - induces recomputation of UberWeights. 1717 static bool normalizeWeight(CodeGenRegister *Reg, 1718 std::vector<UberRegSet> &UberSets, 1719 std::vector<UberRegSet*> &RegSets, 1720 BitVector &NormalRegs, 1721 CodeGenRegister::RegUnitList &NormalUnits, 1722 CodeGenRegBank &RegBank) { 1723 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size())); 1724 if (NormalRegs.test(Reg->EnumValue)) 1725 return false; 1726 NormalRegs.set(Reg->EnumValue); 1727 1728 bool Changed = false; 1729 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1730 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1731 SRE = SRM.end(); SRI != SRE; ++SRI) { 1732 if (SRI->second == Reg) 1733 continue; // self-cycles happen 1734 1735 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1736 NormalRegs, NormalUnits, RegBank); 1737 } 1738 // Postorder register normalization. 1739 1740 // Inherit register units newly adopted by subregisters. 1741 if (Reg->inheritRegUnits(RegBank)) 1742 computeUberWeights(UberSets, RegBank); 1743 1744 // Check if this register is too skinny for its UberRegSet. 1745 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1746 1747 unsigned RegWeight = Reg->getWeight(RegBank); 1748 if (UberSet->Weight > RegWeight) { 1749 // A register unit's weight can be adjusted only if it is the singular unit 1750 // for this register, has not been used to normalize a subregister's set, 1751 // and has not already been used to singularly determine this UberRegSet. 1752 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1753 if (Reg->getRegUnits().count() != 1 1754 || hasRegUnit(NormalUnits, AdjustUnit) 1755 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1756 // We don't have an adjustable unit, so adopt a new one. 1757 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1758 Reg->adoptRegUnit(AdjustUnit); 1759 // Adopting a unit does not immediately require recomputing set weights. 1760 } 1761 else { 1762 // Adjust the existing single unit. 1763 if (!RegBank.getRegUnit(AdjustUnit).Artificial) 1764 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1765 // The unit may be shared among sets and registers within this set. 1766 computeUberWeights(UberSets, RegBank); 1767 } 1768 Changed = true; 1769 } 1770 1771 // Mark these units normalized so superregisters can't change their weights. 1772 NormalUnits |= Reg->getRegUnits(); 1773 1774 return Changed; 1775 } 1776 1777 // Compute a weight for each register unit created during getSubRegs. 1778 // 1779 // The goal is that two registers in the same class will have the same weight, 1780 // where each register's weight is defined as sum of its units' weights. 1781 void CodeGenRegBank::computeRegUnitWeights() { 1782 std::vector<UberRegSet> UberSets; 1783 std::vector<UberRegSet*> RegSets(Registers.size()); 1784 computeUberSets(UberSets, RegSets, *this); 1785 // UberSets and RegSets are now immutable. 1786 1787 computeUberWeights(UberSets, *this); 1788 1789 // Iterate over each Register, normalizing the unit weights until reaching 1790 // a fix point. 1791 unsigned NumIters = 0; 1792 for (bool Changed = true; Changed; ++NumIters) { 1793 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1794 Changed = false; 1795 for (auto &Reg : Registers) { 1796 CodeGenRegister::RegUnitList NormalUnits; 1797 BitVector NormalRegs; 1798 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1799 NormalUnits, *this); 1800 } 1801 } 1802 } 1803 1804 // Find a set in UniqueSets with the same elements as Set. 1805 // Return an iterator into UniqueSets. 1806 static std::vector<RegUnitSet>::const_iterator 1807 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1808 const RegUnitSet &Set) { 1809 std::vector<RegUnitSet>::const_iterator 1810 I = UniqueSets.begin(), E = UniqueSets.end(); 1811 for(;I != E; ++I) { 1812 if (I->Units == Set.Units) 1813 break; 1814 } 1815 return I; 1816 } 1817 1818 // Return true if the RUSubSet is a subset of RUSuperSet. 1819 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1820 const std::vector<unsigned> &RUSuperSet) { 1821 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1822 RUSubSet.begin(), RUSubSet.end()); 1823 } 1824 1825 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1826 /// but with one or two registers removed. We occasionally have registers like 1827 /// APSR and PC thrown in with the general registers. We also see many 1828 /// special-purpose register subsets, such as tail-call and Thumb 1829 /// encodings. Generating all possible overlapping sets is combinatorial and 1830 /// overkill for modeling pressure. Ideally we could fix this statically in 1831 /// tablegen by (1) having the target define register classes that only include 1832 /// the allocatable registers and marking other classes as non-allocatable and 1833 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1834 /// the purpose of pressure. However, we make an attempt to handle targets that 1835 /// are not nicely defined by merging nearly identical register unit sets 1836 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1837 /// set limit by filtering the reserved registers. 1838 /// 1839 /// Merge sets only if the units have the same weight. For example, on ARM, 1840 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1841 /// should not expand the S set to include D regs. 1842 void CodeGenRegBank::pruneUnitSets() { 1843 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1844 1845 // Form an equivalence class of UnitSets with no significant difference. 1846 std::vector<unsigned> SuperSetIDs; 1847 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1848 SubIdx != EndIdx; ++SubIdx) { 1849 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1850 unsigned SuperIdx = 0; 1851 for (; SuperIdx != EndIdx; ++SuperIdx) { 1852 if (SuperIdx == SubIdx) 1853 continue; 1854 1855 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1856 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1857 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1858 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1859 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1860 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1861 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1862 << "\n"); 1863 // We can pick any of the set names for the merged set. Go for the 1864 // shortest one to avoid picking the name of one of the classes that are 1865 // artificially created by tablegen. So "FPR128_lo" instead of 1866 // "QQQQ_with_qsub3_in_FPR128_lo". 1867 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1868 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1869 break; 1870 } 1871 } 1872 if (SuperIdx == EndIdx) 1873 SuperSetIDs.push_back(SubIdx); 1874 } 1875 // Populate PrunedUnitSets with each equivalence class's superset. 1876 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1877 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1878 unsigned SuperIdx = SuperSetIDs[i]; 1879 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1880 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1881 } 1882 RegUnitSets.swap(PrunedUnitSets); 1883 } 1884 1885 // Create a RegUnitSet for each RegClass that contains all units in the class 1886 // including adopted units that are necessary to model register pressure. Then 1887 // iteratively compute RegUnitSets such that the union of any two overlapping 1888 // RegUnitSets is repreresented. 1889 // 1890 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1891 // RegUnitSet that is a superset of that RegUnitClass. 1892 void CodeGenRegBank::computeRegUnitSets() { 1893 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1894 1895 // Compute a unique RegUnitSet for each RegClass. 1896 auto &RegClasses = getRegClasses(); 1897 for (auto &RC : RegClasses) { 1898 if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet) 1899 continue; 1900 1901 // Speculatively grow the RegUnitSets to hold the new set. 1902 RegUnitSets.resize(RegUnitSets.size() + 1); 1903 RegUnitSets.back().Name = RC.getName(); 1904 1905 // Compute a sorted list of units in this class. 1906 RC.buildRegUnitSet(*this, RegUnitSets.back().Units); 1907 1908 // Find an existing RegUnitSet. 1909 std::vector<RegUnitSet>::const_iterator SetI = 1910 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1911 if (SetI != std::prev(RegUnitSets.end())) 1912 RegUnitSets.pop_back(); 1913 } 1914 1915 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, 1916 USEnd = RegUnitSets.size(); 1917 USIdx < USEnd; ++USIdx) { 1918 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1919 for (auto &U : RegUnitSets[USIdx].Units) 1920 printRegUnitName(U); 1921 dbgs() << "\n"; 1922 }); 1923 1924 // Iteratively prune unit sets. 1925 pruneUnitSets(); 1926 1927 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, 1928 USEnd = RegUnitSets.size(); 1929 USIdx < USEnd; ++USIdx) { 1930 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1931 for (auto &U : RegUnitSets[USIdx].Units) 1932 printRegUnitName(U); 1933 dbgs() << "\n"; 1934 } dbgs() << "\nUnion sets:\n"); 1935 1936 // Iterate over all unit sets, including new ones added by this loop. 1937 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1938 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1939 // In theory, this is combinatorial. In practice, it needs to be bounded 1940 // by a small number of sets for regpressure to be efficient. 1941 // If the assert is hit, we need to implement pruning. 1942 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1943 1944 // Compare new sets with all original classes. 1945 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1946 SearchIdx != EndIdx; ++SearchIdx) { 1947 std::set<unsigned> Intersection; 1948 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1949 RegUnitSets[Idx].Units.end(), 1950 RegUnitSets[SearchIdx].Units.begin(), 1951 RegUnitSets[SearchIdx].Units.end(), 1952 std::inserter(Intersection, Intersection.begin())); 1953 if (Intersection.empty()) 1954 continue; 1955 1956 // Speculatively grow the RegUnitSets to hold the new set. 1957 RegUnitSets.resize(RegUnitSets.size() + 1); 1958 RegUnitSets.back().Name = 1959 RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name; 1960 1961 std::set_union(RegUnitSets[Idx].Units.begin(), 1962 RegUnitSets[Idx].Units.end(), 1963 RegUnitSets[SearchIdx].Units.begin(), 1964 RegUnitSets[SearchIdx].Units.end(), 1965 std::inserter(RegUnitSets.back().Units, 1966 RegUnitSets.back().Units.begin())); 1967 1968 // Find an existing RegUnitSet, or add the union to the unique sets. 1969 std::vector<RegUnitSet>::const_iterator SetI = 1970 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1971 if (SetI != std::prev(RegUnitSets.end())) 1972 RegUnitSets.pop_back(); 1973 else { 1974 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " 1975 << RegUnitSets.back().Name << ":"; 1976 for (auto &U 1977 : RegUnitSets.back().Units) printRegUnitName(U); 1978 dbgs() << "\n";); 1979 } 1980 } 1981 } 1982 1983 // Iteratively prune unit sets after inferring supersets. 1984 pruneUnitSets(); 1985 1986 LLVM_DEBUG( 1987 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1988 USIdx < USEnd; ++USIdx) { 1989 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1990 for (auto &U : RegUnitSets[USIdx].Units) 1991 printRegUnitName(U); 1992 dbgs() << "\n"; 1993 }); 1994 1995 // For each register class, list the UnitSets that are supersets. 1996 RegClassUnitSets.resize(RegClasses.size()); 1997 int RCIdx = -1; 1998 for (auto &RC : RegClasses) { 1999 ++RCIdx; 2000 if (!RC.Allocatable) 2001 continue; 2002 2003 // Recompute the sorted list of units in this class. 2004 std::vector<unsigned> RCRegUnits; 2005 RC.buildRegUnitSet(*this, RCRegUnits); 2006 2007 // Don't increase pressure for unallocatable regclasses. 2008 if (RCRegUnits.empty()) 2009 continue; 2010 2011 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n"; 2012 for (auto U 2013 : RCRegUnits) printRegUnitName(U); 2014 dbgs() << "\n UnitSetIDs:"); 2015 2016 // Find all supersets. 2017 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2018 USIdx != USEnd; ++USIdx) { 2019 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 2020 LLVM_DEBUG(dbgs() << " " << USIdx); 2021 RegClassUnitSets[RCIdx].push_back(USIdx); 2022 } 2023 } 2024 LLVM_DEBUG(dbgs() << "\n"); 2025 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 2026 } 2027 2028 // For each register unit, ensure that we have the list of UnitSets that 2029 // contain the unit. Normally, this matches an existing list of UnitSets for a 2030 // register class. If not, we create a new entry in RegClassUnitSets as a 2031 // "fake" register class. 2032 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 2033 UnitIdx < UnitEnd; ++UnitIdx) { 2034 std::vector<unsigned> RUSets; 2035 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 2036 RegUnitSet &RUSet = RegUnitSets[i]; 2037 if (!is_contained(RUSet.Units, UnitIdx)) 2038 continue; 2039 RUSets.push_back(i); 2040 } 2041 unsigned RCUnitSetsIdx = 0; 2042 for (unsigned e = RegClassUnitSets.size(); 2043 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 2044 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 2045 break; 2046 } 2047 } 2048 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 2049 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 2050 // Create a new list of UnitSets as a "fake" register class. 2051 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 2052 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 2053 } 2054 } 2055 } 2056 2057 void CodeGenRegBank::computeRegUnitLaneMasks() { 2058 for (auto &Register : Registers) { 2059 // Create an initial lane mask for all register units. 2060 const auto &RegUnits = Register.getRegUnits(); 2061 CodeGenRegister::RegUnitLaneMaskList 2062 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 2063 // Iterate through SubRegisters. 2064 typedef CodeGenRegister::SubRegMap SubRegMap; 2065 const SubRegMap &SubRegs = Register.getSubRegs(); 2066 for (SubRegMap::const_iterator S = SubRegs.begin(), 2067 SE = SubRegs.end(); S != SE; ++S) { 2068 CodeGenRegister *SubReg = S->second; 2069 // Ignore non-leaf subregisters, their lane masks are fully covered by 2070 // the leaf subregisters anyway. 2071 if (!SubReg->getSubRegs().empty()) 2072 continue; 2073 CodeGenSubRegIndex *SubRegIndex = S->first; 2074 const CodeGenRegister *SubRegister = S->second; 2075 LaneBitmask LaneMask = SubRegIndex->LaneMask; 2076 // Distribute LaneMask to Register Units touched. 2077 for (unsigned SUI : SubRegister->getRegUnits()) { 2078 bool Found = false; 2079 unsigned u = 0; 2080 for (unsigned RU : RegUnits) { 2081 if (SUI == RU) { 2082 RegUnitLaneMasks[u] |= LaneMask; 2083 assert(!Found); 2084 Found = true; 2085 } 2086 ++u; 2087 } 2088 (void)Found; 2089 assert(Found); 2090 } 2091 } 2092 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 2093 } 2094 } 2095 2096 void CodeGenRegBank::computeDerivedInfo() { 2097 computeComposites(); 2098 computeSubRegLaneMasks(); 2099 2100 // Compute a weight for each register unit created during getSubRegs. 2101 // This may create adopted register units (with unit # >= NumNativeRegUnits). 2102 computeRegUnitWeights(); 2103 2104 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 2105 // supersets for the union of overlapping sets. 2106 computeRegUnitSets(); 2107 2108 computeRegUnitLaneMasks(); 2109 2110 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 2111 for (CodeGenRegisterClass &RC : RegClasses) { 2112 RC.HasDisjunctSubRegs = false; 2113 RC.CoveredBySubRegs = true; 2114 for (const CodeGenRegister *Reg : RC.getMembers()) { 2115 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 2116 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 2117 } 2118 } 2119 2120 // Get the weight of each set. 2121 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2122 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 2123 2124 // Find the order of each set. 2125 RegUnitSetOrder.reserve(RegUnitSets.size()); 2126 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2127 RegUnitSetOrder.push_back(Idx); 2128 2129 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) { 2130 return getRegPressureSet(ID1).Units.size() < 2131 getRegPressureSet(ID2).Units.size(); 2132 }); 2133 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 2134 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 2135 } 2136 } 2137 2138 // 2139 // Synthesize missing register class intersections. 2140 // 2141 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 2142 // returns a maximal register class for all X. 2143 // 2144 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 2145 assert(!RegClasses.empty()); 2146 // Stash the iterator to the last element so that this loop doesn't visit 2147 // elements added by the getOrCreateSubClass call within it. 2148 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 2149 I != std::next(E); ++I) { 2150 CodeGenRegisterClass *RC1 = RC; 2151 CodeGenRegisterClass *RC2 = &*I; 2152 if (RC1 == RC2) 2153 continue; 2154 2155 // Compute the set intersection of RC1 and RC2. 2156 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 2157 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 2158 CodeGenRegister::Vec Intersection; 2159 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(), 2160 Memb2.end(), 2161 std::inserter(Intersection, Intersection.begin()), 2162 deref<std::less<>>()); 2163 2164 // Skip disjoint class pairs. 2165 if (Intersection.empty()) 2166 continue; 2167 2168 // If RC1 and RC2 have different spill sizes or alignments, use the 2169 // stricter one for sub-classing. If they are equal, prefer RC1. 2170 if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) 2171 std::swap(RC1, RC2); 2172 2173 getOrCreateSubClass(RC1, &Intersection, 2174 RC1->getName() + "_and_" + RC2->getName()); 2175 } 2176 } 2177 2178 // 2179 // Synthesize missing sub-classes for getSubClassWithSubReg(). 2180 // 2181 // Make sure that the set of registers in RC with a given SubIdx sub-register 2182 // form a register class. Update RC->SubClassWithSubReg. 2183 // 2184 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 2185 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 2186 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 2187 deref<std::less<>>> 2188 SubReg2SetMap; 2189 2190 // Compute the set of registers supporting each SubRegIndex. 2191 SubReg2SetMap SRSets; 2192 for (const auto R : RC->getMembers()) { 2193 if (R->Artificial) 2194 continue; 2195 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 2196 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2197 E = SRM.end(); I != E; ++I) { 2198 if (!I->first->Artificial) 2199 SRSets[I->first].push_back(R); 2200 } 2201 } 2202 2203 for (auto I : SRSets) 2204 sortAndUniqueRegisters(I.second); 2205 2206 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 2207 // numerical order to visit synthetic indices last. 2208 for (const auto &SubIdx : SubRegIndices) { 2209 if (SubIdx.Artificial) 2210 continue; 2211 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 2212 // Unsupported SubRegIndex. Skip it. 2213 if (I == SRSets.end()) 2214 continue; 2215 // In most cases, all RC registers support the SubRegIndex. 2216 if (I->second.size() == RC->getMembers().size()) { 2217 RC->setSubClassWithSubReg(&SubIdx, RC); 2218 continue; 2219 } 2220 // This is a real subset. See if we have a matching class. 2221 CodeGenRegisterClass *SubRC = 2222 getOrCreateSubClass(RC, &I->second, 2223 RC->getName() + "_with_" + I->first->getName()); 2224 RC->setSubClassWithSubReg(&SubIdx, SubRC); 2225 } 2226 } 2227 2228 // 2229 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 2230 // 2231 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 2232 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 2233 // 2234 2235 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 2236 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 2237 SmallVector<std::pair<const CodeGenRegister*, 2238 const CodeGenRegister*>, 16> SSPairs; 2239 BitVector TopoSigs(getNumTopoSigs()); 2240 2241 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 2242 for (auto &SubIdx : SubRegIndices) { 2243 // Skip indexes that aren't fully supported by RC's registers. This was 2244 // computed by inferSubClassWithSubReg() above which should have been 2245 // called first. 2246 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 2247 continue; 2248 2249 // Build list of (Super, Sub) pairs for this SubIdx. 2250 SSPairs.clear(); 2251 TopoSigs.reset(); 2252 for (const auto Super : RC->getMembers()) { 2253 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 2254 assert(Sub && "Missing sub-register"); 2255 SSPairs.push_back(std::make_pair(Super, Sub)); 2256 TopoSigs.set(Sub->getTopoSig()); 2257 } 2258 2259 // Iterate over sub-register class candidates. Ignore classes created by 2260 // this loop. They will never be useful. 2261 // Store an iterator to the last element (not end) so that this loop doesn't 2262 // visit newly inserted elements. 2263 assert(!RegClasses.empty()); 2264 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2265 I != std::next(E); ++I) { 2266 CodeGenRegisterClass &SubRC = *I; 2267 if (SubRC.Artificial) 2268 continue; 2269 // Topological shortcut: SubRC members have the wrong shape. 2270 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2271 continue; 2272 // Compute the subset of RC that maps into SubRC. 2273 CodeGenRegister::Vec SubSetVec; 2274 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2275 if (SubRC.contains(SSPairs[i].second)) 2276 SubSetVec.push_back(SSPairs[i].first); 2277 2278 if (SubSetVec.empty()) 2279 continue; 2280 2281 // RC injects completely into SubRC. 2282 sortAndUniqueRegisters(SubSetVec); 2283 if (SubSetVec.size() == SSPairs.size()) { 2284 SubRC.addSuperRegClass(&SubIdx, RC); 2285 continue; 2286 } 2287 2288 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2289 // class. 2290 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2291 SubIdx.getName() + "_in_" + 2292 SubRC.getName()); 2293 } 2294 } 2295 } 2296 2297 // 2298 // Infer missing register classes. 2299 // 2300 void CodeGenRegBank::computeInferredRegisterClasses() { 2301 assert(!RegClasses.empty()); 2302 // When this function is called, the register classes have not been sorted 2303 // and assigned EnumValues yet. That means getSubClasses(), 2304 // getSuperClasses(), and hasSubClass() functions are defunct. 2305 2306 // Use one-before-the-end so it doesn't move forward when new elements are 2307 // added. 2308 auto FirstNewRC = std::prev(RegClasses.end()); 2309 2310 // Visit all register classes, including the ones being added by the loop. 2311 // Watch out for iterator invalidation here. 2312 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2313 CodeGenRegisterClass *RC = &*I; 2314 if (RC->Artificial) 2315 continue; 2316 2317 // Synthesize answers for getSubClassWithSubReg(). 2318 inferSubClassWithSubReg(RC); 2319 2320 // Synthesize answers for getCommonSubClass(). 2321 inferCommonSubClass(RC); 2322 2323 // Synthesize answers for getMatchingSuperRegClass(). 2324 inferMatchingSuperRegClass(RC); 2325 2326 // New register classes are created while this loop is running, and we need 2327 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2328 // to match old super-register classes with sub-register classes created 2329 // after inferMatchingSuperRegClass was called. At this point, 2330 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2331 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2332 if (I == FirstNewRC) { 2333 auto NextNewRC = std::prev(RegClasses.end()); 2334 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2335 ++I2) 2336 inferMatchingSuperRegClass(&*I2, E2); 2337 FirstNewRC = NextNewRC; 2338 } 2339 } 2340 } 2341 2342 /// getRegisterClassForRegister - Find the register class that contains the 2343 /// specified physical register. If the register is not in a register class, 2344 /// return null. If the register is in multiple classes, and the classes have a 2345 /// superset-subset relationship and the same set of types, return the 2346 /// superclass. Otherwise return null. 2347 const CodeGenRegisterClass* 2348 CodeGenRegBank::getRegClassForRegister(Record *R) { 2349 const CodeGenRegister *Reg = getReg(R); 2350 const CodeGenRegisterClass *FoundRC = nullptr; 2351 for (const auto &RC : getRegClasses()) { 2352 if (!RC.contains(Reg)) 2353 continue; 2354 2355 // If this is the first class that contains the register, 2356 // make a note of it and go on to the next class. 2357 if (!FoundRC) { 2358 FoundRC = &RC; 2359 continue; 2360 } 2361 2362 // If a register's classes have different types, return null. 2363 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2364 return nullptr; 2365 2366 // Check to see if the previously found class that contains 2367 // the register is a subclass of the current class. If so, 2368 // prefer the superclass. 2369 if (RC.hasSubClass(FoundRC)) { 2370 FoundRC = &RC; 2371 continue; 2372 } 2373 2374 // Check to see if the previously found class that contains 2375 // the register is a superclass of the current class. If so, 2376 // prefer the superclass. 2377 if (FoundRC->hasSubClass(&RC)) 2378 continue; 2379 2380 // Multiple classes, and neither is a superclass of the other. 2381 // Return null. 2382 return nullptr; 2383 } 2384 return FoundRC; 2385 } 2386 2387 const CodeGenRegisterClass * 2388 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord, 2389 ValueTypeByHwMode *VT) { 2390 const CodeGenRegister *Reg = getReg(RegRecord); 2391 const CodeGenRegisterClass *BestRC = nullptr; 2392 for (const auto &RC : getRegClasses()) { 2393 if ((!VT || RC.hasType(*VT)) && 2394 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC))) 2395 BestRC = &RC; 2396 } 2397 2398 assert(BestRC && "Couldn't find the register class"); 2399 return BestRC; 2400 } 2401 2402 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2403 SetVector<const CodeGenRegister*> Set; 2404 2405 // First add Regs with all sub-registers. 2406 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2407 CodeGenRegister *Reg = getReg(Regs[i]); 2408 if (Set.insert(Reg)) 2409 // Reg is new, add all sub-registers. 2410 // The pre-ordering is not important here. 2411 Reg->addSubRegsPreOrder(Set, *this); 2412 } 2413 2414 // Second, find all super-registers that are completely covered by the set. 2415 for (unsigned i = 0; i != Set.size(); ++i) { 2416 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2417 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2418 const CodeGenRegister *Super = SR[j]; 2419 if (!Super->CoveredBySubRegs || Set.count(Super)) 2420 continue; 2421 // This new super-register is covered by its sub-registers. 2422 bool AllSubsInSet = true; 2423 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2424 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2425 E = SRM.end(); I != E; ++I) 2426 if (!Set.count(I->second)) { 2427 AllSubsInSet = false; 2428 break; 2429 } 2430 // All sub-registers in Set, add Super as well. 2431 // We will visit Super later to recheck its super-registers. 2432 if (AllSubsInSet) 2433 Set.insert(Super); 2434 } 2435 } 2436 2437 // Convert to BitVector. 2438 BitVector BV(Registers.size() + 1); 2439 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2440 BV.set(Set[i]->EnumValue); 2441 return BV; 2442 } 2443 2444 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2445 if (Unit < NumNativeRegUnits) 2446 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2447 else 2448 dbgs() << " #" << Unit; 2449 } 2450