1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines structures to encapsulate information gleaned from the 10 // target register and register class definitions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenRegisters.h" 15 #include "CodeGenTarget.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/IntEqClasses.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/TableGen/Error.h" 32 #include "llvm/TableGen/Record.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <queue> 39 #include <set> 40 #include <string> 41 #include <tuple> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "regalloc-emitter" 48 49 //===----------------------------------------------------------------------===// 50 // CodeGenSubRegIndex 51 //===----------------------------------------------------------------------===// 52 53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 54 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 55 Name = std::string(R->getName()); 56 if (R->getValue("Namespace")) 57 Namespace = std::string(R->getValueAsString("Namespace")); 58 Size = R->getValueAsInt("Size"); 59 Offset = R->getValueAsInt("Offset"); 60 } 61 62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 63 unsigned Enum) 64 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)), 65 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true), 66 Artificial(true) {} 67 68 std::string CodeGenSubRegIndex::getQualifiedName() const { 69 std::string N = getNamespace(); 70 if (!N.empty()) 71 N += "::"; 72 N += getName(); 73 return N; 74 } 75 76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 77 if (!TheDef) 78 return; 79 80 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 81 if (!Comps.empty()) { 82 if (Comps.size() != 2) 83 PrintFatalError(TheDef->getLoc(), 84 "ComposedOf must have exactly two entries"); 85 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 86 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 87 CodeGenSubRegIndex *X = A->addComposite(B, this); 88 if (X) 89 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 90 } 91 92 std::vector<Record*> Parts = 93 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 94 if (!Parts.empty()) { 95 if (Parts.size() < 2) 96 PrintFatalError(TheDef->getLoc(), 97 "CoveredBySubRegs must have two or more entries"); 98 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 99 for (Record *Part : Parts) 100 IdxParts.push_back(RegBank.getSubRegIdx(Part)); 101 setConcatenationOf(IdxParts); 102 } 103 } 104 105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 106 // Already computed? 107 if (LaneMask.any()) 108 return LaneMask; 109 110 // Recursion guard, shouldn't be required. 111 LaneMask = LaneBitmask::getAll(); 112 113 // The lane mask is simply the union of all sub-indices. 114 LaneBitmask M; 115 for (const auto &C : Composed) 116 M |= C.second->computeLaneMask(); 117 assert(M.any() && "Missing lane mask, sub-register cycle?"); 118 LaneMask = M; 119 return LaneMask; 120 } 121 122 void CodeGenSubRegIndex::setConcatenationOf( 123 ArrayRef<CodeGenSubRegIndex*> Parts) { 124 if (ConcatenationOf.empty()) 125 ConcatenationOf.assign(Parts.begin(), Parts.end()); 126 else 127 assert(std::equal(Parts.begin(), Parts.end(), 128 ConcatenationOf.begin()) && "parts consistent"); 129 } 130 131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() { 132 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator 133 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { 134 CodeGenSubRegIndex *SubIdx = *I; 135 SubIdx->computeConcatTransitiveClosure(); 136 #ifndef NDEBUG 137 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) 138 assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); 139 #endif 140 141 if (SubIdx->ConcatenationOf.empty()) { 142 ++I; 143 } else { 144 I = ConcatenationOf.erase(I); 145 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), 146 SubIdx->ConcatenationOf.end()); 147 I += SubIdx->ConcatenationOf.size(); 148 } 149 } 150 } 151 152 //===----------------------------------------------------------------------===// 153 // CodeGenRegister 154 //===----------------------------------------------------------------------===// 155 156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 157 : TheDef(R), EnumValue(Enum), 158 CostPerUse(R->getValueAsListOfInts("CostPerUse")), 159 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 160 HasDisjunctSubRegs(false), SubRegsComplete(false), 161 SuperRegsComplete(false), TopoSig(~0u) { 162 Artificial = R->getValueAsBit("isArtificial"); 163 } 164 165 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 166 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 167 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 168 169 if (SRIs.size() != SRs.size()) 170 PrintFatalError(TheDef->getLoc(), 171 "SubRegs and SubRegIndices must have the same size"); 172 173 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 174 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 175 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 176 } 177 178 // Also compute leading super-registers. Each register has a list of 179 // covered-by-subregs super-registers where it appears as the first explicit 180 // sub-register. 181 // 182 // This is used by computeSecondarySubRegs() to find candidates. 183 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 184 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 185 186 // Add ad hoc alias links. This is a symmetric relationship between two 187 // registers, so build a symmetric graph by adding links in both ends. 188 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 189 for (Record *Alias : Aliases) { 190 CodeGenRegister *Reg = RegBank.getReg(Alias); 191 ExplicitAliases.push_back(Reg); 192 Reg->ExplicitAliases.push_back(this); 193 } 194 } 195 196 StringRef CodeGenRegister::getName() const { 197 assert(TheDef && "no def"); 198 return TheDef->getName(); 199 } 200 201 namespace { 202 203 // Iterate over all register units in a set of registers. 204 class RegUnitIterator { 205 CodeGenRegister::Vec::const_iterator RegI, RegE; 206 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 207 static CodeGenRegister::RegUnitList Sentinel; 208 209 public: 210 RegUnitIterator(const CodeGenRegister::Vec &Regs): 211 RegI(Regs.begin()), RegE(Regs.end()) { 212 213 if (RegI == RegE) { 214 UnitI = Sentinel.end(); 215 UnitE = Sentinel.end(); 216 } else { 217 UnitI = (*RegI)->getRegUnits().begin(); 218 UnitE = (*RegI)->getRegUnits().end(); 219 advance(); 220 } 221 } 222 223 bool isValid() const { return UnitI != UnitE; } 224 225 unsigned operator* () const { assert(isValid()); return *UnitI; } 226 227 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 228 229 /// Preincrement. Move to the next unit. 230 void operator++() { 231 assert(isValid() && "Cannot advance beyond the last operand"); 232 ++UnitI; 233 advance(); 234 } 235 236 protected: 237 void advance() { 238 while (UnitI == UnitE) { 239 if (++RegI == RegE) 240 break; 241 UnitI = (*RegI)->getRegUnits().begin(); 242 UnitE = (*RegI)->getRegUnits().end(); 243 } 244 } 245 }; 246 247 CodeGenRegister::RegUnitList RegUnitIterator::Sentinel; 248 249 } // end anonymous namespace 250 251 // Return true of this unit appears in RegUnits. 252 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 253 return RegUnits.test(Unit); 254 } 255 256 // Inherit register units from subregisters. 257 // Return true if the RegUnits changed. 258 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 259 bool changed = false; 260 for (const auto &SubReg : SubRegs) { 261 CodeGenRegister *SR = SubReg.second; 262 // Merge the subregister's units into this register's RegUnits. 263 changed |= (RegUnits |= SR->RegUnits); 264 } 265 266 return changed; 267 } 268 269 const CodeGenRegister::SubRegMap & 270 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 271 // Only compute this map once. 272 if (SubRegsComplete) 273 return SubRegs; 274 SubRegsComplete = true; 275 276 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 277 278 // First insert the explicit subregs and make sure they are fully indexed. 279 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 280 CodeGenRegister *SR = ExplicitSubRegs[i]; 281 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 282 if (!SR->Artificial) 283 Idx->Artificial = false; 284 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 285 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 286 " appears twice in Register " + getName()); 287 // Map explicit sub-registers first, so the names take precedence. 288 // The inherited sub-registers are mapped below. 289 SubReg2Idx.insert(std::make_pair(SR, Idx)); 290 } 291 292 // Keep track of inherited subregs and how they can be reached. 293 SmallPtrSet<CodeGenRegister*, 8> Orphans; 294 295 // Clone inherited subregs and place duplicate entries in Orphans. 296 // Here the order is important - earlier subregs take precedence. 297 for (CodeGenRegister *ESR : ExplicitSubRegs) { 298 const SubRegMap &Map = ESR->computeSubRegs(RegBank); 299 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; 300 301 for (const auto &SR : Map) { 302 if (!SubRegs.insert(SR).second) 303 Orphans.insert(SR.second); 304 } 305 } 306 307 // Expand any composed subreg indices. 308 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 309 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 310 // expanded subreg indices recursively. 311 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 312 for (unsigned i = 0; i != Indices.size(); ++i) { 313 CodeGenSubRegIndex *Idx = Indices[i]; 314 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 315 CodeGenRegister *SR = SubRegs[Idx]; 316 const SubRegMap &Map = SR->computeSubRegs(RegBank); 317 318 // Look at the possible compositions of Idx. 319 // They may not all be supported by SR. 320 for (auto Comp : Comps) { 321 SubRegMap::const_iterator SRI = Map.find(Comp.first); 322 if (SRI == Map.end()) 323 continue; // Idx + I->first doesn't exist in SR. 324 // Add I->second as a name for the subreg SRI->second, assuming it is 325 // orphaned, and the name isn't already used for something else. 326 if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second)) 327 continue; 328 // We found a new name for the orphaned sub-register. 329 SubRegs.insert(std::make_pair(Comp.second, SRI->second)); 330 Indices.push_back(Comp.second); 331 } 332 } 333 334 // Now Orphans contains the inherited subregisters without a direct index. 335 // Create inferred indexes for all missing entries. 336 // Work backwards in the Indices vector in order to compose subregs bottom-up. 337 // Consider this subreg sequence: 338 // 339 // qsub_1 -> dsub_0 -> ssub_0 340 // 341 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 342 // can be reached in two different ways: 343 // 344 // qsub_1 -> ssub_0 345 // dsub_2 -> ssub_0 346 // 347 // We pick the latter composition because another register may have [dsub_0, 348 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 349 // dsub_2 -> ssub_0 composition can be shared. 350 while (!Indices.empty() && !Orphans.empty()) { 351 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 352 CodeGenRegister *SR = SubRegs[Idx]; 353 const SubRegMap &Map = SR->computeSubRegs(RegBank); 354 for (const auto &SubReg : Map) 355 if (Orphans.erase(SubReg.second)) 356 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; 357 } 358 359 // Compute the inverse SubReg -> Idx map. 360 for (const auto &SubReg : SubRegs) { 361 if (SubReg.second == this) { 362 ArrayRef<SMLoc> Loc; 363 if (TheDef) 364 Loc = TheDef->getLoc(); 365 PrintFatalError(Loc, "Register " + getName() + 366 " has itself as a sub-register"); 367 } 368 369 // Compute AllSuperRegsCovered. 370 if (!CoveredBySubRegs) 371 SubReg.first->AllSuperRegsCovered = false; 372 373 // Ensure that every sub-register has a unique name. 374 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 375 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; 376 if (Ins->second == SubReg.first) 377 continue; 378 // Trouble: Two different names for SubReg.second. 379 ArrayRef<SMLoc> Loc; 380 if (TheDef) 381 Loc = TheDef->getLoc(); 382 PrintFatalError(Loc, "Sub-register can't have two names: " + 383 SubReg.second->getName() + " available as " + 384 SubReg.first->getName() + " and " + Ins->second->getName()); 385 } 386 387 // Derive possible names for sub-register concatenations from any explicit 388 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 389 // that getConcatSubRegIndex() won't invent any concatenated indices that the 390 // user already specified. 391 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 392 CodeGenRegister *SR = ExplicitSubRegs[i]; 393 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 || 394 SR->Artificial) 395 continue; 396 397 // SR is composed of multiple sub-regs. Find their names in this register. 398 SmallVector<CodeGenSubRegIndex*, 8> Parts; 399 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) { 400 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j]; 401 if (!I.Artificial) 402 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 403 } 404 405 // Offer this as an existing spelling for the concatenation of Parts. 406 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; 407 Idx.setConcatenationOf(Parts); 408 } 409 410 // Initialize RegUnitList. Because getSubRegs is called recursively, this 411 // processes the register hierarchy in postorder. 412 // 413 // Inherit all sub-register units. It is good enough to look at the explicit 414 // sub-registers, the other registers won't contribute any more units. 415 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 416 CodeGenRegister *SR = ExplicitSubRegs[i]; 417 RegUnits |= SR->RegUnits; 418 } 419 420 // Absent any ad hoc aliasing, we create one register unit per leaf register. 421 // These units correspond to the maximal cliques in the register overlap 422 // graph which is optimal. 423 // 424 // When there is ad hoc aliasing, we simply create one unit per edge in the 425 // undirected ad hoc aliasing graph. Technically, we could do better by 426 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 427 // are extremely rare anyway (I've never seen one), so we don't bother with 428 // the added complexity. 429 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 430 CodeGenRegister *AR = ExplicitAliases[i]; 431 // Only visit each edge once. 432 if (AR->SubRegsComplete) 433 continue; 434 // Create a RegUnit representing this alias edge, and add it to both 435 // registers. 436 unsigned Unit = RegBank.newRegUnit(this, AR); 437 RegUnits.set(Unit); 438 AR->RegUnits.set(Unit); 439 } 440 441 // Finally, create units for leaf registers without ad hoc aliases. Note that 442 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 443 // necessary. This means the aliasing leaf registers can share a single unit. 444 if (RegUnits.empty()) 445 RegUnits.set(RegBank.newRegUnit(this)); 446 447 // We have now computed the native register units. More may be adopted later 448 // for balancing purposes. 449 NativeRegUnits = RegUnits; 450 451 return SubRegs; 452 } 453 454 // In a register that is covered by its sub-registers, try to find redundant 455 // sub-registers. For example: 456 // 457 // QQ0 = {Q0, Q1} 458 // Q0 = {D0, D1} 459 // Q1 = {D2, D3} 460 // 461 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 462 // the register definition. 463 // 464 // The explicitly specified registers form a tree. This function discovers 465 // sub-register relationships that would force a DAG. 466 // 467 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 468 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 469 470 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue; 471 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs) 472 SubRegQueue.push(P); 473 474 // Look at the leading super-registers of each sub-register. Those are the 475 // candidates for new sub-registers, assuming they are fully contained in 476 // this register. 477 while (!SubRegQueue.empty()) { 478 CodeGenSubRegIndex *SubRegIdx; 479 const CodeGenRegister *SubReg; 480 std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); 481 SubRegQueue.pop(); 482 483 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 484 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 485 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 486 // Already got this sub-register? 487 if (Cand == this || getSubRegIndex(Cand)) 488 continue; 489 // Check if each component of Cand is already a sub-register. 490 assert(!Cand->ExplicitSubRegs.empty() && 491 "Super-register has no sub-registers"); 492 if (Cand->ExplicitSubRegs.size() == 1) 493 continue; 494 SmallVector<CodeGenSubRegIndex*, 8> Parts; 495 // We know that the first component is (SubRegIdx,SubReg). However we 496 // may still need to split it into smaller subregister parts. 497 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); 498 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); 499 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { 500 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { 501 if (SubRegIdx->ConcatenationOf.empty()) 502 Parts.push_back(SubRegIdx); 503 else 504 append_range(Parts, SubRegIdx->ConcatenationOf); 505 } else { 506 // Sub-register doesn't exist. 507 Parts.clear(); 508 break; 509 } 510 } 511 // There is nothing to do if some Cand sub-register is not part of this 512 // register. 513 if (Parts.empty()) 514 continue; 515 516 // Each part of Cand is a sub-register of this. Make the full Cand also 517 // a sub-register with a concatenated sub-register index. 518 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); 519 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg = 520 std::make_pair(Concat, Cand); 521 522 if (!SubRegs.insert(NewSubReg).second) 523 continue; 524 525 // We inserted a new subregister. 526 NewSubRegs.push_back(NewSubReg); 527 SubRegQueue.push(NewSubReg); 528 SubReg2Idx.insert(std::make_pair(Cand, Concat)); 529 } 530 } 531 532 // Create sub-register index composition maps for the synthesized indices. 533 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 534 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 535 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 536 for (auto SubReg : NewSubReg->SubRegs) { 537 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second); 538 if (!SubIdx) 539 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 540 SubReg.second->getName() + 541 " in " + getName()); 542 NewIdx->addComposite(SubReg.first, SubIdx); 543 } 544 } 545 } 546 547 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 548 // Only visit each register once. 549 if (SuperRegsComplete) 550 return; 551 SuperRegsComplete = true; 552 553 // Make sure all sub-registers have been visited first, so the super-reg 554 // lists will be topologically ordered. 555 for (auto SubReg : SubRegs) 556 SubReg.second->computeSuperRegs(RegBank); 557 558 // Now add this as a super-register on all sub-registers. 559 // Also compute the TopoSigId in post-order. 560 TopoSigId Id; 561 for (auto SubReg : SubRegs) { 562 // Topological signature computed from SubIdx, TopoId(SubReg). 563 // Loops and idempotent indices have TopoSig = ~0u. 564 Id.push_back(SubReg.first->EnumValue); 565 Id.push_back(SubReg.second->TopoSig); 566 567 // Don't add duplicate entries. 568 if (!SubReg.second->SuperRegs.empty() && 569 SubReg.second->SuperRegs.back() == this) 570 continue; 571 SubReg.second->SuperRegs.push_back(this); 572 } 573 TopoSig = RegBank.getTopoSig(Id); 574 } 575 576 void 577 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 578 CodeGenRegBank &RegBank) const { 579 assert(SubRegsComplete && "Must precompute sub-registers"); 580 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 581 CodeGenRegister *SR = ExplicitSubRegs[i]; 582 if (OSet.insert(SR)) 583 SR->addSubRegsPreOrder(OSet, RegBank); 584 } 585 // Add any secondary sub-registers that weren't part of the explicit tree. 586 for (auto SubReg : SubRegs) 587 OSet.insert(SubReg.second); 588 } 589 590 // Get the sum of this register's unit weights. 591 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 592 unsigned Weight = 0; 593 for (unsigned RegUnit : RegUnits) { 594 Weight += RegBank.getRegUnit(RegUnit).Weight; 595 } 596 return Weight; 597 } 598 599 //===----------------------------------------------------------------------===// 600 // RegisterTuples 601 //===----------------------------------------------------------------------===// 602 603 // A RegisterTuples def is used to generate pseudo-registers from lists of 604 // sub-registers. We provide a SetTheory expander class that returns the new 605 // registers. 606 namespace { 607 608 struct TupleExpander : SetTheory::Expander { 609 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of 610 // the synthesized definitions for their lifetime. 611 std::vector<std::unique_ptr<Record>> &SynthDefs; 612 613 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs) 614 : SynthDefs(SynthDefs) {} 615 616 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 617 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 618 unsigned Dim = Indices.size(); 619 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 620 if (Dim != SubRegs->size()) 621 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 622 if (Dim < 2) 623 PrintFatalError(Def->getLoc(), 624 "Tuples must have at least 2 sub-registers"); 625 626 // Evaluate the sub-register lists to be zipped. 627 unsigned Length = ~0u; 628 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 629 for (unsigned i = 0; i != Dim; ++i) { 630 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 631 Length = std::min(Length, unsigned(Lists[i].size())); 632 } 633 634 if (Length == 0) 635 return; 636 637 // Precompute some types. 638 Record *RegisterCl = Def->getRecords().getClass("Register"); 639 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 640 std::vector<StringRef> RegNames = 641 Def->getValueAsListOfStrings("RegAsmNames"); 642 643 // Zip them up. 644 for (unsigned n = 0; n != Length; ++n) { 645 std::string Name; 646 Record *Proto = Lists[0][n]; 647 std::vector<Init*> Tuple; 648 for (unsigned i = 0; i != Dim; ++i) { 649 Record *Reg = Lists[i][n]; 650 if (i) Name += '_'; 651 Name += Reg->getName(); 652 Tuple.push_back(DefInit::get(Reg)); 653 } 654 655 // Take the cost list of the first register in the tuple. 656 ListInit *CostList = Proto->getValueAsListInit("CostPerUse"); 657 SmallVector<Init *, 2> CostPerUse; 658 CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end()); 659 660 StringInit *AsmName = StringInit::get(""); 661 if (!RegNames.empty()) { 662 if (RegNames.size() <= n) 663 PrintFatalError(Def->getLoc(), 664 "Register tuple definition missing name for '" + 665 Name + "'."); 666 AsmName = StringInit::get(RegNames[n]); 667 } 668 669 // Create a new Record representing the synthesized register. This record 670 // is only for consumption by CodeGenRegister, it is not added to the 671 // RecordKeeper. 672 SynthDefs.emplace_back( 673 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords())); 674 Record *NewReg = SynthDefs.back().get(); 675 Elts.insert(NewReg); 676 677 // Copy Proto super-classes. 678 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 679 for (const auto &SuperPair : Supers) 680 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 681 682 // Copy Proto fields. 683 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 684 RecordVal RV = Proto->getValues()[i]; 685 686 // Skip existing fields, like NAME. 687 if (NewReg->getValue(RV.getNameInit())) 688 continue; 689 690 StringRef Field = RV.getName(); 691 692 // Replace the sub-register list with Tuple. 693 if (Field == "SubRegs") 694 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 695 696 if (Field == "AsmName") 697 RV.setValue(AsmName); 698 699 // CostPerUse is aggregated from all Tuple members. 700 if (Field == "CostPerUse") 701 RV.setValue(ListInit::get(CostPerUse, CostList->getElementType())); 702 703 // Composite registers are always covered by sub-registers. 704 if (Field == "CoveredBySubRegs") 705 RV.setValue(BitInit::get(true)); 706 707 // Copy fields from the RegisterTuples def. 708 if (Field == "SubRegIndices" || 709 Field == "CompositeIndices") { 710 NewReg->addValue(*Def->getValue(Field)); 711 continue; 712 } 713 714 // Some fields get their default uninitialized value. 715 if (Field == "DwarfNumbers" || 716 Field == "DwarfAlias" || 717 Field == "Aliases") { 718 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 719 NewReg->addValue(*DefRV); 720 continue; 721 } 722 723 // Everything else is copied from Proto. 724 NewReg->addValue(RV); 725 } 726 } 727 } 728 }; 729 730 } // end anonymous namespace 731 732 //===----------------------------------------------------------------------===// 733 // CodeGenRegisterClass 734 //===----------------------------------------------------------------------===// 735 736 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 737 llvm::sort(M, deref<std::less<>>()); 738 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end()); 739 } 740 741 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 742 : TheDef(R), Name(std::string(R->getName())), 743 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) { 744 GeneratePressureSet = R->getValueAsBit("GeneratePressureSet"); 745 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 746 if (TypeList.empty()) 747 PrintFatalError(R->getLoc(), "RegTypes list must not be empty!"); 748 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 749 Record *Type = TypeList[i]; 750 if (!Type->isSubClassOf("ValueType")) 751 PrintFatalError(R->getLoc(), 752 "RegTypes list member '" + Type->getName() + 753 "' does not derive from the ValueType class!"); 754 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); 755 } 756 757 // Allocation order 0 is the full set. AltOrders provides others. 758 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 759 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 760 Orders.resize(1 + AltOrders->size()); 761 762 // Default allocation order always contains all registers. 763 Artificial = true; 764 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 765 Orders[0].push_back((*Elements)[i]); 766 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 767 Members.push_back(Reg); 768 Artificial &= Reg->Artificial; 769 TopoSigs.set(Reg->getTopoSig()); 770 } 771 sortAndUniqueRegisters(Members); 772 773 // Alternative allocation orders may be subsets. 774 SetTheory::RecSet Order; 775 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 776 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 777 Orders[1 + i].append(Order.begin(), Order.end()); 778 // Verify that all altorder members are regclass members. 779 while (!Order.empty()) { 780 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 781 Order.pop_back(); 782 if (!contains(Reg)) 783 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 784 " is not a class member"); 785 } 786 } 787 788 Namespace = R->getValueAsString("Namespace"); 789 790 if (const RecordVal *RV = R->getValue("RegInfos")) 791 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) 792 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); 793 unsigned Size = R->getValueAsInt("Size"); 794 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && 795 "Impossible to determine register size"); 796 if (!RSI.hasDefault()) { 797 RegSizeInfo RI; 798 RI.RegSize = RI.SpillSize = Size ? Size 799 : VTs[0].getSimple().getSizeInBits(); 800 RI.SpillAlignment = R->getValueAsInt("Alignment"); 801 RSI.insertRegSizeForMode(DefaultMode, RI); 802 } 803 804 CopyCost = R->getValueAsInt("CopyCost"); 805 Allocatable = R->getValueAsBit("isAllocatable"); 806 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 807 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 808 if (AllocationPriority < 0 || AllocationPriority > 63) 809 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 810 this->AllocationPriority = AllocationPriority; 811 812 BitsInit *TSF = R->getValueAsBitsInit("TSFlags"); 813 for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) { 814 BitInit *Bit = cast<BitInit>(TSF->getBit(I)); 815 TSFlags |= uint8_t(Bit->getValue()) << I; 816 } 817 } 818 819 // Create an inferred register class that was missing from the .td files. 820 // Most properties will be inherited from the closest super-class after the 821 // class structure has been computed. 822 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 823 StringRef Name, Key Props) 824 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)), 825 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI), 826 CopyCost(0), Allocatable(true), AllocationPriority(0), TSFlags(0) { 827 Artificial = true; 828 GeneratePressureSet = false; 829 for (const auto R : Members) { 830 TopoSigs.set(R->getTopoSig()); 831 Artificial &= R->Artificial; 832 } 833 } 834 835 // Compute inherited propertied for a synthesized register class. 836 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 837 assert(!getDef() && "Only synthesized classes can inherit properties"); 838 assert(!SuperClasses.empty() && "Synthesized class without super class"); 839 840 // The last super-class is the smallest one. 841 CodeGenRegisterClass &Super = *SuperClasses.back(); 842 843 // Most properties are copied directly. 844 // Exceptions are members, size, and alignment 845 Namespace = Super.Namespace; 846 VTs = Super.VTs; 847 CopyCost = Super.CopyCost; 848 // Check for allocatable superclasses. 849 Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) { 850 return S->Allocatable; 851 }); 852 AltOrderSelect = Super.AltOrderSelect; 853 AllocationPriority = Super.AllocationPriority; 854 TSFlags = Super.TSFlags; 855 GeneratePressureSet |= Super.GeneratePressureSet; 856 857 // Copy all allocation orders, filter out foreign registers from the larger 858 // super-class. 859 Orders.resize(Super.Orders.size()); 860 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 861 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 862 if (contains(RegBank.getReg(Super.Orders[i][j]))) 863 Orders[i].push_back(Super.Orders[i][j]); 864 } 865 866 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 867 return std::binary_search(Members.begin(), Members.end(), Reg, 868 deref<std::less<>>()); 869 } 870 871 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const { 872 if (TheDef && !TheDef->isValueUnset("Weight")) 873 return TheDef->getValueAsInt("Weight"); 874 875 if (Members.empty() || Artificial) 876 return 0; 877 878 return (*Members.begin())->getWeight(RegBank); 879 } 880 881 namespace llvm { 882 883 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 884 OS << "{ " << K.RSI; 885 for (const auto R : *K.Members) 886 OS << ", " << R->getName(); 887 return OS << " }"; 888 } 889 890 } // end namespace llvm 891 892 // This is a simple lexicographical order that can be used to search for sets. 893 // It is not the same as the topological order provided by TopoOrderRC. 894 bool CodeGenRegisterClass::Key:: 895 operator<(const CodeGenRegisterClass::Key &B) const { 896 assert(Members && B.Members); 897 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); 898 } 899 900 // Returns true if RC is a strict subclass. 901 // RC is a sub-class of this class if it is a valid replacement for any 902 // instruction operand where a register of this classis required. It must 903 // satisfy these conditions: 904 // 905 // 1. All RC registers are also in this. 906 // 2. The RC spill size must not be smaller than our spill size. 907 // 3. RC spill alignment must be compatible with ours. 908 // 909 static bool testSubClass(const CodeGenRegisterClass *A, 910 const CodeGenRegisterClass *B) { 911 return A->RSI.isSubClassOf(B->RSI) && 912 std::includes(A->getMembers().begin(), A->getMembers().end(), 913 B->getMembers().begin(), B->getMembers().end(), 914 deref<std::less<>>()); 915 } 916 917 /// Sorting predicate for register classes. This provides a topological 918 /// ordering that arranges all register classes before their sub-classes. 919 /// 920 /// Register classes with the same registers, spill size, and alignment form a 921 /// clique. They will be ordered alphabetically. 922 /// 923 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 924 const CodeGenRegisterClass &PB) { 925 auto *A = &PA; 926 auto *B = &PB; 927 if (A == B) 928 return false; 929 930 if (A->RSI < B->RSI) 931 return true; 932 if (A->RSI != B->RSI) 933 return false; 934 935 // Order by descending set size. Note that the classes' allocation order may 936 // not have been computed yet. The Members set is always vaild. 937 if (A->getMembers().size() > B->getMembers().size()) 938 return true; 939 if (A->getMembers().size() < B->getMembers().size()) 940 return false; 941 942 // Finally order by name as a tie breaker. 943 return StringRef(A->getName()) < B->getName(); 944 } 945 946 std::string CodeGenRegisterClass::getQualifiedName() const { 947 if (Namespace.empty()) 948 return getName(); 949 else 950 return (Namespace + "::" + getName()).str(); 951 } 952 953 // Compute sub-classes of all register classes. 954 // Assume the classes are ordered topologically. 955 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 956 auto &RegClasses = RegBank.getRegClasses(); 957 958 // Visit backwards so sub-classes are seen first. 959 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 960 CodeGenRegisterClass &RC = *I; 961 RC.SubClasses.resize(RegClasses.size()); 962 RC.SubClasses.set(RC.EnumValue); 963 if (RC.Artificial) 964 continue; 965 966 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 967 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 968 CodeGenRegisterClass &SubRC = *I2; 969 if (RC.SubClasses.test(SubRC.EnumValue)) 970 continue; 971 if (!testSubClass(&RC, &SubRC)) 972 continue; 973 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 974 // check them again. 975 RC.SubClasses |= SubRC.SubClasses; 976 } 977 978 // Sweep up missed clique members. They will be immediately preceding RC. 979 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 980 RC.SubClasses.set(I2->EnumValue); 981 } 982 983 // Compute the SuperClasses lists from the SubClasses vectors. 984 for (auto &RC : RegClasses) { 985 const BitVector &SC = RC.getSubClasses(); 986 auto I = RegClasses.begin(); 987 for (int s = 0, next_s = SC.find_first(); next_s != -1; 988 next_s = SC.find_next(s)) { 989 std::advance(I, next_s - s); 990 s = next_s; 991 if (&*I == &RC) 992 continue; 993 I->SuperClasses.push_back(&RC); 994 } 995 } 996 997 // With the class hierarchy in place, let synthesized register classes inherit 998 // properties from their closest super-class. The iteration order here can 999 // propagate properties down multiple levels. 1000 for (auto &RC : RegClasses) 1001 if (!RC.getDef()) 1002 RC.inheritProperties(RegBank); 1003 } 1004 1005 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>> 1006 CodeGenRegisterClass::getMatchingSubClassWithSubRegs( 1007 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { 1008 auto SizeOrder = [this](const CodeGenRegisterClass *A, 1009 const CodeGenRegisterClass *B) { 1010 // If there are multiple, identical register classes, prefer the original 1011 // register class. 1012 if (A == B) 1013 return false; 1014 if (A->getMembers().size() == B->getMembers().size()) 1015 return A == this; 1016 return A->getMembers().size() > B->getMembers().size(); 1017 }; 1018 1019 auto &RegClasses = RegBank.getRegClasses(); 1020 1021 // Find all the subclasses of this one that fully support the sub-register 1022 // index and order them by size. BiggestSuperRC should always be first. 1023 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); 1024 if (!BiggestSuperRegRC) 1025 return None; 1026 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); 1027 std::vector<CodeGenRegisterClass *> SuperRegRCs; 1028 for (auto &RC : RegClasses) 1029 if (SuperRegRCsBV[RC.EnumValue]) 1030 SuperRegRCs.emplace_back(&RC); 1031 llvm::stable_sort(SuperRegRCs, SizeOrder); 1032 1033 assert(SuperRegRCs.front() == BiggestSuperRegRC && 1034 "Biggest class wasn't first"); 1035 1036 // Find all the subreg classes and order them by size too. 1037 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses; 1038 for (auto &RC: RegClasses) { 1039 BitVector SuperRegClassesBV(RegClasses.size()); 1040 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); 1041 if (SuperRegClassesBV.any()) 1042 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); 1043 } 1044 llvm::sort(SuperRegClasses, 1045 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A, 1046 const std::pair<CodeGenRegisterClass *, BitVector> &B) { 1047 return SizeOrder(A.first, B.first); 1048 }); 1049 1050 // Find the biggest subclass and subreg class such that R:subidx is in the 1051 // subreg class for all R in subclass. 1052 // 1053 // For example: 1054 // All registers in X86's GR64 have a sub_32bit subregister but no class 1055 // exists that contains all the 32-bit subregisters because GR64 contains RIP 1056 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to 1057 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, 1058 // having excluded RIP, we are able to find a SubRegRC (GR32). 1059 CodeGenRegisterClass *ChosenSuperRegClass = nullptr; 1060 CodeGenRegisterClass *SubRegRC = nullptr; 1061 for (auto *SuperRegRC : SuperRegRCs) { 1062 for (const auto &SuperRegClassPair : SuperRegClasses) { 1063 const BitVector &SuperRegClassBV = SuperRegClassPair.second; 1064 if (SuperRegClassBV[SuperRegRC->EnumValue]) { 1065 SubRegRC = SuperRegClassPair.first; 1066 ChosenSuperRegClass = SuperRegRC; 1067 1068 // If SubRegRC is bigger than SuperRegRC then there are members of 1069 // SubRegRC that don't have super registers via SubIdx. Keep looking to 1070 // find a better fit and fall back on this one if there isn't one. 1071 // 1072 // This is intended to prevent X86 from making odd choices such as 1073 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. 1074 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that 1075 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 1076 // mapping. 1077 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) 1078 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1079 } 1080 } 1081 1082 // If we found a fit but it wasn't quite ideal because SubRegRC had excess 1083 // registers, then we're done. 1084 if (ChosenSuperRegClass) 1085 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1086 } 1087 1088 return None; 1089 } 1090 1091 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 1092 BitVector &Out) const { 1093 auto FindI = SuperRegClasses.find(SubIdx); 1094 if (FindI == SuperRegClasses.end()) 1095 return; 1096 for (CodeGenRegisterClass *RC : FindI->second) 1097 Out.set(RC->EnumValue); 1098 } 1099 1100 // Populate a unique sorted list of units from a register set. 1101 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, 1102 std::vector<unsigned> &RegUnits) const { 1103 std::vector<unsigned> TmpUnits; 1104 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { 1105 const RegUnit &RU = RegBank.getRegUnit(*UnitI); 1106 if (!RU.Artificial) 1107 TmpUnits.push_back(*UnitI); 1108 } 1109 llvm::sort(TmpUnits); 1110 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 1111 std::back_inserter(RegUnits)); 1112 } 1113 1114 //===----------------------------------------------------------------------===// 1115 // CodeGenRegisterCategory 1116 //===----------------------------------------------------------------------===// 1117 1118 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank, 1119 Record *R) 1120 : TheDef(R), Name(std::string(R->getName())) { 1121 for (Record *RegClass : R->getValueAsListOfDefs("Classes")) 1122 Classes.push_back(RegBank.getRegClass(RegClass)); 1123 } 1124 1125 //===----------------------------------------------------------------------===// 1126 // CodeGenRegBank 1127 //===----------------------------------------------------------------------===// 1128 1129 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, 1130 const CodeGenHwModes &Modes) : CGH(Modes) { 1131 // Configure register Sets to understand register classes and tuples. 1132 Sets.addFieldExpander("RegisterClass", "MemberList"); 1133 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 1134 Sets.addExpander("RegisterTuples", 1135 std::make_unique<TupleExpander>(SynthDefs)); 1136 1137 // Read in the user-defined (named) sub-register indices. 1138 // More indices will be synthesized later. 1139 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 1140 llvm::sort(SRIs, LessRecord()); 1141 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 1142 getSubRegIdx(SRIs[i]); 1143 // Build composite maps from ComposedOf fields. 1144 for (auto &Idx : SubRegIndices) 1145 Idx.updateComponents(*this); 1146 1147 // Read in the register definitions. 1148 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 1149 llvm::sort(Regs, LessRecordRegister()); 1150 // Assign the enumeration values. 1151 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 1152 getReg(Regs[i]); 1153 1154 // Expand tuples and number the new registers. 1155 std::vector<Record*> Tups = 1156 Records.getAllDerivedDefinitions("RegisterTuples"); 1157 1158 for (Record *R : Tups) { 1159 std::vector<Record *> TupRegs = *Sets.expand(R); 1160 llvm::sort(TupRegs, LessRecordRegister()); 1161 for (Record *RC : TupRegs) 1162 getReg(RC); 1163 } 1164 1165 // Now all the registers are known. Build the object graph of explicit 1166 // register-register references. 1167 for (auto &Reg : Registers) 1168 Reg.buildObjectGraph(*this); 1169 1170 // Compute register name map. 1171 for (auto &Reg : Registers) 1172 // FIXME: This could just be RegistersByName[name] = register, except that 1173 // causes some failures in MIPS - perhaps they have duplicate register name 1174 // entries? (or maybe there's a reason for it - I don't know much about this 1175 // code, just drive-by refactoring) 1176 RegistersByName.insert( 1177 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 1178 1179 // Precompute all sub-register maps. 1180 // This will create Composite entries for all inferred sub-register indices. 1181 for (auto &Reg : Registers) 1182 Reg.computeSubRegs(*this); 1183 1184 // Compute transitive closure of subregister index ConcatenationOf vectors 1185 // and initialize ConcatIdx map. 1186 for (CodeGenSubRegIndex &SRI : SubRegIndices) { 1187 SRI.computeConcatTransitiveClosure(); 1188 if (!SRI.ConcatenationOf.empty()) 1189 ConcatIdx.insert(std::make_pair( 1190 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(), 1191 SRI.ConcatenationOf.end()), &SRI)); 1192 } 1193 1194 // Infer even more sub-registers by combining leading super-registers. 1195 for (auto &Reg : Registers) 1196 if (Reg.CoveredBySubRegs) 1197 Reg.computeSecondarySubRegs(*this); 1198 1199 // After the sub-register graph is complete, compute the topologically 1200 // ordered SuperRegs list. 1201 for (auto &Reg : Registers) 1202 Reg.computeSuperRegs(*this); 1203 1204 // For each pair of Reg:SR, if both are non-artificial, mark the 1205 // corresponding sub-register index as non-artificial. 1206 for (auto &Reg : Registers) { 1207 if (Reg.Artificial) 1208 continue; 1209 for (auto P : Reg.getSubRegs()) { 1210 const CodeGenRegister *SR = P.second; 1211 if (!SR->Artificial) 1212 P.first->Artificial = false; 1213 } 1214 } 1215 1216 // Native register units are associated with a leaf register. They've all been 1217 // discovered now. 1218 NumNativeRegUnits = RegUnits.size(); 1219 1220 // Read in register class definitions. 1221 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1222 if (RCs.empty()) 1223 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1224 1225 // Allocate user-defined register classes. 1226 for (auto *R : RCs) { 1227 RegClasses.emplace_back(*this, R); 1228 CodeGenRegisterClass &RC = RegClasses.back(); 1229 if (!RC.Artificial) 1230 addToMaps(&RC); 1231 } 1232 1233 // Infer missing classes to create a full algebra. 1234 computeInferredRegisterClasses(); 1235 1236 // Order register classes topologically and assign enum values. 1237 RegClasses.sort(TopoOrderRC); 1238 unsigned i = 0; 1239 for (auto &RC : RegClasses) 1240 RC.EnumValue = i++; 1241 CodeGenRegisterClass::computeSubClasses(*this); 1242 1243 // Read in the register category definitions. 1244 std::vector<Record *> RCats = 1245 Records.getAllDerivedDefinitions("RegisterCategory"); 1246 for (auto *R : RCats) 1247 RegCategories.emplace_back(*this, R); 1248 } 1249 1250 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1251 CodeGenSubRegIndex* 1252 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1253 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1254 return &SubRegIndices.back(); 1255 } 1256 1257 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1258 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1259 if (Idx) 1260 return Idx; 1261 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1262 Idx = &SubRegIndices.back(); 1263 return Idx; 1264 } 1265 1266 const CodeGenSubRegIndex * 1267 CodeGenRegBank::findSubRegIdx(const Record* Def) const { 1268 return Def2SubRegIdx.lookup(Def); 1269 } 1270 1271 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1272 CodeGenRegister *&Reg = Def2Reg[Def]; 1273 if (Reg) 1274 return Reg; 1275 Registers.emplace_back(Def, Registers.size() + 1); 1276 Reg = &Registers.back(); 1277 return Reg; 1278 } 1279 1280 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1281 if (Record *Def = RC->getDef()) 1282 Def2RC.insert(std::make_pair(Def, RC)); 1283 1284 // Duplicate classes are rejected by insert(). 1285 // That's OK, we only care about the properties handled by CGRC::Key. 1286 CodeGenRegisterClass::Key K(*RC); 1287 Key2RC.insert(std::make_pair(K, RC)); 1288 } 1289 1290 // Create a synthetic sub-class if it is missing. 1291 CodeGenRegisterClass* 1292 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1293 const CodeGenRegister::Vec *Members, 1294 StringRef Name) { 1295 // Synthetic sub-class has the same size and alignment as RC. 1296 CodeGenRegisterClass::Key K(Members, RC->RSI); 1297 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1298 if (FoundI != Key2RC.end()) 1299 return FoundI->second; 1300 1301 // Sub-class doesn't exist, create a new one. 1302 RegClasses.emplace_back(*this, Name, K); 1303 addToMaps(&RegClasses.back()); 1304 return &RegClasses.back(); 1305 } 1306 1307 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const { 1308 if (CodeGenRegisterClass *RC = Def2RC.lookup(Def)) 1309 return RC; 1310 1311 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1312 } 1313 1314 CodeGenSubRegIndex* 1315 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1316 CodeGenSubRegIndex *B) { 1317 // Look for an existing entry. 1318 CodeGenSubRegIndex *Comp = A->compose(B); 1319 if (Comp) 1320 return Comp; 1321 1322 // None exists, synthesize one. 1323 std::string Name = A->getName() + "_then_" + B->getName(); 1324 Comp = createSubRegIndex(Name, A->getNamespace()); 1325 A->addComposite(B, Comp); 1326 return Comp; 1327 } 1328 1329 CodeGenSubRegIndex *CodeGenRegBank:: 1330 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1331 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1332 #ifndef NDEBUG 1333 for (CodeGenSubRegIndex *Idx : Parts) { 1334 assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); 1335 } 1336 #endif 1337 1338 // Look for an existing entry. 1339 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1340 if (Idx) 1341 return Idx; 1342 1343 // None exists, synthesize one. 1344 std::string Name = Parts.front()->getName(); 1345 // Determine whether all parts are contiguous. 1346 bool isContinuous = true; 1347 unsigned Size = Parts.front()->Size; 1348 unsigned LastOffset = Parts.front()->Offset; 1349 unsigned LastSize = Parts.front()->Size; 1350 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1351 Name += '_'; 1352 Name += Parts[i]->getName(); 1353 Size += Parts[i]->Size; 1354 if (Parts[i]->Offset != (LastOffset + LastSize)) 1355 isContinuous = false; 1356 LastOffset = Parts[i]->Offset; 1357 LastSize = Parts[i]->Size; 1358 } 1359 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1360 Idx->Size = Size; 1361 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1362 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); 1363 return Idx; 1364 } 1365 1366 void CodeGenRegBank::computeComposites() { 1367 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>; 1368 1369 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from 1370 // register to (sub)register associated with the action of the left-hand 1371 // side subregister. 1372 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction; 1373 for (const CodeGenRegister &R : Registers) { 1374 const CodeGenRegister::SubRegMap &SM = R.getSubRegs(); 1375 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM) 1376 SubRegAction[P.first].insert({&R, P.second}); 1377 } 1378 1379 // Calculate the composition of two subregisters as compositions of their 1380 // associated actions. 1381 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1, 1382 const CodeGenSubRegIndex *Sub2) { 1383 RegMap C; 1384 const RegMap &Img1 = SubRegAction.at(Sub1); 1385 const RegMap &Img2 = SubRegAction.at(Sub2); 1386 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) { 1387 auto F = Img2.find(P.second); 1388 if (F != Img2.end()) 1389 C.insert({P.first, F->second}); 1390 } 1391 return C; 1392 }; 1393 1394 // Check if the two maps agree on the intersection of their domains. 1395 auto agree = [] (const RegMap &Map1, const RegMap &Map2) { 1396 // Technically speaking, an empty map agrees with any other map, but 1397 // this could flag false positives. We're interested in non-vacuous 1398 // agreements. 1399 if (Map1.empty() || Map2.empty()) 1400 return false; 1401 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) { 1402 auto F = Map2.find(P.first); 1403 if (F == Map2.end() || P.second != F->second) 1404 return false; 1405 } 1406 return true; 1407 }; 1408 1409 using CompositePair = std::pair<const CodeGenSubRegIndex*, 1410 const CodeGenSubRegIndex*>; 1411 SmallSet<CompositePair,4> UserDefined; 1412 for (const CodeGenSubRegIndex &Idx : SubRegIndices) 1413 for (auto P : Idx.getComposites()) 1414 UserDefined.insert(std::make_pair(&Idx, P.first)); 1415 1416 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1417 // and many registers will share TopoSigs on regular architectures. 1418 BitVector TopoSigs(getNumTopoSigs()); 1419 1420 for (const auto &Reg1 : Registers) { 1421 // Skip identical subreg structures already processed. 1422 if (TopoSigs.test(Reg1.getTopoSig())) 1423 continue; 1424 TopoSigs.set(Reg1.getTopoSig()); 1425 1426 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1427 for (auto I1 : SRM1) { 1428 CodeGenSubRegIndex *Idx1 = I1.first; 1429 CodeGenRegister *Reg2 = I1.second; 1430 // Ignore identity compositions. 1431 if (&Reg1 == Reg2) 1432 continue; 1433 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1434 // Try composing Idx1 with another SubRegIndex. 1435 for (auto I2 : SRM2) { 1436 CodeGenSubRegIndex *Idx2 = I2.first; 1437 CodeGenRegister *Reg3 = I2.second; 1438 // Ignore identity compositions. 1439 if (Reg2 == Reg3) 1440 continue; 1441 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1442 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1443 assert(Idx3 && "Sub-register doesn't have an index"); 1444 1445 // Conflicting composition? Emit a warning but allow it. 1446 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) { 1447 // If the composition was not user-defined, always emit a warning. 1448 if (!UserDefined.count({Idx1, Idx2}) || 1449 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3))) 1450 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1451 " and " + Idx2->getQualifiedName() + 1452 " compose ambiguously as " + Prev->getQualifiedName() + 1453 " or " + Idx3->getQualifiedName()); 1454 } 1455 } 1456 } 1457 } 1458 } 1459 1460 // Compute lane masks. This is similar to register units, but at the 1461 // sub-register index level. Each bit in the lane mask is like a register unit 1462 // class, and two lane masks will have a bit in common if two sub-register 1463 // indices overlap in some register. 1464 // 1465 // Conservatively share a lane mask bit if two sub-register indices overlap in 1466 // some registers, but not in others. That shouldn't happen a lot. 1467 void CodeGenRegBank::computeSubRegLaneMasks() { 1468 // First assign individual bits to all the leaf indices. 1469 unsigned Bit = 0; 1470 // Determine mask of lanes that cover their registers. 1471 CoveringLanes = LaneBitmask::getAll(); 1472 for (auto &Idx : SubRegIndices) { 1473 if (Idx.getComposites().empty()) { 1474 if (Bit > LaneBitmask::BitWidth) { 1475 PrintFatalError( 1476 Twine("Ran out of lanemask bits to represent subregister ") 1477 + Idx.getName()); 1478 } 1479 Idx.LaneMask = LaneBitmask::getLane(Bit); 1480 ++Bit; 1481 } else { 1482 Idx.LaneMask = LaneBitmask::getNone(); 1483 } 1484 } 1485 1486 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1487 // here is that for each possible target subregister we look at the leafs 1488 // in the subregister graph that compose for this target and create 1489 // transformation sequences for the lanemasks. Each step in the sequence 1490 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1491 // are usually the same for many subregisters we can easily combine the steps 1492 // by combining the masks. 1493 for (const auto &Idx : SubRegIndices) { 1494 const auto &Composites = Idx.getComposites(); 1495 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1496 1497 if (Composites.empty()) { 1498 // Moving from a class with no subregisters we just had a single lane: 1499 // The subregister must be a leaf subregister and only occupies 1 bit. 1500 // Move the bit from the class without subregisters into that position. 1501 unsigned DstBit = Idx.LaneMask.getHighestLane(); 1502 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && 1503 "Must be a leaf subregister"); 1504 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; 1505 LaneTransforms.push_back(MaskRol); 1506 } else { 1507 // Go through all leaf subregisters and find the ones that compose with 1508 // Idx. These make out all possible valid bits in the lane mask we want to 1509 // transform. Looking only at the leafs ensure that only a single bit in 1510 // the mask is set. 1511 unsigned NextBit = 0; 1512 for (auto &Idx2 : SubRegIndices) { 1513 // Skip non-leaf subregisters. 1514 if (!Idx2.getComposites().empty()) 1515 continue; 1516 // Replicate the behaviour from the lane mask generation loop above. 1517 unsigned SrcBit = NextBit; 1518 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); 1519 if (NextBit < LaneBitmask::BitWidth-1) 1520 ++NextBit; 1521 assert(Idx2.LaneMask == SrcMask); 1522 1523 // Get the composed subregister if there is any. 1524 auto C = Composites.find(&Idx2); 1525 if (C == Composites.end()) 1526 continue; 1527 const CodeGenSubRegIndex *Composite = C->second; 1528 // The Composed subreg should be a leaf subreg too 1529 assert(Composite->getComposites().empty()); 1530 1531 // Create Mask+Rotate operation and merge with existing ops if possible. 1532 unsigned DstBit = Composite->LaneMask.getHighestLane(); 1533 int Shift = DstBit - SrcBit; 1534 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1535 : LaneBitmask::BitWidth + Shift; 1536 for (auto &I : LaneTransforms) { 1537 if (I.RotateLeft == RotateLeft) { 1538 I.Mask |= SrcMask; 1539 SrcMask = LaneBitmask::getNone(); 1540 } 1541 } 1542 if (SrcMask.any()) { 1543 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1544 LaneTransforms.push_back(MaskRol); 1545 } 1546 } 1547 } 1548 1549 // Optimize if the transformation consists of one step only: Set mask to 1550 // 0xffffffff (including some irrelevant invalid bits) so that it should 1551 // merge with more entries later while compressing the table. 1552 if (LaneTransforms.size() == 1) 1553 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1554 1555 // Further compression optimization: For invalid compositions resulting 1556 // in a sequence with 0 entries we can just pick any other. Choose 1557 // Mask 0xffffffff with Rotation 0. 1558 if (LaneTransforms.size() == 0) { 1559 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1560 LaneTransforms.push_back(P); 1561 } 1562 } 1563 1564 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1565 // by the sub-register graph? This doesn't occur in any known targets. 1566 1567 // Inherit lanes from composites. 1568 for (const auto &Idx : SubRegIndices) { 1569 LaneBitmask Mask = Idx.computeLaneMask(); 1570 // If some super-registers without CoveredBySubRegs use this index, we can 1571 // no longer assume that the lanes are covering their registers. 1572 if (!Idx.AllSuperRegsCovered) 1573 CoveringLanes &= ~Mask; 1574 } 1575 1576 // Compute lane mask combinations for register classes. 1577 for (auto &RegClass : RegClasses) { 1578 LaneBitmask LaneMask; 1579 for (const auto &SubRegIndex : SubRegIndices) { 1580 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1581 continue; 1582 LaneMask |= SubRegIndex.LaneMask; 1583 } 1584 1585 // For classes without any subregisters set LaneMask to 1 instead of 0. 1586 // This makes it easier for client code to handle classes uniformly. 1587 if (LaneMask.none()) 1588 LaneMask = LaneBitmask::getLane(0); 1589 1590 RegClass.LaneMask = LaneMask; 1591 } 1592 } 1593 1594 namespace { 1595 1596 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1597 // the transitive closure of the union of overlapping register 1598 // classes. Together, the UberRegSets form a partition of the registers. If we 1599 // consider overlapping register classes to be connected, then each UberRegSet 1600 // is a set of connected components. 1601 // 1602 // An UberRegSet will likely be a horizontal slice of register names of 1603 // the same width. Nontrivial subregisters should then be in a separate 1604 // UberRegSet. But this property isn't required for valid computation of 1605 // register unit weights. 1606 // 1607 // A Weight field caches the max per-register unit weight in each UberRegSet. 1608 // 1609 // A set of SingularDeterminants flags single units of some register in this set 1610 // for which the unit weight equals the set weight. These units should not have 1611 // their weight increased. 1612 struct UberRegSet { 1613 CodeGenRegister::Vec Regs; 1614 unsigned Weight = 0; 1615 CodeGenRegister::RegUnitList SingularDeterminants; 1616 1617 UberRegSet() = default; 1618 }; 1619 1620 } // end anonymous namespace 1621 1622 // Partition registers into UberRegSets, where each set is the transitive 1623 // closure of the union of overlapping register classes. 1624 // 1625 // UberRegSets[0] is a special non-allocatable set. 1626 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1627 std::vector<UberRegSet*> &RegSets, 1628 CodeGenRegBank &RegBank) { 1629 const auto &Registers = RegBank.getRegisters(); 1630 1631 // The Register EnumValue is one greater than its index into Registers. 1632 assert(Registers.size() == Registers.back().EnumValue && 1633 "register enum value mismatch"); 1634 1635 // For simplicitly make the SetID the same as EnumValue. 1636 IntEqClasses UberSetIDs(Registers.size()+1); 1637 std::set<unsigned> AllocatableRegs; 1638 for (auto &RegClass : RegBank.getRegClasses()) { 1639 if (!RegClass.Allocatable) 1640 continue; 1641 1642 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1643 if (Regs.empty()) 1644 continue; 1645 1646 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1647 assert(USetID && "register number 0 is invalid"); 1648 1649 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1650 for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) { 1651 AllocatableRegs.insert(CGR->EnumValue); 1652 UberSetIDs.join(USetID, CGR->EnumValue); 1653 } 1654 } 1655 // Combine non-allocatable regs. 1656 for (const auto &Reg : Registers) { 1657 unsigned RegNum = Reg.EnumValue; 1658 if (AllocatableRegs.count(RegNum)) 1659 continue; 1660 1661 UberSetIDs.join(0, RegNum); 1662 } 1663 UberSetIDs.compress(); 1664 1665 // Make the first UberSet a special unallocatable set. 1666 unsigned ZeroID = UberSetIDs[0]; 1667 1668 // Insert Registers into the UberSets formed by union-find. 1669 // Do not resize after this. 1670 UberSets.resize(UberSetIDs.getNumClasses()); 1671 unsigned i = 0; 1672 for (const CodeGenRegister &Reg : Registers) { 1673 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1674 if (!USetID) 1675 USetID = ZeroID; 1676 else if (USetID == ZeroID) 1677 USetID = 0; 1678 1679 UberRegSet *USet = &UberSets[USetID]; 1680 USet->Regs.push_back(&Reg); 1681 sortAndUniqueRegisters(USet->Regs); 1682 RegSets[i++] = USet; 1683 } 1684 } 1685 1686 // Recompute each UberSet weight after changing unit weights. 1687 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1688 CodeGenRegBank &RegBank) { 1689 // Skip the first unallocatable set. 1690 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1691 E = UberSets.end(); I != E; ++I) { 1692 1693 // Initialize all unit weights in this set, and remember the max units/reg. 1694 const CodeGenRegister *Reg = nullptr; 1695 unsigned MaxWeight = 0, Weight = 0; 1696 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1697 if (Reg != UnitI.getReg()) { 1698 if (Weight > MaxWeight) 1699 MaxWeight = Weight; 1700 Reg = UnitI.getReg(); 1701 Weight = 0; 1702 } 1703 if (!RegBank.getRegUnit(*UnitI).Artificial) { 1704 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1705 if (!UWeight) { 1706 UWeight = 1; 1707 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1708 } 1709 Weight += UWeight; 1710 } 1711 } 1712 if (Weight > MaxWeight) 1713 MaxWeight = Weight; 1714 if (I->Weight != MaxWeight) { 1715 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " 1716 << MaxWeight; 1717 for (auto &Unit 1718 : I->Regs) dbgs() 1719 << " " << Unit->getName(); 1720 dbgs() << "\n"); 1721 // Update the set weight. 1722 I->Weight = MaxWeight; 1723 } 1724 1725 // Find singular determinants. 1726 for (const auto R : I->Regs) { 1727 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1728 I->SingularDeterminants |= R->getRegUnits(); 1729 } 1730 } 1731 } 1732 } 1733 1734 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1735 // a register and its subregisters so that they have the same weight as their 1736 // UberSet. Self-recursion processes the subregister tree in postorder so 1737 // subregisters are normalized first. 1738 // 1739 // Side effects: 1740 // - creates new adopted register units 1741 // - causes superregisters to inherit adopted units 1742 // - increases the weight of "singular" units 1743 // - induces recomputation of UberWeights. 1744 static bool normalizeWeight(CodeGenRegister *Reg, 1745 std::vector<UberRegSet> &UberSets, 1746 std::vector<UberRegSet*> &RegSets, 1747 BitVector &NormalRegs, 1748 CodeGenRegister::RegUnitList &NormalUnits, 1749 CodeGenRegBank &RegBank) { 1750 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size())); 1751 if (NormalRegs.test(Reg->EnumValue)) 1752 return false; 1753 NormalRegs.set(Reg->EnumValue); 1754 1755 bool Changed = false; 1756 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1757 for (auto SRI : SRM) { 1758 if (SRI.second == Reg) 1759 continue; // self-cycles happen 1760 1761 Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs, 1762 NormalUnits, RegBank); 1763 } 1764 // Postorder register normalization. 1765 1766 // Inherit register units newly adopted by subregisters. 1767 if (Reg->inheritRegUnits(RegBank)) 1768 computeUberWeights(UberSets, RegBank); 1769 1770 // Check if this register is too skinny for its UberRegSet. 1771 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1772 1773 unsigned RegWeight = Reg->getWeight(RegBank); 1774 if (UberSet->Weight > RegWeight) { 1775 // A register unit's weight can be adjusted only if it is the singular unit 1776 // for this register, has not been used to normalize a subregister's set, 1777 // and has not already been used to singularly determine this UberRegSet. 1778 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1779 if (Reg->getRegUnits().count() != 1 1780 || hasRegUnit(NormalUnits, AdjustUnit) 1781 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1782 // We don't have an adjustable unit, so adopt a new one. 1783 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1784 Reg->adoptRegUnit(AdjustUnit); 1785 // Adopting a unit does not immediately require recomputing set weights. 1786 } 1787 else { 1788 // Adjust the existing single unit. 1789 if (!RegBank.getRegUnit(AdjustUnit).Artificial) 1790 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1791 // The unit may be shared among sets and registers within this set. 1792 computeUberWeights(UberSets, RegBank); 1793 } 1794 Changed = true; 1795 } 1796 1797 // Mark these units normalized so superregisters can't change their weights. 1798 NormalUnits |= Reg->getRegUnits(); 1799 1800 return Changed; 1801 } 1802 1803 // Compute a weight for each register unit created during getSubRegs. 1804 // 1805 // The goal is that two registers in the same class will have the same weight, 1806 // where each register's weight is defined as sum of its units' weights. 1807 void CodeGenRegBank::computeRegUnitWeights() { 1808 std::vector<UberRegSet> UberSets; 1809 std::vector<UberRegSet*> RegSets(Registers.size()); 1810 computeUberSets(UberSets, RegSets, *this); 1811 // UberSets and RegSets are now immutable. 1812 1813 computeUberWeights(UberSets, *this); 1814 1815 // Iterate over each Register, normalizing the unit weights until reaching 1816 // a fix point. 1817 unsigned NumIters = 0; 1818 for (bool Changed = true; Changed; ++NumIters) { 1819 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1820 Changed = false; 1821 for (auto &Reg : Registers) { 1822 CodeGenRegister::RegUnitList NormalUnits; 1823 BitVector NormalRegs; 1824 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1825 NormalUnits, *this); 1826 } 1827 } 1828 } 1829 1830 // Find a set in UniqueSets with the same elements as Set. 1831 // Return an iterator into UniqueSets. 1832 static std::vector<RegUnitSet>::const_iterator 1833 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1834 const RegUnitSet &Set) { 1835 std::vector<RegUnitSet>::const_iterator 1836 I = UniqueSets.begin(), E = UniqueSets.end(); 1837 for(;I != E; ++I) { 1838 if (I->Units == Set.Units) 1839 break; 1840 } 1841 return I; 1842 } 1843 1844 // Return true if the RUSubSet is a subset of RUSuperSet. 1845 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1846 const std::vector<unsigned> &RUSuperSet) { 1847 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1848 RUSubSet.begin(), RUSubSet.end()); 1849 } 1850 1851 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1852 /// but with one or two registers removed. We occasionally have registers like 1853 /// APSR and PC thrown in with the general registers. We also see many 1854 /// special-purpose register subsets, such as tail-call and Thumb 1855 /// encodings. Generating all possible overlapping sets is combinatorial and 1856 /// overkill for modeling pressure. Ideally we could fix this statically in 1857 /// tablegen by (1) having the target define register classes that only include 1858 /// the allocatable registers and marking other classes as non-allocatable and 1859 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1860 /// the purpose of pressure. However, we make an attempt to handle targets that 1861 /// are not nicely defined by merging nearly identical register unit sets 1862 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1863 /// set limit by filtering the reserved registers. 1864 /// 1865 /// Merge sets only if the units have the same weight. For example, on ARM, 1866 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1867 /// should not expand the S set to include D regs. 1868 void CodeGenRegBank::pruneUnitSets() { 1869 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1870 1871 // Form an equivalence class of UnitSets with no significant difference. 1872 std::vector<unsigned> SuperSetIDs; 1873 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1874 SubIdx != EndIdx; ++SubIdx) { 1875 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1876 unsigned SuperIdx = 0; 1877 for (; SuperIdx != EndIdx; ++SuperIdx) { 1878 if (SuperIdx == SubIdx) 1879 continue; 1880 1881 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1882 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1883 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1884 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1885 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1886 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1887 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1888 << "\n"); 1889 // We can pick any of the set names for the merged set. Go for the 1890 // shortest one to avoid picking the name of one of the classes that are 1891 // artificially created by tablegen. So "FPR128_lo" instead of 1892 // "QQQQ_with_qsub3_in_FPR128_lo". 1893 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1894 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1895 break; 1896 } 1897 } 1898 if (SuperIdx == EndIdx) 1899 SuperSetIDs.push_back(SubIdx); 1900 } 1901 // Populate PrunedUnitSets with each equivalence class's superset. 1902 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1903 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1904 unsigned SuperIdx = SuperSetIDs[i]; 1905 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1906 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1907 } 1908 RegUnitSets.swap(PrunedUnitSets); 1909 } 1910 1911 // Create a RegUnitSet for each RegClass that contains all units in the class 1912 // including adopted units that are necessary to model register pressure. Then 1913 // iteratively compute RegUnitSets such that the union of any two overlapping 1914 // RegUnitSets is repreresented. 1915 // 1916 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1917 // RegUnitSet that is a superset of that RegUnitClass. 1918 void CodeGenRegBank::computeRegUnitSets() { 1919 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1920 1921 // Compute a unique RegUnitSet for each RegClass. 1922 auto &RegClasses = getRegClasses(); 1923 for (auto &RC : RegClasses) { 1924 if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet) 1925 continue; 1926 1927 // Speculatively grow the RegUnitSets to hold the new set. 1928 RegUnitSets.resize(RegUnitSets.size() + 1); 1929 RegUnitSets.back().Name = RC.getName(); 1930 1931 // Compute a sorted list of units in this class. 1932 RC.buildRegUnitSet(*this, RegUnitSets.back().Units); 1933 1934 // Find an existing RegUnitSet. 1935 std::vector<RegUnitSet>::const_iterator SetI = 1936 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1937 if (SetI != std::prev(RegUnitSets.end())) 1938 RegUnitSets.pop_back(); 1939 } 1940 1941 if (RegUnitSets.empty()) 1942 PrintFatalError("RegUnitSets cannot be empty!"); 1943 1944 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, 1945 USEnd = RegUnitSets.size(); 1946 USIdx < USEnd; ++USIdx) { 1947 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1948 for (auto &U : RegUnitSets[USIdx].Units) 1949 printRegUnitName(U); 1950 dbgs() << "\n"; 1951 }); 1952 1953 // Iteratively prune unit sets. 1954 pruneUnitSets(); 1955 1956 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, 1957 USEnd = RegUnitSets.size(); 1958 USIdx < USEnd; ++USIdx) { 1959 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1960 for (auto &U : RegUnitSets[USIdx].Units) 1961 printRegUnitName(U); 1962 dbgs() << "\n"; 1963 } dbgs() << "\nUnion sets:\n"); 1964 1965 // Iterate over all unit sets, including new ones added by this loop. 1966 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1967 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1968 // In theory, this is combinatorial. In practice, it needs to be bounded 1969 // by a small number of sets for regpressure to be efficient. 1970 // If the assert is hit, we need to implement pruning. 1971 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1972 1973 // Compare new sets with all original classes. 1974 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1975 SearchIdx != EndIdx; ++SearchIdx) { 1976 std::set<unsigned> Intersection; 1977 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1978 RegUnitSets[Idx].Units.end(), 1979 RegUnitSets[SearchIdx].Units.begin(), 1980 RegUnitSets[SearchIdx].Units.end(), 1981 std::inserter(Intersection, Intersection.begin())); 1982 if (Intersection.empty()) 1983 continue; 1984 1985 // Speculatively grow the RegUnitSets to hold the new set. 1986 RegUnitSets.resize(RegUnitSets.size() + 1); 1987 RegUnitSets.back().Name = 1988 RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name; 1989 1990 std::set_union(RegUnitSets[Idx].Units.begin(), 1991 RegUnitSets[Idx].Units.end(), 1992 RegUnitSets[SearchIdx].Units.begin(), 1993 RegUnitSets[SearchIdx].Units.end(), 1994 std::inserter(RegUnitSets.back().Units, 1995 RegUnitSets.back().Units.begin())); 1996 1997 // Find an existing RegUnitSet, or add the union to the unique sets. 1998 std::vector<RegUnitSet>::const_iterator SetI = 1999 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 2000 if (SetI != std::prev(RegUnitSets.end())) 2001 RegUnitSets.pop_back(); 2002 else { 2003 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " 2004 << RegUnitSets.back().Name << ":"; 2005 for (auto &U 2006 : RegUnitSets.back().Units) printRegUnitName(U); 2007 dbgs() << "\n";); 2008 } 2009 } 2010 } 2011 2012 // Iteratively prune unit sets after inferring supersets. 2013 pruneUnitSets(); 2014 2015 LLVM_DEBUG( 2016 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2017 USIdx < USEnd; ++USIdx) { 2018 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 2019 for (auto &U : RegUnitSets[USIdx].Units) 2020 printRegUnitName(U); 2021 dbgs() << "\n"; 2022 }); 2023 2024 // For each register class, list the UnitSets that are supersets. 2025 RegClassUnitSets.resize(RegClasses.size()); 2026 int RCIdx = -1; 2027 for (auto &RC : RegClasses) { 2028 ++RCIdx; 2029 if (!RC.Allocatable) 2030 continue; 2031 2032 // Recompute the sorted list of units in this class. 2033 std::vector<unsigned> RCRegUnits; 2034 RC.buildRegUnitSet(*this, RCRegUnits); 2035 2036 // Don't increase pressure for unallocatable regclasses. 2037 if (RCRegUnits.empty()) 2038 continue; 2039 2040 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n"; 2041 for (auto U 2042 : RCRegUnits) printRegUnitName(U); 2043 dbgs() << "\n UnitSetIDs:"); 2044 2045 // Find all supersets. 2046 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2047 USIdx != USEnd; ++USIdx) { 2048 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 2049 LLVM_DEBUG(dbgs() << " " << USIdx); 2050 RegClassUnitSets[RCIdx].push_back(USIdx); 2051 } 2052 } 2053 LLVM_DEBUG(dbgs() << "\n"); 2054 assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) && 2055 "missing unit set for regclass"); 2056 } 2057 2058 // For each register unit, ensure that we have the list of UnitSets that 2059 // contain the unit. Normally, this matches an existing list of UnitSets for a 2060 // register class. If not, we create a new entry in RegClassUnitSets as a 2061 // "fake" register class. 2062 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 2063 UnitIdx < UnitEnd; ++UnitIdx) { 2064 std::vector<unsigned> RUSets; 2065 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 2066 RegUnitSet &RUSet = RegUnitSets[i]; 2067 if (!is_contained(RUSet.Units, UnitIdx)) 2068 continue; 2069 RUSets.push_back(i); 2070 } 2071 unsigned RCUnitSetsIdx = 0; 2072 for (unsigned e = RegClassUnitSets.size(); 2073 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 2074 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 2075 break; 2076 } 2077 } 2078 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 2079 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 2080 // Create a new list of UnitSets as a "fake" register class. 2081 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 2082 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 2083 } 2084 } 2085 } 2086 2087 void CodeGenRegBank::computeRegUnitLaneMasks() { 2088 for (auto &Register : Registers) { 2089 // Create an initial lane mask for all register units. 2090 const auto &RegUnits = Register.getRegUnits(); 2091 CodeGenRegister::RegUnitLaneMaskList 2092 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 2093 // Iterate through SubRegisters. 2094 typedef CodeGenRegister::SubRegMap SubRegMap; 2095 const SubRegMap &SubRegs = Register.getSubRegs(); 2096 for (auto S : SubRegs) { 2097 CodeGenRegister *SubReg = S.second; 2098 // Ignore non-leaf subregisters, their lane masks are fully covered by 2099 // the leaf subregisters anyway. 2100 if (!SubReg->getSubRegs().empty()) 2101 continue; 2102 CodeGenSubRegIndex *SubRegIndex = S.first; 2103 const CodeGenRegister *SubRegister = S.second; 2104 LaneBitmask LaneMask = SubRegIndex->LaneMask; 2105 // Distribute LaneMask to Register Units touched. 2106 for (unsigned SUI : SubRegister->getRegUnits()) { 2107 bool Found = false; 2108 unsigned u = 0; 2109 for (unsigned RU : RegUnits) { 2110 if (SUI == RU) { 2111 RegUnitLaneMasks[u] |= LaneMask; 2112 assert(!Found); 2113 Found = true; 2114 } 2115 ++u; 2116 } 2117 (void)Found; 2118 assert(Found); 2119 } 2120 } 2121 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 2122 } 2123 } 2124 2125 void CodeGenRegBank::computeDerivedInfo() { 2126 computeComposites(); 2127 computeSubRegLaneMasks(); 2128 2129 // Compute a weight for each register unit created during getSubRegs. 2130 // This may create adopted register units (with unit # >= NumNativeRegUnits). 2131 computeRegUnitWeights(); 2132 2133 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 2134 // supersets for the union of overlapping sets. 2135 computeRegUnitSets(); 2136 2137 computeRegUnitLaneMasks(); 2138 2139 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 2140 for (CodeGenRegisterClass &RC : RegClasses) { 2141 RC.HasDisjunctSubRegs = false; 2142 RC.CoveredBySubRegs = true; 2143 for (const CodeGenRegister *Reg : RC.getMembers()) { 2144 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 2145 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 2146 } 2147 } 2148 2149 // Get the weight of each set. 2150 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2151 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 2152 2153 // Find the order of each set. 2154 RegUnitSetOrder.reserve(RegUnitSets.size()); 2155 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2156 RegUnitSetOrder.push_back(Idx); 2157 2158 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) { 2159 return getRegPressureSet(ID1).Units.size() < 2160 getRegPressureSet(ID2).Units.size(); 2161 }); 2162 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 2163 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 2164 } 2165 } 2166 2167 // 2168 // Synthesize missing register class intersections. 2169 // 2170 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 2171 // returns a maximal register class for all X. 2172 // 2173 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 2174 assert(!RegClasses.empty()); 2175 // Stash the iterator to the last element so that this loop doesn't visit 2176 // elements added by the getOrCreateSubClass call within it. 2177 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 2178 I != std::next(E); ++I) { 2179 CodeGenRegisterClass *RC1 = RC; 2180 CodeGenRegisterClass *RC2 = &*I; 2181 if (RC1 == RC2) 2182 continue; 2183 2184 // Compute the set intersection of RC1 and RC2. 2185 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 2186 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 2187 CodeGenRegister::Vec Intersection; 2188 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(), 2189 Memb2.end(), 2190 std::inserter(Intersection, Intersection.begin()), 2191 deref<std::less<>>()); 2192 2193 // Skip disjoint class pairs. 2194 if (Intersection.empty()) 2195 continue; 2196 2197 // If RC1 and RC2 have different spill sizes or alignments, use the 2198 // stricter one for sub-classing. If they are equal, prefer RC1. 2199 if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) 2200 std::swap(RC1, RC2); 2201 2202 getOrCreateSubClass(RC1, &Intersection, 2203 RC1->getName() + "_and_" + RC2->getName()); 2204 } 2205 } 2206 2207 // 2208 // Synthesize missing sub-classes for getSubClassWithSubReg(). 2209 // 2210 // Make sure that the set of registers in RC with a given SubIdx sub-register 2211 // form a register class. Update RC->SubClassWithSubReg. 2212 // 2213 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 2214 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 2215 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 2216 deref<std::less<>>> 2217 SubReg2SetMap; 2218 2219 // Compute the set of registers supporting each SubRegIndex. 2220 SubReg2SetMap SRSets; 2221 for (const auto R : RC->getMembers()) { 2222 if (R->Artificial) 2223 continue; 2224 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 2225 for (auto I : SRM) { 2226 if (!I.first->Artificial) 2227 SRSets[I.first].push_back(R); 2228 } 2229 } 2230 2231 for (auto I : SRSets) 2232 sortAndUniqueRegisters(I.second); 2233 2234 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 2235 // numerical order to visit synthetic indices last. 2236 for (const auto &SubIdx : SubRegIndices) { 2237 if (SubIdx.Artificial) 2238 continue; 2239 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 2240 // Unsupported SubRegIndex. Skip it. 2241 if (I == SRSets.end()) 2242 continue; 2243 // In most cases, all RC registers support the SubRegIndex. 2244 if (I->second.size() == RC->getMembers().size()) { 2245 RC->setSubClassWithSubReg(&SubIdx, RC); 2246 continue; 2247 } 2248 // This is a real subset. See if we have a matching class. 2249 CodeGenRegisterClass *SubRC = 2250 getOrCreateSubClass(RC, &I->second, 2251 RC->getName() + "_with_" + I->first->getName()); 2252 RC->setSubClassWithSubReg(&SubIdx, SubRC); 2253 } 2254 } 2255 2256 // 2257 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 2258 // 2259 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 2260 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 2261 // 2262 2263 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 2264 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 2265 SmallVector<std::pair<const CodeGenRegister*, 2266 const CodeGenRegister*>, 16> SSPairs; 2267 BitVector TopoSigs(getNumTopoSigs()); 2268 2269 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 2270 for (auto &SubIdx : SubRegIndices) { 2271 // Skip indexes that aren't fully supported by RC's registers. This was 2272 // computed by inferSubClassWithSubReg() above which should have been 2273 // called first. 2274 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 2275 continue; 2276 2277 // Build list of (Super, Sub) pairs for this SubIdx. 2278 SSPairs.clear(); 2279 TopoSigs.reset(); 2280 for (const auto Super : RC->getMembers()) { 2281 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 2282 assert(Sub && "Missing sub-register"); 2283 SSPairs.push_back(std::make_pair(Super, Sub)); 2284 TopoSigs.set(Sub->getTopoSig()); 2285 } 2286 2287 // Iterate over sub-register class candidates. Ignore classes created by 2288 // this loop. They will never be useful. 2289 // Store an iterator to the last element (not end) so that this loop doesn't 2290 // visit newly inserted elements. 2291 assert(!RegClasses.empty()); 2292 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2293 I != std::next(E); ++I) { 2294 CodeGenRegisterClass &SubRC = *I; 2295 if (SubRC.Artificial) 2296 continue; 2297 // Topological shortcut: SubRC members have the wrong shape. 2298 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2299 continue; 2300 // Compute the subset of RC that maps into SubRC. 2301 CodeGenRegister::Vec SubSetVec; 2302 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2303 if (SubRC.contains(SSPairs[i].second)) 2304 SubSetVec.push_back(SSPairs[i].first); 2305 2306 if (SubSetVec.empty()) 2307 continue; 2308 2309 // RC injects completely into SubRC. 2310 sortAndUniqueRegisters(SubSetVec); 2311 if (SubSetVec.size() == SSPairs.size()) { 2312 SubRC.addSuperRegClass(&SubIdx, RC); 2313 continue; 2314 } 2315 2316 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2317 // class. 2318 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2319 SubIdx.getName() + "_in_" + 2320 SubRC.getName()); 2321 } 2322 } 2323 } 2324 2325 // 2326 // Infer missing register classes. 2327 // 2328 void CodeGenRegBank::computeInferredRegisterClasses() { 2329 assert(!RegClasses.empty()); 2330 // When this function is called, the register classes have not been sorted 2331 // and assigned EnumValues yet. That means getSubClasses(), 2332 // getSuperClasses(), and hasSubClass() functions are defunct. 2333 2334 // Use one-before-the-end so it doesn't move forward when new elements are 2335 // added. 2336 auto FirstNewRC = std::prev(RegClasses.end()); 2337 2338 // Visit all register classes, including the ones being added by the loop. 2339 // Watch out for iterator invalidation here. 2340 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2341 CodeGenRegisterClass *RC = &*I; 2342 if (RC->Artificial) 2343 continue; 2344 2345 // Synthesize answers for getSubClassWithSubReg(). 2346 inferSubClassWithSubReg(RC); 2347 2348 // Synthesize answers for getCommonSubClass(). 2349 inferCommonSubClass(RC); 2350 2351 // Synthesize answers for getMatchingSuperRegClass(). 2352 inferMatchingSuperRegClass(RC); 2353 2354 // New register classes are created while this loop is running, and we need 2355 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2356 // to match old super-register classes with sub-register classes created 2357 // after inferMatchingSuperRegClass was called. At this point, 2358 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2359 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2360 if (I == FirstNewRC) { 2361 auto NextNewRC = std::prev(RegClasses.end()); 2362 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2363 ++I2) 2364 inferMatchingSuperRegClass(&*I2, E2); 2365 FirstNewRC = NextNewRC; 2366 } 2367 } 2368 } 2369 2370 /// getRegisterClassForRegister - Find the register class that contains the 2371 /// specified physical register. If the register is not in a register class, 2372 /// return null. If the register is in multiple classes, and the classes have a 2373 /// superset-subset relationship and the same set of types, return the 2374 /// superclass. Otherwise return null. 2375 const CodeGenRegisterClass* 2376 CodeGenRegBank::getRegClassForRegister(Record *R) { 2377 const CodeGenRegister *Reg = getReg(R); 2378 const CodeGenRegisterClass *FoundRC = nullptr; 2379 for (const auto &RC : getRegClasses()) { 2380 if (!RC.contains(Reg)) 2381 continue; 2382 2383 // If this is the first class that contains the register, 2384 // make a note of it and go on to the next class. 2385 if (!FoundRC) { 2386 FoundRC = &RC; 2387 continue; 2388 } 2389 2390 // If a register's classes have different types, return null. 2391 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2392 return nullptr; 2393 2394 // Check to see if the previously found class that contains 2395 // the register is a subclass of the current class. If so, 2396 // prefer the superclass. 2397 if (RC.hasSubClass(FoundRC)) { 2398 FoundRC = &RC; 2399 continue; 2400 } 2401 2402 // Check to see if the previously found class that contains 2403 // the register is a superclass of the current class. If so, 2404 // prefer the superclass. 2405 if (FoundRC->hasSubClass(&RC)) 2406 continue; 2407 2408 // Multiple classes, and neither is a superclass of the other. 2409 // Return null. 2410 return nullptr; 2411 } 2412 return FoundRC; 2413 } 2414 2415 const CodeGenRegisterClass * 2416 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord, 2417 ValueTypeByHwMode *VT) { 2418 const CodeGenRegister *Reg = getReg(RegRecord); 2419 const CodeGenRegisterClass *BestRC = nullptr; 2420 for (const auto &RC : getRegClasses()) { 2421 if ((!VT || RC.hasType(*VT)) && 2422 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC))) 2423 BestRC = &RC; 2424 } 2425 2426 assert(BestRC && "Couldn't find the register class"); 2427 return BestRC; 2428 } 2429 2430 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2431 SetVector<const CodeGenRegister*> Set; 2432 2433 // First add Regs with all sub-registers. 2434 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2435 CodeGenRegister *Reg = getReg(Regs[i]); 2436 if (Set.insert(Reg)) 2437 // Reg is new, add all sub-registers. 2438 // The pre-ordering is not important here. 2439 Reg->addSubRegsPreOrder(Set, *this); 2440 } 2441 2442 // Second, find all super-registers that are completely covered by the set. 2443 for (unsigned i = 0; i != Set.size(); ++i) { 2444 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2445 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2446 const CodeGenRegister *Super = SR[j]; 2447 if (!Super->CoveredBySubRegs || Set.count(Super)) 2448 continue; 2449 // This new super-register is covered by its sub-registers. 2450 bool AllSubsInSet = true; 2451 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2452 for (auto I : SRM) 2453 if (!Set.count(I.second)) { 2454 AllSubsInSet = false; 2455 break; 2456 } 2457 // All sub-registers in Set, add Super as well. 2458 // We will visit Super later to recheck its super-registers. 2459 if (AllSubsInSet) 2460 Set.insert(Super); 2461 } 2462 } 2463 2464 // Convert to BitVector. 2465 BitVector BV(Registers.size() + 1); 2466 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2467 BV.set(Set[i]->EnumValue); 2468 return BV; 2469 } 2470 2471 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2472 if (Unit < NumNativeRegUnits) 2473 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2474 else 2475 dbgs() << " #" << Unit; 2476 } 2477