1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines structures to encapsulate information gleaned from the 10 // target register and register class definitions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenRegisters.h" 15 #include "CodeGenTarget.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/IntEqClasses.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/TableGen/Error.h" 32 #include "llvm/TableGen/Record.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <queue> 39 #include <set> 40 #include <string> 41 #include <tuple> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "regalloc-emitter" 48 49 //===----------------------------------------------------------------------===// 50 // CodeGenSubRegIndex 51 //===----------------------------------------------------------------------===// 52 53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 54 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 55 Name = std::string(R->getName()); 56 if (R->getValue("Namespace")) 57 Namespace = std::string(R->getValueAsString("Namespace")); 58 Size = R->getValueAsInt("Size"); 59 Offset = R->getValueAsInt("Offset"); 60 } 61 62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 63 unsigned Enum) 64 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)), 65 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true), 66 Artificial(true) {} 67 68 std::string CodeGenSubRegIndex::getQualifiedName() const { 69 std::string N = getNamespace(); 70 if (!N.empty()) 71 N += "::"; 72 N += getName(); 73 return N; 74 } 75 76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 77 if (!TheDef) 78 return; 79 80 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 81 if (!Comps.empty()) { 82 if (Comps.size() != 2) 83 PrintFatalError(TheDef->getLoc(), 84 "ComposedOf must have exactly two entries"); 85 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 86 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 87 CodeGenSubRegIndex *X = A->addComposite(B, this); 88 if (X) 89 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 90 } 91 92 std::vector<Record*> Parts = 93 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 94 if (!Parts.empty()) { 95 if (Parts.size() < 2) 96 PrintFatalError(TheDef->getLoc(), 97 "CoveredBySubRegs must have two or more entries"); 98 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 99 for (Record *Part : Parts) 100 IdxParts.push_back(RegBank.getSubRegIdx(Part)); 101 setConcatenationOf(IdxParts); 102 } 103 } 104 105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 106 // Already computed? 107 if (LaneMask.any()) 108 return LaneMask; 109 110 // Recursion guard, shouldn't be required. 111 LaneMask = LaneBitmask::getAll(); 112 113 // The lane mask is simply the union of all sub-indices. 114 LaneBitmask M; 115 for (const auto &C : Composed) 116 M |= C.second->computeLaneMask(); 117 assert(M.any() && "Missing lane mask, sub-register cycle?"); 118 LaneMask = M; 119 return LaneMask; 120 } 121 122 void CodeGenSubRegIndex::setConcatenationOf( 123 ArrayRef<CodeGenSubRegIndex*> Parts) { 124 if (ConcatenationOf.empty()) 125 ConcatenationOf.assign(Parts.begin(), Parts.end()); 126 else 127 assert(std::equal(Parts.begin(), Parts.end(), 128 ConcatenationOf.begin()) && "parts consistent"); 129 } 130 131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() { 132 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator 133 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { 134 CodeGenSubRegIndex *SubIdx = *I; 135 SubIdx->computeConcatTransitiveClosure(); 136 #ifndef NDEBUG 137 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) 138 assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); 139 #endif 140 141 if (SubIdx->ConcatenationOf.empty()) { 142 ++I; 143 } else { 144 I = ConcatenationOf.erase(I); 145 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), 146 SubIdx->ConcatenationOf.end()); 147 I += SubIdx->ConcatenationOf.size(); 148 } 149 } 150 } 151 152 //===----------------------------------------------------------------------===// 153 // CodeGenRegister 154 //===----------------------------------------------------------------------===// 155 156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 157 : TheDef(R), 158 EnumValue(Enum), 159 CostPerUse(R->getValueAsInt("CostPerUse")), 160 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 161 HasDisjunctSubRegs(false), 162 SubRegsComplete(false), 163 SuperRegsComplete(false), 164 TopoSig(~0u) { 165 Artificial = R->getValueAsBit("isArtificial"); 166 } 167 168 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 169 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 170 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 171 172 if (SRIs.size() != SRs.size()) 173 PrintFatalError(TheDef->getLoc(), 174 "SubRegs and SubRegIndices must have the same size"); 175 176 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 177 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 178 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 179 } 180 181 // Also compute leading super-registers. Each register has a list of 182 // covered-by-subregs super-registers where it appears as the first explicit 183 // sub-register. 184 // 185 // This is used by computeSecondarySubRegs() to find candidates. 186 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 187 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 188 189 // Add ad hoc alias links. This is a symmetric relationship between two 190 // registers, so build a symmetric graph by adding links in both ends. 191 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 192 for (Record *Alias : Aliases) { 193 CodeGenRegister *Reg = RegBank.getReg(Alias); 194 ExplicitAliases.push_back(Reg); 195 Reg->ExplicitAliases.push_back(this); 196 } 197 } 198 199 const StringRef CodeGenRegister::getName() const { 200 assert(TheDef && "no def"); 201 return TheDef->getName(); 202 } 203 204 namespace { 205 206 // Iterate over all register units in a set of registers. 207 class RegUnitIterator { 208 CodeGenRegister::Vec::const_iterator RegI, RegE; 209 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 210 211 public: 212 RegUnitIterator(const CodeGenRegister::Vec &Regs): 213 RegI(Regs.begin()), RegE(Regs.end()) { 214 215 if (RegI != RegE) { 216 UnitI = (*RegI)->getRegUnits().begin(); 217 UnitE = (*RegI)->getRegUnits().end(); 218 advance(); 219 } 220 } 221 222 bool isValid() const { return UnitI != UnitE; } 223 224 unsigned operator* () const { assert(isValid()); return *UnitI; } 225 226 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 227 228 /// Preincrement. Move to the next unit. 229 void operator++() { 230 assert(isValid() && "Cannot advance beyond the last operand"); 231 ++UnitI; 232 advance(); 233 } 234 235 protected: 236 void advance() { 237 while (UnitI == UnitE) { 238 if (++RegI == RegE) 239 break; 240 UnitI = (*RegI)->getRegUnits().begin(); 241 UnitE = (*RegI)->getRegUnits().end(); 242 } 243 } 244 }; 245 246 } // end anonymous namespace 247 248 // Return true of this unit appears in RegUnits. 249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 250 return RegUnits.test(Unit); 251 } 252 253 // Inherit register units from subregisters. 254 // Return true if the RegUnits changed. 255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 256 bool changed = false; 257 for (const auto &SubReg : SubRegs) { 258 CodeGenRegister *SR = SubReg.second; 259 // Merge the subregister's units into this register's RegUnits. 260 changed |= (RegUnits |= SR->RegUnits); 261 } 262 263 return changed; 264 } 265 266 const CodeGenRegister::SubRegMap & 267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 268 // Only compute this map once. 269 if (SubRegsComplete) 270 return SubRegs; 271 SubRegsComplete = true; 272 273 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 274 275 // First insert the explicit subregs and make sure they are fully indexed. 276 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 277 CodeGenRegister *SR = ExplicitSubRegs[i]; 278 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 279 if (!SR->Artificial) 280 Idx->Artificial = false; 281 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 282 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 283 " appears twice in Register " + getName()); 284 // Map explicit sub-registers first, so the names take precedence. 285 // The inherited sub-registers are mapped below. 286 SubReg2Idx.insert(std::make_pair(SR, Idx)); 287 } 288 289 // Keep track of inherited subregs and how they can be reached. 290 SmallPtrSet<CodeGenRegister*, 8> Orphans; 291 292 // Clone inherited subregs and place duplicate entries in Orphans. 293 // Here the order is important - earlier subregs take precedence. 294 for (CodeGenRegister *ESR : ExplicitSubRegs) { 295 const SubRegMap &Map = ESR->computeSubRegs(RegBank); 296 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; 297 298 for (const auto &SR : Map) { 299 if (!SubRegs.insert(SR).second) 300 Orphans.insert(SR.second); 301 } 302 } 303 304 // Expand any composed subreg indices. 305 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 306 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 307 // expanded subreg indices recursively. 308 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 309 for (unsigned i = 0; i != Indices.size(); ++i) { 310 CodeGenSubRegIndex *Idx = Indices[i]; 311 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 312 CodeGenRegister *SR = SubRegs[Idx]; 313 const SubRegMap &Map = SR->computeSubRegs(RegBank); 314 315 // Look at the possible compositions of Idx. 316 // They may not all be supported by SR. 317 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 318 E = Comps.end(); I != E; ++I) { 319 SubRegMap::const_iterator SRI = Map.find(I->first); 320 if (SRI == Map.end()) 321 continue; // Idx + I->first doesn't exist in SR. 322 // Add I->second as a name for the subreg SRI->second, assuming it is 323 // orphaned, and the name isn't already used for something else. 324 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 325 continue; 326 // We found a new name for the orphaned sub-register. 327 SubRegs.insert(std::make_pair(I->second, SRI->second)); 328 Indices.push_back(I->second); 329 } 330 } 331 332 // Now Orphans contains the inherited subregisters without a direct index. 333 // Create inferred indexes for all missing entries. 334 // Work backwards in the Indices vector in order to compose subregs bottom-up. 335 // Consider this subreg sequence: 336 // 337 // qsub_1 -> dsub_0 -> ssub_0 338 // 339 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 340 // can be reached in two different ways: 341 // 342 // qsub_1 -> ssub_0 343 // dsub_2 -> ssub_0 344 // 345 // We pick the latter composition because another register may have [dsub_0, 346 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 347 // dsub_2 -> ssub_0 composition can be shared. 348 while (!Indices.empty() && !Orphans.empty()) { 349 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 350 CodeGenRegister *SR = SubRegs[Idx]; 351 const SubRegMap &Map = SR->computeSubRegs(RegBank); 352 for (const auto &SubReg : Map) 353 if (Orphans.erase(SubReg.second)) 354 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; 355 } 356 357 // Compute the inverse SubReg -> Idx map. 358 for (const auto &SubReg : SubRegs) { 359 if (SubReg.second == this) { 360 ArrayRef<SMLoc> Loc; 361 if (TheDef) 362 Loc = TheDef->getLoc(); 363 PrintFatalError(Loc, "Register " + getName() + 364 " has itself as a sub-register"); 365 } 366 367 // Compute AllSuperRegsCovered. 368 if (!CoveredBySubRegs) 369 SubReg.first->AllSuperRegsCovered = false; 370 371 // Ensure that every sub-register has a unique name. 372 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 373 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; 374 if (Ins->second == SubReg.first) 375 continue; 376 // Trouble: Two different names for SubReg.second. 377 ArrayRef<SMLoc> Loc; 378 if (TheDef) 379 Loc = TheDef->getLoc(); 380 PrintFatalError(Loc, "Sub-register can't have two names: " + 381 SubReg.second->getName() + " available as " + 382 SubReg.first->getName() + " and " + Ins->second->getName()); 383 } 384 385 // Derive possible names for sub-register concatenations from any explicit 386 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 387 // that getConcatSubRegIndex() won't invent any concatenated indices that the 388 // user already specified. 389 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 390 CodeGenRegister *SR = ExplicitSubRegs[i]; 391 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 || 392 SR->Artificial) 393 continue; 394 395 // SR is composed of multiple sub-regs. Find their names in this register. 396 SmallVector<CodeGenSubRegIndex*, 8> Parts; 397 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) { 398 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j]; 399 if (!I.Artificial) 400 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 401 } 402 403 // Offer this as an existing spelling for the concatenation of Parts. 404 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; 405 Idx.setConcatenationOf(Parts); 406 } 407 408 // Initialize RegUnitList. Because getSubRegs is called recursively, this 409 // processes the register hierarchy in postorder. 410 // 411 // Inherit all sub-register units. It is good enough to look at the explicit 412 // sub-registers, the other registers won't contribute any more units. 413 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 414 CodeGenRegister *SR = ExplicitSubRegs[i]; 415 RegUnits |= SR->RegUnits; 416 } 417 418 // Absent any ad hoc aliasing, we create one register unit per leaf register. 419 // These units correspond to the maximal cliques in the register overlap 420 // graph which is optimal. 421 // 422 // When there is ad hoc aliasing, we simply create one unit per edge in the 423 // undirected ad hoc aliasing graph. Technically, we could do better by 424 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 425 // are extremely rare anyway (I've never seen one), so we don't bother with 426 // the added complexity. 427 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 428 CodeGenRegister *AR = ExplicitAliases[i]; 429 // Only visit each edge once. 430 if (AR->SubRegsComplete) 431 continue; 432 // Create a RegUnit representing this alias edge, and add it to both 433 // registers. 434 unsigned Unit = RegBank.newRegUnit(this, AR); 435 RegUnits.set(Unit); 436 AR->RegUnits.set(Unit); 437 } 438 439 // Finally, create units for leaf registers without ad hoc aliases. Note that 440 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 441 // necessary. This means the aliasing leaf registers can share a single unit. 442 if (RegUnits.empty()) 443 RegUnits.set(RegBank.newRegUnit(this)); 444 445 // We have now computed the native register units. More may be adopted later 446 // for balancing purposes. 447 NativeRegUnits = RegUnits; 448 449 return SubRegs; 450 } 451 452 // In a register that is covered by its sub-registers, try to find redundant 453 // sub-registers. For example: 454 // 455 // QQ0 = {Q0, Q1} 456 // Q0 = {D0, D1} 457 // Q1 = {D2, D3} 458 // 459 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 460 // the register definition. 461 // 462 // The explicitly specified registers form a tree. This function discovers 463 // sub-register relationships that would force a DAG. 464 // 465 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 466 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 467 468 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue; 469 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs) 470 SubRegQueue.push(P); 471 472 // Look at the leading super-registers of each sub-register. Those are the 473 // candidates for new sub-registers, assuming they are fully contained in 474 // this register. 475 while (!SubRegQueue.empty()) { 476 CodeGenSubRegIndex *SubRegIdx; 477 const CodeGenRegister *SubReg; 478 std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); 479 SubRegQueue.pop(); 480 481 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 482 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 483 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 484 // Already got this sub-register? 485 if (Cand == this || getSubRegIndex(Cand)) 486 continue; 487 // Check if each component of Cand is already a sub-register. 488 assert(!Cand->ExplicitSubRegs.empty() && 489 "Super-register has no sub-registers"); 490 if (Cand->ExplicitSubRegs.size() == 1) 491 continue; 492 SmallVector<CodeGenSubRegIndex*, 8> Parts; 493 // We know that the first component is (SubRegIdx,SubReg). However we 494 // may still need to split it into smaller subregister parts. 495 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); 496 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); 497 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { 498 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { 499 if (SubRegIdx->ConcatenationOf.empty()) { 500 Parts.push_back(SubRegIdx); 501 } else 502 for (CodeGenSubRegIndex *SubIdx : SubRegIdx->ConcatenationOf) 503 Parts.push_back(SubIdx); 504 } else { 505 // Sub-register doesn't exist. 506 Parts.clear(); 507 break; 508 } 509 } 510 // There is nothing to do if some Cand sub-register is not part of this 511 // register. 512 if (Parts.empty()) 513 continue; 514 515 // Each part of Cand is a sub-register of this. Make the full Cand also 516 // a sub-register with a concatenated sub-register index. 517 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); 518 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg = 519 std::make_pair(Concat, Cand); 520 521 if (!SubRegs.insert(NewSubReg).second) 522 continue; 523 524 // We inserted a new subregister. 525 NewSubRegs.push_back(NewSubReg); 526 SubRegQueue.push(NewSubReg); 527 SubReg2Idx.insert(std::make_pair(Cand, Concat)); 528 } 529 } 530 531 // Create sub-register index composition maps for the synthesized indices. 532 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 533 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 534 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 535 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 536 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 537 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 538 if (!SubIdx) 539 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 540 SI->second->getName() + " in " + getName()); 541 NewIdx->addComposite(SI->first, SubIdx); 542 } 543 } 544 } 545 546 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 547 // Only visit each register once. 548 if (SuperRegsComplete) 549 return; 550 SuperRegsComplete = true; 551 552 // Make sure all sub-registers have been visited first, so the super-reg 553 // lists will be topologically ordered. 554 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 555 I != E; ++I) 556 I->second->computeSuperRegs(RegBank); 557 558 // Now add this as a super-register on all sub-registers. 559 // Also compute the TopoSigId in post-order. 560 TopoSigId Id; 561 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 562 I != E; ++I) { 563 // Topological signature computed from SubIdx, TopoId(SubReg). 564 // Loops and idempotent indices have TopoSig = ~0u. 565 Id.push_back(I->first->EnumValue); 566 Id.push_back(I->second->TopoSig); 567 568 // Don't add duplicate entries. 569 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 570 continue; 571 I->second->SuperRegs.push_back(this); 572 } 573 TopoSig = RegBank.getTopoSig(Id); 574 } 575 576 void 577 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 578 CodeGenRegBank &RegBank) const { 579 assert(SubRegsComplete && "Must precompute sub-registers"); 580 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 581 CodeGenRegister *SR = ExplicitSubRegs[i]; 582 if (OSet.insert(SR)) 583 SR->addSubRegsPreOrder(OSet, RegBank); 584 } 585 // Add any secondary sub-registers that weren't part of the explicit tree. 586 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 587 I != E; ++I) 588 OSet.insert(I->second); 589 } 590 591 // Get the sum of this register's unit weights. 592 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 593 unsigned Weight = 0; 594 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); 595 I != E; ++I) { 596 Weight += RegBank.getRegUnit(*I).Weight; 597 } 598 return Weight; 599 } 600 601 //===----------------------------------------------------------------------===// 602 // RegisterTuples 603 //===----------------------------------------------------------------------===// 604 605 // A RegisterTuples def is used to generate pseudo-registers from lists of 606 // sub-registers. We provide a SetTheory expander class that returns the new 607 // registers. 608 namespace { 609 610 struct TupleExpander : SetTheory::Expander { 611 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of 612 // the synthesized definitions for their lifetime. 613 std::vector<std::unique_ptr<Record>> &SynthDefs; 614 615 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs) 616 : SynthDefs(SynthDefs) {} 617 618 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 619 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 620 unsigned Dim = Indices.size(); 621 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 622 if (Dim != SubRegs->size()) 623 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 624 if (Dim < 2) 625 PrintFatalError(Def->getLoc(), 626 "Tuples must have at least 2 sub-registers"); 627 628 // Evaluate the sub-register lists to be zipped. 629 unsigned Length = ~0u; 630 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 631 for (unsigned i = 0; i != Dim; ++i) { 632 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 633 Length = std::min(Length, unsigned(Lists[i].size())); 634 } 635 636 if (Length == 0) 637 return; 638 639 // Precompute some types. 640 Record *RegisterCl = Def->getRecords().getClass("Register"); 641 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 642 std::vector<StringRef> RegNames = 643 Def->getValueAsListOfStrings("RegAsmNames"); 644 645 // Zip them up. 646 for (unsigned n = 0; n != Length; ++n) { 647 std::string Name; 648 Record *Proto = Lists[0][n]; 649 std::vector<Init*> Tuple; 650 unsigned CostPerUse = 0; 651 for (unsigned i = 0; i != Dim; ++i) { 652 Record *Reg = Lists[i][n]; 653 if (i) Name += '_'; 654 Name += Reg->getName(); 655 Tuple.push_back(DefInit::get(Reg)); 656 CostPerUse = std::max(CostPerUse, 657 unsigned(Reg->getValueAsInt("CostPerUse"))); 658 } 659 660 StringInit *AsmName = StringInit::get(""); 661 if (!RegNames.empty()) { 662 if (RegNames.size() <= n) 663 PrintFatalError(Def->getLoc(), 664 "Register tuple definition missing name for '" + 665 Name + "'."); 666 AsmName = StringInit::get(RegNames[n]); 667 } 668 669 // Create a new Record representing the synthesized register. This record 670 // is only for consumption by CodeGenRegister, it is not added to the 671 // RecordKeeper. 672 SynthDefs.emplace_back( 673 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords())); 674 Record *NewReg = SynthDefs.back().get(); 675 Elts.insert(NewReg); 676 677 // Copy Proto super-classes. 678 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 679 for (const auto &SuperPair : Supers) 680 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 681 682 // Copy Proto fields. 683 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 684 RecordVal RV = Proto->getValues()[i]; 685 686 // Skip existing fields, like NAME. 687 if (NewReg->getValue(RV.getNameInit())) 688 continue; 689 690 StringRef Field = RV.getName(); 691 692 // Replace the sub-register list with Tuple. 693 if (Field == "SubRegs") 694 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 695 696 if (Field == "AsmName") 697 RV.setValue(AsmName); 698 699 // CostPerUse is aggregated from all Tuple members. 700 if (Field == "CostPerUse") 701 RV.setValue(IntInit::get(CostPerUse)); 702 703 // Composite registers are always covered by sub-registers. 704 if (Field == "CoveredBySubRegs") 705 RV.setValue(BitInit::get(true)); 706 707 // Copy fields from the RegisterTuples def. 708 if (Field == "SubRegIndices" || 709 Field == "CompositeIndices") { 710 NewReg->addValue(*Def->getValue(Field)); 711 continue; 712 } 713 714 // Some fields get their default uninitialized value. 715 if (Field == "DwarfNumbers" || 716 Field == "DwarfAlias" || 717 Field == "Aliases") { 718 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 719 NewReg->addValue(*DefRV); 720 continue; 721 } 722 723 // Everything else is copied from Proto. 724 NewReg->addValue(RV); 725 } 726 } 727 } 728 }; 729 730 } // end anonymous namespace 731 732 //===----------------------------------------------------------------------===// 733 // CodeGenRegisterClass 734 //===----------------------------------------------------------------------===// 735 736 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 737 llvm::sort(M, deref<std::less<>>()); 738 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end()); 739 } 740 741 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 742 : TheDef(R), Name(std::string(R->getName())), 743 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1) { 744 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 745 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 746 Record *Type = TypeList[i]; 747 if (!Type->isSubClassOf("ValueType")) 748 PrintFatalError(R->getLoc(), 749 "RegTypes list member '" + Type->getName() + 750 "' does not derive from the ValueType class!"); 751 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); 752 } 753 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 754 755 // Allocation order 0 is the full set. AltOrders provides others. 756 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 757 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 758 Orders.resize(1 + AltOrders->size()); 759 760 // Default allocation order always contains all registers. 761 Artificial = true; 762 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 763 Orders[0].push_back((*Elements)[i]); 764 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 765 Members.push_back(Reg); 766 Artificial &= Reg->Artificial; 767 TopoSigs.set(Reg->getTopoSig()); 768 } 769 sortAndUniqueRegisters(Members); 770 771 // Alternative allocation orders may be subsets. 772 SetTheory::RecSet Order; 773 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 774 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 775 Orders[1 + i].append(Order.begin(), Order.end()); 776 // Verify that all altorder members are regclass members. 777 while (!Order.empty()) { 778 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 779 Order.pop_back(); 780 if (!contains(Reg)) 781 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 782 " is not a class member"); 783 } 784 } 785 786 Namespace = R->getValueAsString("Namespace"); 787 788 if (const RecordVal *RV = R->getValue("RegInfos")) 789 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) 790 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); 791 unsigned Size = R->getValueAsInt("Size"); 792 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && 793 "Impossible to determine register size"); 794 if (!RSI.hasDefault()) { 795 RegSizeInfo RI; 796 RI.RegSize = RI.SpillSize = Size ? Size 797 : VTs[0].getSimple().getSizeInBits(); 798 RI.SpillAlignment = R->getValueAsInt("Alignment"); 799 RSI.Map.insert({DefaultMode, RI}); 800 } 801 802 CopyCost = R->getValueAsInt("CopyCost"); 803 Allocatable = R->getValueAsBit("isAllocatable"); 804 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 805 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 806 if (AllocationPriority < 0 || AllocationPriority > 63) 807 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 808 this->AllocationPriority = AllocationPriority; 809 } 810 811 // Create an inferred register class that was missing from the .td files. 812 // Most properties will be inherited from the closest super-class after the 813 // class structure has been computed. 814 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 815 StringRef Name, Key Props) 816 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)), 817 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI), 818 CopyCost(0), Allocatable(true), AllocationPriority(0) { 819 Artificial = true; 820 for (const auto R : Members) { 821 TopoSigs.set(R->getTopoSig()); 822 Artificial &= R->Artificial; 823 } 824 } 825 826 // Compute inherited propertied for a synthesized register class. 827 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 828 assert(!getDef() && "Only synthesized classes can inherit properties"); 829 assert(!SuperClasses.empty() && "Synthesized class without super class"); 830 831 // The last super-class is the smallest one. 832 CodeGenRegisterClass &Super = *SuperClasses.back(); 833 834 // Most properties are copied directly. 835 // Exceptions are members, size, and alignment 836 Namespace = Super.Namespace; 837 VTs = Super.VTs; 838 CopyCost = Super.CopyCost; 839 Allocatable = Super.Allocatable; 840 AltOrderSelect = Super.AltOrderSelect; 841 AllocationPriority = Super.AllocationPriority; 842 843 // Copy all allocation orders, filter out foreign registers from the larger 844 // super-class. 845 Orders.resize(Super.Orders.size()); 846 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 847 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 848 if (contains(RegBank.getReg(Super.Orders[i][j]))) 849 Orders[i].push_back(Super.Orders[i][j]); 850 } 851 852 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 853 return std::binary_search(Members.begin(), Members.end(), Reg, 854 deref<std::less<>>()); 855 } 856 857 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const { 858 if (TheDef && !TheDef->isValueUnset("Weight")) 859 return TheDef->getValueAsInt("Weight"); 860 861 if (Members.empty() || Artificial) 862 return 0; 863 864 return (*Members.begin())->getWeight(RegBank); 865 } 866 867 namespace llvm { 868 869 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 870 OS << "{ " << K.RSI; 871 for (const auto R : *K.Members) 872 OS << ", " << R->getName(); 873 return OS << " }"; 874 } 875 876 } // end namespace llvm 877 878 // This is a simple lexicographical order that can be used to search for sets. 879 // It is not the same as the topological order provided by TopoOrderRC. 880 bool CodeGenRegisterClass::Key:: 881 operator<(const CodeGenRegisterClass::Key &B) const { 882 assert(Members && B.Members); 883 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); 884 } 885 886 // Returns true if RC is a strict subclass. 887 // RC is a sub-class of this class if it is a valid replacement for any 888 // instruction operand where a register of this classis required. It must 889 // satisfy these conditions: 890 // 891 // 1. All RC registers are also in this. 892 // 2. The RC spill size must not be smaller than our spill size. 893 // 3. RC spill alignment must be compatible with ours. 894 // 895 static bool testSubClass(const CodeGenRegisterClass *A, 896 const CodeGenRegisterClass *B) { 897 return A->RSI.isSubClassOf(B->RSI) && 898 std::includes(A->getMembers().begin(), A->getMembers().end(), 899 B->getMembers().begin(), B->getMembers().end(), 900 deref<std::less<>>()); 901 } 902 903 /// Sorting predicate for register classes. This provides a topological 904 /// ordering that arranges all register classes before their sub-classes. 905 /// 906 /// Register classes with the same registers, spill size, and alignment form a 907 /// clique. They will be ordered alphabetically. 908 /// 909 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 910 const CodeGenRegisterClass &PB) { 911 auto *A = &PA; 912 auto *B = &PB; 913 if (A == B) 914 return false; 915 916 if (A->RSI < B->RSI) 917 return true; 918 if (A->RSI != B->RSI) 919 return false; 920 921 // Order by descending set size. Note that the classes' allocation order may 922 // not have been computed yet. The Members set is always vaild. 923 if (A->getMembers().size() > B->getMembers().size()) 924 return true; 925 if (A->getMembers().size() < B->getMembers().size()) 926 return false; 927 928 // Finally order by name as a tie breaker. 929 return StringRef(A->getName()) < B->getName(); 930 } 931 932 std::string CodeGenRegisterClass::getQualifiedName() const { 933 if (Namespace.empty()) 934 return getName(); 935 else 936 return (Namespace + "::" + getName()).str(); 937 } 938 939 // Compute sub-classes of all register classes. 940 // Assume the classes are ordered topologically. 941 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 942 auto &RegClasses = RegBank.getRegClasses(); 943 944 // Visit backwards so sub-classes are seen first. 945 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 946 CodeGenRegisterClass &RC = *I; 947 RC.SubClasses.resize(RegClasses.size()); 948 RC.SubClasses.set(RC.EnumValue); 949 if (RC.Artificial) 950 continue; 951 952 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 953 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 954 CodeGenRegisterClass &SubRC = *I2; 955 if (RC.SubClasses.test(SubRC.EnumValue)) 956 continue; 957 if (!testSubClass(&RC, &SubRC)) 958 continue; 959 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 960 // check them again. 961 RC.SubClasses |= SubRC.SubClasses; 962 } 963 964 // Sweep up missed clique members. They will be immediately preceding RC. 965 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 966 RC.SubClasses.set(I2->EnumValue); 967 } 968 969 // Compute the SuperClasses lists from the SubClasses vectors. 970 for (auto &RC : RegClasses) { 971 const BitVector &SC = RC.getSubClasses(); 972 auto I = RegClasses.begin(); 973 for (int s = 0, next_s = SC.find_first(); next_s != -1; 974 next_s = SC.find_next(s)) { 975 std::advance(I, next_s - s); 976 s = next_s; 977 if (&*I == &RC) 978 continue; 979 I->SuperClasses.push_back(&RC); 980 } 981 } 982 983 // With the class hierarchy in place, let synthesized register classes inherit 984 // properties from their closest super-class. The iteration order here can 985 // propagate properties down multiple levels. 986 for (auto &RC : RegClasses) 987 if (!RC.getDef()) 988 RC.inheritProperties(RegBank); 989 } 990 991 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>> 992 CodeGenRegisterClass::getMatchingSubClassWithSubRegs( 993 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { 994 auto SizeOrder = [this](const CodeGenRegisterClass *A, 995 const CodeGenRegisterClass *B) { 996 // If there are multiple, identical register classes, prefer the original 997 // register class. 998 if (A->getMembers().size() == B->getMembers().size()) 999 return A == this; 1000 return A->getMembers().size() > B->getMembers().size(); 1001 }; 1002 1003 auto &RegClasses = RegBank.getRegClasses(); 1004 1005 // Find all the subclasses of this one that fully support the sub-register 1006 // index and order them by size. BiggestSuperRC should always be first. 1007 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); 1008 if (!BiggestSuperRegRC) 1009 return None; 1010 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); 1011 std::vector<CodeGenRegisterClass *> SuperRegRCs; 1012 for (auto &RC : RegClasses) 1013 if (SuperRegRCsBV[RC.EnumValue]) 1014 SuperRegRCs.emplace_back(&RC); 1015 llvm::stable_sort(SuperRegRCs, SizeOrder); 1016 1017 assert(SuperRegRCs.front() == BiggestSuperRegRC && 1018 "Biggest class wasn't first"); 1019 1020 // Find all the subreg classes and order them by size too. 1021 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses; 1022 for (auto &RC: RegClasses) { 1023 BitVector SuperRegClassesBV(RegClasses.size()); 1024 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); 1025 if (SuperRegClassesBV.any()) 1026 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); 1027 } 1028 llvm::sort(SuperRegClasses, 1029 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A, 1030 const std::pair<CodeGenRegisterClass *, BitVector> &B) { 1031 return SizeOrder(A.first, B.first); 1032 }); 1033 1034 // Find the biggest subclass and subreg class such that R:subidx is in the 1035 // subreg class for all R in subclass. 1036 // 1037 // For example: 1038 // All registers in X86's GR64 have a sub_32bit subregister but no class 1039 // exists that contains all the 32-bit subregisters because GR64 contains RIP 1040 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to 1041 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, 1042 // having excluded RIP, we are able to find a SubRegRC (GR32). 1043 CodeGenRegisterClass *ChosenSuperRegClass = nullptr; 1044 CodeGenRegisterClass *SubRegRC = nullptr; 1045 for (auto *SuperRegRC : SuperRegRCs) { 1046 for (const auto &SuperRegClassPair : SuperRegClasses) { 1047 const BitVector &SuperRegClassBV = SuperRegClassPair.second; 1048 if (SuperRegClassBV[SuperRegRC->EnumValue]) { 1049 SubRegRC = SuperRegClassPair.first; 1050 ChosenSuperRegClass = SuperRegRC; 1051 1052 // If SubRegRC is bigger than SuperRegRC then there are members of 1053 // SubRegRC that don't have super registers via SubIdx. Keep looking to 1054 // find a better fit and fall back on this one if there isn't one. 1055 // 1056 // This is intended to prevent X86 from making odd choices such as 1057 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. 1058 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that 1059 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 1060 // mapping. 1061 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) 1062 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1063 } 1064 } 1065 1066 // If we found a fit but it wasn't quite ideal because SubRegRC had excess 1067 // registers, then we're done. 1068 if (ChosenSuperRegClass) 1069 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1070 } 1071 1072 return None; 1073 } 1074 1075 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 1076 BitVector &Out) const { 1077 auto FindI = SuperRegClasses.find(SubIdx); 1078 if (FindI == SuperRegClasses.end()) 1079 return; 1080 for (CodeGenRegisterClass *RC : FindI->second) 1081 Out.set(RC->EnumValue); 1082 } 1083 1084 // Populate a unique sorted list of units from a register set. 1085 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, 1086 std::vector<unsigned> &RegUnits) const { 1087 std::vector<unsigned> TmpUnits; 1088 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { 1089 const RegUnit &RU = RegBank.getRegUnit(*UnitI); 1090 if (!RU.Artificial) 1091 TmpUnits.push_back(*UnitI); 1092 } 1093 llvm::sort(TmpUnits); 1094 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 1095 std::back_inserter(RegUnits)); 1096 } 1097 1098 //===----------------------------------------------------------------------===// 1099 // CodeGenRegBank 1100 //===----------------------------------------------------------------------===// 1101 1102 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, 1103 const CodeGenHwModes &Modes) : CGH(Modes) { 1104 // Configure register Sets to understand register classes and tuples. 1105 Sets.addFieldExpander("RegisterClass", "MemberList"); 1106 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 1107 Sets.addExpander("RegisterTuples", 1108 std::make_unique<TupleExpander>(SynthDefs)); 1109 1110 // Read in the user-defined (named) sub-register indices. 1111 // More indices will be synthesized later. 1112 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 1113 llvm::sort(SRIs, LessRecord()); 1114 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 1115 getSubRegIdx(SRIs[i]); 1116 // Build composite maps from ComposedOf fields. 1117 for (auto &Idx : SubRegIndices) 1118 Idx.updateComponents(*this); 1119 1120 // Read in the register definitions. 1121 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 1122 llvm::sort(Regs, LessRecordRegister()); 1123 // Assign the enumeration values. 1124 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 1125 getReg(Regs[i]); 1126 1127 // Expand tuples and number the new registers. 1128 std::vector<Record*> Tups = 1129 Records.getAllDerivedDefinitions("RegisterTuples"); 1130 1131 for (Record *R : Tups) { 1132 std::vector<Record *> TupRegs = *Sets.expand(R); 1133 llvm::sort(TupRegs, LessRecordRegister()); 1134 for (Record *RC : TupRegs) 1135 getReg(RC); 1136 } 1137 1138 // Now all the registers are known. Build the object graph of explicit 1139 // register-register references. 1140 for (auto &Reg : Registers) 1141 Reg.buildObjectGraph(*this); 1142 1143 // Compute register name map. 1144 for (auto &Reg : Registers) 1145 // FIXME: This could just be RegistersByName[name] = register, except that 1146 // causes some failures in MIPS - perhaps they have duplicate register name 1147 // entries? (or maybe there's a reason for it - I don't know much about this 1148 // code, just drive-by refactoring) 1149 RegistersByName.insert( 1150 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 1151 1152 // Precompute all sub-register maps. 1153 // This will create Composite entries for all inferred sub-register indices. 1154 for (auto &Reg : Registers) 1155 Reg.computeSubRegs(*this); 1156 1157 // Compute transitive closure of subregister index ConcatenationOf vectors 1158 // and initialize ConcatIdx map. 1159 for (CodeGenSubRegIndex &SRI : SubRegIndices) { 1160 SRI.computeConcatTransitiveClosure(); 1161 if (!SRI.ConcatenationOf.empty()) 1162 ConcatIdx.insert(std::make_pair( 1163 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(), 1164 SRI.ConcatenationOf.end()), &SRI)); 1165 } 1166 1167 // Infer even more sub-registers by combining leading super-registers. 1168 for (auto &Reg : Registers) 1169 if (Reg.CoveredBySubRegs) 1170 Reg.computeSecondarySubRegs(*this); 1171 1172 // After the sub-register graph is complete, compute the topologically 1173 // ordered SuperRegs list. 1174 for (auto &Reg : Registers) 1175 Reg.computeSuperRegs(*this); 1176 1177 // For each pair of Reg:SR, if both are non-artificial, mark the 1178 // corresponding sub-register index as non-artificial. 1179 for (auto &Reg : Registers) { 1180 if (Reg.Artificial) 1181 continue; 1182 for (auto P : Reg.getSubRegs()) { 1183 const CodeGenRegister *SR = P.second; 1184 if (!SR->Artificial) 1185 P.first->Artificial = false; 1186 } 1187 } 1188 1189 // Native register units are associated with a leaf register. They've all been 1190 // discovered now. 1191 NumNativeRegUnits = RegUnits.size(); 1192 1193 // Read in register class definitions. 1194 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1195 if (RCs.empty()) 1196 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1197 1198 // Allocate user-defined register classes. 1199 for (auto *R : RCs) { 1200 RegClasses.emplace_back(*this, R); 1201 CodeGenRegisterClass &RC = RegClasses.back(); 1202 if (!RC.Artificial) 1203 addToMaps(&RC); 1204 } 1205 1206 // Infer missing classes to create a full algebra. 1207 computeInferredRegisterClasses(); 1208 1209 // Order register classes topologically and assign enum values. 1210 RegClasses.sort(TopoOrderRC); 1211 unsigned i = 0; 1212 for (auto &RC : RegClasses) 1213 RC.EnumValue = i++; 1214 CodeGenRegisterClass::computeSubClasses(*this); 1215 } 1216 1217 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1218 CodeGenSubRegIndex* 1219 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1220 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1221 return &SubRegIndices.back(); 1222 } 1223 1224 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1225 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1226 if (Idx) 1227 return Idx; 1228 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1229 Idx = &SubRegIndices.back(); 1230 return Idx; 1231 } 1232 1233 const CodeGenSubRegIndex * 1234 CodeGenRegBank::findSubRegIdx(const Record* Def) const { 1235 auto I = Def2SubRegIdx.find(Def); 1236 return (I == Def2SubRegIdx.end()) ? nullptr : I->second; 1237 } 1238 1239 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1240 CodeGenRegister *&Reg = Def2Reg[Def]; 1241 if (Reg) 1242 return Reg; 1243 Registers.emplace_back(Def, Registers.size() + 1); 1244 Reg = &Registers.back(); 1245 return Reg; 1246 } 1247 1248 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1249 if (Record *Def = RC->getDef()) 1250 Def2RC.insert(std::make_pair(Def, RC)); 1251 1252 // Duplicate classes are rejected by insert(). 1253 // That's OK, we only care about the properties handled by CGRC::Key. 1254 CodeGenRegisterClass::Key K(*RC); 1255 Key2RC.insert(std::make_pair(K, RC)); 1256 } 1257 1258 // Create a synthetic sub-class if it is missing. 1259 CodeGenRegisterClass* 1260 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1261 const CodeGenRegister::Vec *Members, 1262 StringRef Name) { 1263 // Synthetic sub-class has the same size and alignment as RC. 1264 CodeGenRegisterClass::Key K(Members, RC->RSI); 1265 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1266 if (FoundI != Key2RC.end()) 1267 return FoundI->second; 1268 1269 // Sub-class doesn't exist, create a new one. 1270 RegClasses.emplace_back(*this, Name, K); 1271 addToMaps(&RegClasses.back()); 1272 return &RegClasses.back(); 1273 } 1274 1275 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1276 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1277 return RC; 1278 1279 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1280 } 1281 1282 CodeGenSubRegIndex* 1283 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1284 CodeGenSubRegIndex *B) { 1285 // Look for an existing entry. 1286 CodeGenSubRegIndex *Comp = A->compose(B); 1287 if (Comp) 1288 return Comp; 1289 1290 // None exists, synthesize one. 1291 std::string Name = A->getName() + "_then_" + B->getName(); 1292 Comp = createSubRegIndex(Name, A->getNamespace()); 1293 A->addComposite(B, Comp); 1294 return Comp; 1295 } 1296 1297 CodeGenSubRegIndex *CodeGenRegBank:: 1298 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1299 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1300 #ifndef NDEBUG 1301 for (CodeGenSubRegIndex *Idx : Parts) { 1302 assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); 1303 } 1304 #endif 1305 1306 // Look for an existing entry. 1307 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1308 if (Idx) 1309 return Idx; 1310 1311 // None exists, synthesize one. 1312 std::string Name = Parts.front()->getName(); 1313 // Determine whether all parts are contiguous. 1314 bool isContinuous = true; 1315 unsigned Size = Parts.front()->Size; 1316 unsigned LastOffset = Parts.front()->Offset; 1317 unsigned LastSize = Parts.front()->Size; 1318 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1319 Name += '_'; 1320 Name += Parts[i]->getName(); 1321 Size += Parts[i]->Size; 1322 if (Parts[i]->Offset != (LastOffset + LastSize)) 1323 isContinuous = false; 1324 LastOffset = Parts[i]->Offset; 1325 LastSize = Parts[i]->Size; 1326 } 1327 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1328 Idx->Size = Size; 1329 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1330 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); 1331 return Idx; 1332 } 1333 1334 void CodeGenRegBank::computeComposites() { 1335 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>; 1336 1337 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from 1338 // register to (sub)register associated with the action of the left-hand 1339 // side subregister. 1340 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction; 1341 for (const CodeGenRegister &R : Registers) { 1342 const CodeGenRegister::SubRegMap &SM = R.getSubRegs(); 1343 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM) 1344 SubRegAction[P.first].insert({&R, P.second}); 1345 } 1346 1347 // Calculate the composition of two subregisters as compositions of their 1348 // associated actions. 1349 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1, 1350 const CodeGenSubRegIndex *Sub2) { 1351 RegMap C; 1352 const RegMap &Img1 = SubRegAction.at(Sub1); 1353 const RegMap &Img2 = SubRegAction.at(Sub2); 1354 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) { 1355 auto F = Img2.find(P.second); 1356 if (F != Img2.end()) 1357 C.insert({P.first, F->second}); 1358 } 1359 return C; 1360 }; 1361 1362 // Check if the two maps agree on the intersection of their domains. 1363 auto agree = [] (const RegMap &Map1, const RegMap &Map2) { 1364 // Technically speaking, an empty map agrees with any other map, but 1365 // this could flag false positives. We're interested in non-vacuous 1366 // agreements. 1367 if (Map1.empty() || Map2.empty()) 1368 return false; 1369 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) { 1370 auto F = Map2.find(P.first); 1371 if (F == Map2.end() || P.second != F->second) 1372 return false; 1373 } 1374 return true; 1375 }; 1376 1377 using CompositePair = std::pair<const CodeGenSubRegIndex*, 1378 const CodeGenSubRegIndex*>; 1379 SmallSet<CompositePair,4> UserDefined; 1380 for (const CodeGenSubRegIndex &Idx : SubRegIndices) 1381 for (auto P : Idx.getComposites()) 1382 UserDefined.insert(std::make_pair(&Idx, P.first)); 1383 1384 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1385 // and many registers will share TopoSigs on regular architectures. 1386 BitVector TopoSigs(getNumTopoSigs()); 1387 1388 for (const auto &Reg1 : Registers) { 1389 // Skip identical subreg structures already processed. 1390 if (TopoSigs.test(Reg1.getTopoSig())) 1391 continue; 1392 TopoSigs.set(Reg1.getTopoSig()); 1393 1394 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1395 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1396 e1 = SRM1.end(); i1 != e1; ++i1) { 1397 CodeGenSubRegIndex *Idx1 = i1->first; 1398 CodeGenRegister *Reg2 = i1->second; 1399 // Ignore identity compositions. 1400 if (&Reg1 == Reg2) 1401 continue; 1402 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1403 // Try composing Idx1 with another SubRegIndex. 1404 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1405 e2 = SRM2.end(); i2 != e2; ++i2) { 1406 CodeGenSubRegIndex *Idx2 = i2->first; 1407 CodeGenRegister *Reg3 = i2->second; 1408 // Ignore identity compositions. 1409 if (Reg2 == Reg3) 1410 continue; 1411 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1412 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1413 assert(Idx3 && "Sub-register doesn't have an index"); 1414 1415 // Conflicting composition? Emit a warning but allow it. 1416 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) { 1417 // If the composition was not user-defined, always emit a warning. 1418 if (!UserDefined.count({Idx1, Idx2}) || 1419 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3))) 1420 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1421 " and " + Idx2->getQualifiedName() + 1422 " compose ambiguously as " + Prev->getQualifiedName() + 1423 " or " + Idx3->getQualifiedName()); 1424 } 1425 } 1426 } 1427 } 1428 } 1429 1430 // Compute lane masks. This is similar to register units, but at the 1431 // sub-register index level. Each bit in the lane mask is like a register unit 1432 // class, and two lane masks will have a bit in common if two sub-register 1433 // indices overlap in some register. 1434 // 1435 // Conservatively share a lane mask bit if two sub-register indices overlap in 1436 // some registers, but not in others. That shouldn't happen a lot. 1437 void CodeGenRegBank::computeSubRegLaneMasks() { 1438 // First assign individual bits to all the leaf indices. 1439 unsigned Bit = 0; 1440 // Determine mask of lanes that cover their registers. 1441 CoveringLanes = LaneBitmask::getAll(); 1442 for (auto &Idx : SubRegIndices) { 1443 if (Idx.getComposites().empty()) { 1444 if (Bit > LaneBitmask::BitWidth) { 1445 PrintFatalError( 1446 Twine("Ran out of lanemask bits to represent subregister ") 1447 + Idx.getName()); 1448 } 1449 Idx.LaneMask = LaneBitmask::getLane(Bit); 1450 ++Bit; 1451 } else { 1452 Idx.LaneMask = LaneBitmask::getNone(); 1453 } 1454 } 1455 1456 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1457 // here is that for each possible target subregister we look at the leafs 1458 // in the subregister graph that compose for this target and create 1459 // transformation sequences for the lanemasks. Each step in the sequence 1460 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1461 // are usually the same for many subregisters we can easily combine the steps 1462 // by combining the masks. 1463 for (const auto &Idx : SubRegIndices) { 1464 const auto &Composites = Idx.getComposites(); 1465 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1466 1467 if (Composites.empty()) { 1468 // Moving from a class with no subregisters we just had a single lane: 1469 // The subregister must be a leaf subregister and only occupies 1 bit. 1470 // Move the bit from the class without subregisters into that position. 1471 unsigned DstBit = Idx.LaneMask.getHighestLane(); 1472 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && 1473 "Must be a leaf subregister"); 1474 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; 1475 LaneTransforms.push_back(MaskRol); 1476 } else { 1477 // Go through all leaf subregisters and find the ones that compose with 1478 // Idx. These make out all possible valid bits in the lane mask we want to 1479 // transform. Looking only at the leafs ensure that only a single bit in 1480 // the mask is set. 1481 unsigned NextBit = 0; 1482 for (auto &Idx2 : SubRegIndices) { 1483 // Skip non-leaf subregisters. 1484 if (!Idx2.getComposites().empty()) 1485 continue; 1486 // Replicate the behaviour from the lane mask generation loop above. 1487 unsigned SrcBit = NextBit; 1488 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); 1489 if (NextBit < LaneBitmask::BitWidth-1) 1490 ++NextBit; 1491 assert(Idx2.LaneMask == SrcMask); 1492 1493 // Get the composed subregister if there is any. 1494 auto C = Composites.find(&Idx2); 1495 if (C == Composites.end()) 1496 continue; 1497 const CodeGenSubRegIndex *Composite = C->second; 1498 // The Composed subreg should be a leaf subreg too 1499 assert(Composite->getComposites().empty()); 1500 1501 // Create Mask+Rotate operation and merge with existing ops if possible. 1502 unsigned DstBit = Composite->LaneMask.getHighestLane(); 1503 int Shift = DstBit - SrcBit; 1504 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1505 : LaneBitmask::BitWidth + Shift; 1506 for (auto &I : LaneTransforms) { 1507 if (I.RotateLeft == RotateLeft) { 1508 I.Mask |= SrcMask; 1509 SrcMask = LaneBitmask::getNone(); 1510 } 1511 } 1512 if (SrcMask.any()) { 1513 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1514 LaneTransforms.push_back(MaskRol); 1515 } 1516 } 1517 } 1518 1519 // Optimize if the transformation consists of one step only: Set mask to 1520 // 0xffffffff (including some irrelevant invalid bits) so that it should 1521 // merge with more entries later while compressing the table. 1522 if (LaneTransforms.size() == 1) 1523 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1524 1525 // Further compression optimization: For invalid compositions resulting 1526 // in a sequence with 0 entries we can just pick any other. Choose 1527 // Mask 0xffffffff with Rotation 0. 1528 if (LaneTransforms.size() == 0) { 1529 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1530 LaneTransforms.push_back(P); 1531 } 1532 } 1533 1534 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1535 // by the sub-register graph? This doesn't occur in any known targets. 1536 1537 // Inherit lanes from composites. 1538 for (const auto &Idx : SubRegIndices) { 1539 LaneBitmask Mask = Idx.computeLaneMask(); 1540 // If some super-registers without CoveredBySubRegs use this index, we can 1541 // no longer assume that the lanes are covering their registers. 1542 if (!Idx.AllSuperRegsCovered) 1543 CoveringLanes &= ~Mask; 1544 } 1545 1546 // Compute lane mask combinations for register classes. 1547 for (auto &RegClass : RegClasses) { 1548 LaneBitmask LaneMask; 1549 for (const auto &SubRegIndex : SubRegIndices) { 1550 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1551 continue; 1552 LaneMask |= SubRegIndex.LaneMask; 1553 } 1554 1555 // For classes without any subregisters set LaneMask to 1 instead of 0. 1556 // This makes it easier for client code to handle classes uniformly. 1557 if (LaneMask.none()) 1558 LaneMask = LaneBitmask::getLane(0); 1559 1560 RegClass.LaneMask = LaneMask; 1561 } 1562 } 1563 1564 namespace { 1565 1566 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1567 // the transitive closure of the union of overlapping register 1568 // classes. Together, the UberRegSets form a partition of the registers. If we 1569 // consider overlapping register classes to be connected, then each UberRegSet 1570 // is a set of connected components. 1571 // 1572 // An UberRegSet will likely be a horizontal slice of register names of 1573 // the same width. Nontrivial subregisters should then be in a separate 1574 // UberRegSet. But this property isn't required for valid computation of 1575 // register unit weights. 1576 // 1577 // A Weight field caches the max per-register unit weight in each UberRegSet. 1578 // 1579 // A set of SingularDeterminants flags single units of some register in this set 1580 // for which the unit weight equals the set weight. These units should not have 1581 // their weight increased. 1582 struct UberRegSet { 1583 CodeGenRegister::Vec Regs; 1584 unsigned Weight = 0; 1585 CodeGenRegister::RegUnitList SingularDeterminants; 1586 1587 UberRegSet() = default; 1588 }; 1589 1590 } // end anonymous namespace 1591 1592 // Partition registers into UberRegSets, where each set is the transitive 1593 // closure of the union of overlapping register classes. 1594 // 1595 // UberRegSets[0] is a special non-allocatable set. 1596 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1597 std::vector<UberRegSet*> &RegSets, 1598 CodeGenRegBank &RegBank) { 1599 const auto &Registers = RegBank.getRegisters(); 1600 1601 // The Register EnumValue is one greater than its index into Registers. 1602 assert(Registers.size() == Registers.back().EnumValue && 1603 "register enum value mismatch"); 1604 1605 // For simplicitly make the SetID the same as EnumValue. 1606 IntEqClasses UberSetIDs(Registers.size()+1); 1607 std::set<unsigned> AllocatableRegs; 1608 for (auto &RegClass : RegBank.getRegClasses()) { 1609 if (!RegClass.Allocatable) 1610 continue; 1611 1612 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1613 if (Regs.empty()) 1614 continue; 1615 1616 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1617 assert(USetID && "register number 0 is invalid"); 1618 1619 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1620 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1621 AllocatableRegs.insert((*I)->EnumValue); 1622 UberSetIDs.join(USetID, (*I)->EnumValue); 1623 } 1624 } 1625 // Combine non-allocatable regs. 1626 for (const auto &Reg : Registers) { 1627 unsigned RegNum = Reg.EnumValue; 1628 if (AllocatableRegs.count(RegNum)) 1629 continue; 1630 1631 UberSetIDs.join(0, RegNum); 1632 } 1633 UberSetIDs.compress(); 1634 1635 // Make the first UberSet a special unallocatable set. 1636 unsigned ZeroID = UberSetIDs[0]; 1637 1638 // Insert Registers into the UberSets formed by union-find. 1639 // Do not resize after this. 1640 UberSets.resize(UberSetIDs.getNumClasses()); 1641 unsigned i = 0; 1642 for (const CodeGenRegister &Reg : Registers) { 1643 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1644 if (!USetID) 1645 USetID = ZeroID; 1646 else if (USetID == ZeroID) 1647 USetID = 0; 1648 1649 UberRegSet *USet = &UberSets[USetID]; 1650 USet->Regs.push_back(&Reg); 1651 sortAndUniqueRegisters(USet->Regs); 1652 RegSets[i++] = USet; 1653 } 1654 } 1655 1656 // Recompute each UberSet weight after changing unit weights. 1657 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1658 CodeGenRegBank &RegBank) { 1659 // Skip the first unallocatable set. 1660 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1661 E = UberSets.end(); I != E; ++I) { 1662 1663 // Initialize all unit weights in this set, and remember the max units/reg. 1664 const CodeGenRegister *Reg = nullptr; 1665 unsigned MaxWeight = 0, Weight = 0; 1666 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1667 if (Reg != UnitI.getReg()) { 1668 if (Weight > MaxWeight) 1669 MaxWeight = Weight; 1670 Reg = UnitI.getReg(); 1671 Weight = 0; 1672 } 1673 if (!RegBank.getRegUnit(*UnitI).Artificial) { 1674 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1675 if (!UWeight) { 1676 UWeight = 1; 1677 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1678 } 1679 Weight += UWeight; 1680 } 1681 } 1682 if (Weight > MaxWeight) 1683 MaxWeight = Weight; 1684 if (I->Weight != MaxWeight) { 1685 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " 1686 << MaxWeight; 1687 for (auto &Unit 1688 : I->Regs) dbgs() 1689 << " " << Unit->getName(); 1690 dbgs() << "\n"); 1691 // Update the set weight. 1692 I->Weight = MaxWeight; 1693 } 1694 1695 // Find singular determinants. 1696 for (const auto R : I->Regs) { 1697 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1698 I->SingularDeterminants |= R->getRegUnits(); 1699 } 1700 } 1701 } 1702 } 1703 1704 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1705 // a register and its subregisters so that they have the same weight as their 1706 // UberSet. Self-recursion processes the subregister tree in postorder so 1707 // subregisters are normalized first. 1708 // 1709 // Side effects: 1710 // - creates new adopted register units 1711 // - causes superregisters to inherit adopted units 1712 // - increases the weight of "singular" units 1713 // - induces recomputation of UberWeights. 1714 static bool normalizeWeight(CodeGenRegister *Reg, 1715 std::vector<UberRegSet> &UberSets, 1716 std::vector<UberRegSet*> &RegSets, 1717 BitVector &NormalRegs, 1718 CodeGenRegister::RegUnitList &NormalUnits, 1719 CodeGenRegBank &RegBank) { 1720 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size())); 1721 if (NormalRegs.test(Reg->EnumValue)) 1722 return false; 1723 NormalRegs.set(Reg->EnumValue); 1724 1725 bool Changed = false; 1726 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1727 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1728 SRE = SRM.end(); SRI != SRE; ++SRI) { 1729 if (SRI->second == Reg) 1730 continue; // self-cycles happen 1731 1732 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1733 NormalRegs, NormalUnits, RegBank); 1734 } 1735 // Postorder register normalization. 1736 1737 // Inherit register units newly adopted by subregisters. 1738 if (Reg->inheritRegUnits(RegBank)) 1739 computeUberWeights(UberSets, RegBank); 1740 1741 // Check if this register is too skinny for its UberRegSet. 1742 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1743 1744 unsigned RegWeight = Reg->getWeight(RegBank); 1745 if (UberSet->Weight > RegWeight) { 1746 // A register unit's weight can be adjusted only if it is the singular unit 1747 // for this register, has not been used to normalize a subregister's set, 1748 // and has not already been used to singularly determine this UberRegSet. 1749 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1750 if (Reg->getRegUnits().count() != 1 1751 || hasRegUnit(NormalUnits, AdjustUnit) 1752 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1753 // We don't have an adjustable unit, so adopt a new one. 1754 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1755 Reg->adoptRegUnit(AdjustUnit); 1756 // Adopting a unit does not immediately require recomputing set weights. 1757 } 1758 else { 1759 // Adjust the existing single unit. 1760 if (!RegBank.getRegUnit(AdjustUnit).Artificial) 1761 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1762 // The unit may be shared among sets and registers within this set. 1763 computeUberWeights(UberSets, RegBank); 1764 } 1765 Changed = true; 1766 } 1767 1768 // Mark these units normalized so superregisters can't change their weights. 1769 NormalUnits |= Reg->getRegUnits(); 1770 1771 return Changed; 1772 } 1773 1774 // Compute a weight for each register unit created during getSubRegs. 1775 // 1776 // The goal is that two registers in the same class will have the same weight, 1777 // where each register's weight is defined as sum of its units' weights. 1778 void CodeGenRegBank::computeRegUnitWeights() { 1779 std::vector<UberRegSet> UberSets; 1780 std::vector<UberRegSet*> RegSets(Registers.size()); 1781 computeUberSets(UberSets, RegSets, *this); 1782 // UberSets and RegSets are now immutable. 1783 1784 computeUberWeights(UberSets, *this); 1785 1786 // Iterate over each Register, normalizing the unit weights until reaching 1787 // a fix point. 1788 unsigned NumIters = 0; 1789 for (bool Changed = true; Changed; ++NumIters) { 1790 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1791 Changed = false; 1792 for (auto &Reg : Registers) { 1793 CodeGenRegister::RegUnitList NormalUnits; 1794 BitVector NormalRegs; 1795 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1796 NormalUnits, *this); 1797 } 1798 } 1799 } 1800 1801 // Find a set in UniqueSets with the same elements as Set. 1802 // Return an iterator into UniqueSets. 1803 static std::vector<RegUnitSet>::const_iterator 1804 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1805 const RegUnitSet &Set) { 1806 std::vector<RegUnitSet>::const_iterator 1807 I = UniqueSets.begin(), E = UniqueSets.end(); 1808 for(;I != E; ++I) { 1809 if (I->Units == Set.Units) 1810 break; 1811 } 1812 return I; 1813 } 1814 1815 // Return true if the RUSubSet is a subset of RUSuperSet. 1816 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1817 const std::vector<unsigned> &RUSuperSet) { 1818 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1819 RUSubSet.begin(), RUSubSet.end()); 1820 } 1821 1822 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1823 /// but with one or two registers removed. We occasionally have registers like 1824 /// APSR and PC thrown in with the general registers. We also see many 1825 /// special-purpose register subsets, such as tail-call and Thumb 1826 /// encodings. Generating all possible overlapping sets is combinatorial and 1827 /// overkill for modeling pressure. Ideally we could fix this statically in 1828 /// tablegen by (1) having the target define register classes that only include 1829 /// the allocatable registers and marking other classes as non-allocatable and 1830 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1831 /// the purpose of pressure. However, we make an attempt to handle targets that 1832 /// are not nicely defined by merging nearly identical register unit sets 1833 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1834 /// set limit by filtering the reserved registers. 1835 /// 1836 /// Merge sets only if the units have the same weight. For example, on ARM, 1837 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1838 /// should not expand the S set to include D regs. 1839 void CodeGenRegBank::pruneUnitSets() { 1840 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1841 1842 // Form an equivalence class of UnitSets with no significant difference. 1843 std::vector<unsigned> SuperSetIDs; 1844 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1845 SubIdx != EndIdx; ++SubIdx) { 1846 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1847 unsigned SuperIdx = 0; 1848 for (; SuperIdx != EndIdx; ++SuperIdx) { 1849 if (SuperIdx == SubIdx) 1850 continue; 1851 1852 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1853 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1854 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1855 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1856 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1857 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1858 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1859 << "\n"); 1860 // We can pick any of the set names for the merged set. Go for the 1861 // shortest one to avoid picking the name of one of the classes that are 1862 // artificially created by tablegen. So "FPR128_lo" instead of 1863 // "QQQQ_with_qsub3_in_FPR128_lo". 1864 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1865 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1866 break; 1867 } 1868 } 1869 if (SuperIdx == EndIdx) 1870 SuperSetIDs.push_back(SubIdx); 1871 } 1872 // Populate PrunedUnitSets with each equivalence class's superset. 1873 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1874 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1875 unsigned SuperIdx = SuperSetIDs[i]; 1876 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1877 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1878 } 1879 RegUnitSets.swap(PrunedUnitSets); 1880 } 1881 1882 // Create a RegUnitSet for each RegClass that contains all units in the class 1883 // including adopted units that are necessary to model register pressure. Then 1884 // iteratively compute RegUnitSets such that the union of any two overlapping 1885 // RegUnitSets is repreresented. 1886 // 1887 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1888 // RegUnitSet that is a superset of that RegUnitClass. 1889 void CodeGenRegBank::computeRegUnitSets() { 1890 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1891 1892 // Compute a unique RegUnitSet for each RegClass. 1893 auto &RegClasses = getRegClasses(); 1894 for (auto &RC : RegClasses) { 1895 if (!RC.Allocatable || RC.Artificial) 1896 continue; 1897 1898 // Speculatively grow the RegUnitSets to hold the new set. 1899 RegUnitSets.resize(RegUnitSets.size() + 1); 1900 RegUnitSets.back().Name = RC.getName(); 1901 1902 // Compute a sorted list of units in this class. 1903 RC.buildRegUnitSet(*this, RegUnitSets.back().Units); 1904 1905 // Find an existing RegUnitSet. 1906 std::vector<RegUnitSet>::const_iterator SetI = 1907 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1908 if (SetI != std::prev(RegUnitSets.end())) 1909 RegUnitSets.pop_back(); 1910 } 1911 1912 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, 1913 USEnd = RegUnitSets.size(); 1914 USIdx < USEnd; ++USIdx) { 1915 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1916 for (auto &U : RegUnitSets[USIdx].Units) 1917 printRegUnitName(U); 1918 dbgs() << "\n"; 1919 }); 1920 1921 // Iteratively prune unit sets. 1922 pruneUnitSets(); 1923 1924 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, 1925 USEnd = RegUnitSets.size(); 1926 USIdx < USEnd; ++USIdx) { 1927 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1928 for (auto &U : RegUnitSets[USIdx].Units) 1929 printRegUnitName(U); 1930 dbgs() << "\n"; 1931 } dbgs() << "\nUnion sets:\n"); 1932 1933 // Iterate over all unit sets, including new ones added by this loop. 1934 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1935 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1936 // In theory, this is combinatorial. In practice, it needs to be bounded 1937 // by a small number of sets for regpressure to be efficient. 1938 // If the assert is hit, we need to implement pruning. 1939 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1940 1941 // Compare new sets with all original classes. 1942 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1943 SearchIdx != EndIdx; ++SearchIdx) { 1944 std::set<unsigned> Intersection; 1945 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1946 RegUnitSets[Idx].Units.end(), 1947 RegUnitSets[SearchIdx].Units.begin(), 1948 RegUnitSets[SearchIdx].Units.end(), 1949 std::inserter(Intersection, Intersection.begin())); 1950 if (Intersection.empty()) 1951 continue; 1952 1953 // Speculatively grow the RegUnitSets to hold the new set. 1954 RegUnitSets.resize(RegUnitSets.size() + 1); 1955 RegUnitSets.back().Name = 1956 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1957 1958 std::set_union(RegUnitSets[Idx].Units.begin(), 1959 RegUnitSets[Idx].Units.end(), 1960 RegUnitSets[SearchIdx].Units.begin(), 1961 RegUnitSets[SearchIdx].Units.end(), 1962 std::inserter(RegUnitSets.back().Units, 1963 RegUnitSets.back().Units.begin())); 1964 1965 // Find an existing RegUnitSet, or add the union to the unique sets. 1966 std::vector<RegUnitSet>::const_iterator SetI = 1967 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1968 if (SetI != std::prev(RegUnitSets.end())) 1969 RegUnitSets.pop_back(); 1970 else { 1971 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " 1972 << RegUnitSets.back().Name << ":"; 1973 for (auto &U 1974 : RegUnitSets.back().Units) printRegUnitName(U); 1975 dbgs() << "\n";); 1976 } 1977 } 1978 } 1979 1980 // Iteratively prune unit sets after inferring supersets. 1981 pruneUnitSets(); 1982 1983 LLVM_DEBUG( 1984 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1985 USIdx < USEnd; ++USIdx) { 1986 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1987 for (auto &U : RegUnitSets[USIdx].Units) 1988 printRegUnitName(U); 1989 dbgs() << "\n"; 1990 }); 1991 1992 // For each register class, list the UnitSets that are supersets. 1993 RegClassUnitSets.resize(RegClasses.size()); 1994 int RCIdx = -1; 1995 for (auto &RC : RegClasses) { 1996 ++RCIdx; 1997 if (!RC.Allocatable) 1998 continue; 1999 2000 // Recompute the sorted list of units in this class. 2001 std::vector<unsigned> RCRegUnits; 2002 RC.buildRegUnitSet(*this, RCRegUnits); 2003 2004 // Don't increase pressure for unallocatable regclasses. 2005 if (RCRegUnits.empty()) 2006 continue; 2007 2008 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; 2009 for (auto U 2010 : RCRegUnits) printRegUnitName(U); 2011 dbgs() << "\n UnitSetIDs:"); 2012 2013 // Find all supersets. 2014 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2015 USIdx != USEnd; ++USIdx) { 2016 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 2017 LLVM_DEBUG(dbgs() << " " << USIdx); 2018 RegClassUnitSets[RCIdx].push_back(USIdx); 2019 } 2020 } 2021 LLVM_DEBUG(dbgs() << "\n"); 2022 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 2023 } 2024 2025 // For each register unit, ensure that we have the list of UnitSets that 2026 // contain the unit. Normally, this matches an existing list of UnitSets for a 2027 // register class. If not, we create a new entry in RegClassUnitSets as a 2028 // "fake" register class. 2029 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 2030 UnitIdx < UnitEnd; ++UnitIdx) { 2031 std::vector<unsigned> RUSets; 2032 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 2033 RegUnitSet &RUSet = RegUnitSets[i]; 2034 if (!is_contained(RUSet.Units, UnitIdx)) 2035 continue; 2036 RUSets.push_back(i); 2037 } 2038 unsigned RCUnitSetsIdx = 0; 2039 for (unsigned e = RegClassUnitSets.size(); 2040 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 2041 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 2042 break; 2043 } 2044 } 2045 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 2046 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 2047 // Create a new list of UnitSets as a "fake" register class. 2048 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 2049 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 2050 } 2051 } 2052 } 2053 2054 void CodeGenRegBank::computeRegUnitLaneMasks() { 2055 for (auto &Register : Registers) { 2056 // Create an initial lane mask for all register units. 2057 const auto &RegUnits = Register.getRegUnits(); 2058 CodeGenRegister::RegUnitLaneMaskList 2059 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 2060 // Iterate through SubRegisters. 2061 typedef CodeGenRegister::SubRegMap SubRegMap; 2062 const SubRegMap &SubRegs = Register.getSubRegs(); 2063 for (SubRegMap::const_iterator S = SubRegs.begin(), 2064 SE = SubRegs.end(); S != SE; ++S) { 2065 CodeGenRegister *SubReg = S->second; 2066 // Ignore non-leaf subregisters, their lane masks are fully covered by 2067 // the leaf subregisters anyway. 2068 if (!SubReg->getSubRegs().empty()) 2069 continue; 2070 CodeGenSubRegIndex *SubRegIndex = S->first; 2071 const CodeGenRegister *SubRegister = S->second; 2072 LaneBitmask LaneMask = SubRegIndex->LaneMask; 2073 // Distribute LaneMask to Register Units touched. 2074 for (unsigned SUI : SubRegister->getRegUnits()) { 2075 bool Found = false; 2076 unsigned u = 0; 2077 for (unsigned RU : RegUnits) { 2078 if (SUI == RU) { 2079 RegUnitLaneMasks[u] |= LaneMask; 2080 assert(!Found); 2081 Found = true; 2082 } 2083 ++u; 2084 } 2085 (void)Found; 2086 assert(Found); 2087 } 2088 } 2089 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 2090 } 2091 } 2092 2093 void CodeGenRegBank::computeDerivedInfo() { 2094 computeComposites(); 2095 computeSubRegLaneMasks(); 2096 2097 // Compute a weight for each register unit created during getSubRegs. 2098 // This may create adopted register units (with unit # >= NumNativeRegUnits). 2099 computeRegUnitWeights(); 2100 2101 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 2102 // supersets for the union of overlapping sets. 2103 computeRegUnitSets(); 2104 2105 computeRegUnitLaneMasks(); 2106 2107 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 2108 for (CodeGenRegisterClass &RC : RegClasses) { 2109 RC.HasDisjunctSubRegs = false; 2110 RC.CoveredBySubRegs = true; 2111 for (const CodeGenRegister *Reg : RC.getMembers()) { 2112 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 2113 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 2114 } 2115 } 2116 2117 // Get the weight of each set. 2118 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2119 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 2120 2121 // Find the order of each set. 2122 RegUnitSetOrder.reserve(RegUnitSets.size()); 2123 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2124 RegUnitSetOrder.push_back(Idx); 2125 2126 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) { 2127 return getRegPressureSet(ID1).Units.size() < 2128 getRegPressureSet(ID2).Units.size(); 2129 }); 2130 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 2131 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 2132 } 2133 } 2134 2135 // 2136 // Synthesize missing register class intersections. 2137 // 2138 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 2139 // returns a maximal register class for all X. 2140 // 2141 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 2142 assert(!RegClasses.empty()); 2143 // Stash the iterator to the last element so that this loop doesn't visit 2144 // elements added by the getOrCreateSubClass call within it. 2145 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 2146 I != std::next(E); ++I) { 2147 CodeGenRegisterClass *RC1 = RC; 2148 CodeGenRegisterClass *RC2 = &*I; 2149 if (RC1 == RC2) 2150 continue; 2151 2152 // Compute the set intersection of RC1 and RC2. 2153 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 2154 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 2155 CodeGenRegister::Vec Intersection; 2156 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(), 2157 Memb2.end(), 2158 std::inserter(Intersection, Intersection.begin()), 2159 deref<std::less<>>()); 2160 2161 // Skip disjoint class pairs. 2162 if (Intersection.empty()) 2163 continue; 2164 2165 // If RC1 and RC2 have different spill sizes or alignments, use the 2166 // stricter one for sub-classing. If they are equal, prefer RC1. 2167 if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) 2168 std::swap(RC1, RC2); 2169 2170 getOrCreateSubClass(RC1, &Intersection, 2171 RC1->getName() + "_and_" + RC2->getName()); 2172 } 2173 } 2174 2175 // 2176 // Synthesize missing sub-classes for getSubClassWithSubReg(). 2177 // 2178 // Make sure that the set of registers in RC with a given SubIdx sub-register 2179 // form a register class. Update RC->SubClassWithSubReg. 2180 // 2181 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 2182 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 2183 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 2184 deref<std::less<>>> 2185 SubReg2SetMap; 2186 2187 // Compute the set of registers supporting each SubRegIndex. 2188 SubReg2SetMap SRSets; 2189 for (const auto R : RC->getMembers()) { 2190 if (R->Artificial) 2191 continue; 2192 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 2193 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2194 E = SRM.end(); I != E; ++I) { 2195 if (!I->first->Artificial) 2196 SRSets[I->first].push_back(R); 2197 } 2198 } 2199 2200 for (auto I : SRSets) 2201 sortAndUniqueRegisters(I.second); 2202 2203 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 2204 // numerical order to visit synthetic indices last. 2205 for (const auto &SubIdx : SubRegIndices) { 2206 if (SubIdx.Artificial) 2207 continue; 2208 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 2209 // Unsupported SubRegIndex. Skip it. 2210 if (I == SRSets.end()) 2211 continue; 2212 // In most cases, all RC registers support the SubRegIndex. 2213 if (I->second.size() == RC->getMembers().size()) { 2214 RC->setSubClassWithSubReg(&SubIdx, RC); 2215 continue; 2216 } 2217 // This is a real subset. See if we have a matching class. 2218 CodeGenRegisterClass *SubRC = 2219 getOrCreateSubClass(RC, &I->second, 2220 RC->getName() + "_with_" + I->first->getName()); 2221 RC->setSubClassWithSubReg(&SubIdx, SubRC); 2222 } 2223 } 2224 2225 // 2226 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 2227 // 2228 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 2229 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 2230 // 2231 2232 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 2233 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 2234 SmallVector<std::pair<const CodeGenRegister*, 2235 const CodeGenRegister*>, 16> SSPairs; 2236 BitVector TopoSigs(getNumTopoSigs()); 2237 2238 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 2239 for (auto &SubIdx : SubRegIndices) { 2240 // Skip indexes that aren't fully supported by RC's registers. This was 2241 // computed by inferSubClassWithSubReg() above which should have been 2242 // called first. 2243 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 2244 continue; 2245 2246 // Build list of (Super, Sub) pairs for this SubIdx. 2247 SSPairs.clear(); 2248 TopoSigs.reset(); 2249 for (const auto Super : RC->getMembers()) { 2250 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 2251 assert(Sub && "Missing sub-register"); 2252 SSPairs.push_back(std::make_pair(Super, Sub)); 2253 TopoSigs.set(Sub->getTopoSig()); 2254 } 2255 2256 // Iterate over sub-register class candidates. Ignore classes created by 2257 // this loop. They will never be useful. 2258 // Store an iterator to the last element (not end) so that this loop doesn't 2259 // visit newly inserted elements. 2260 assert(!RegClasses.empty()); 2261 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2262 I != std::next(E); ++I) { 2263 CodeGenRegisterClass &SubRC = *I; 2264 if (SubRC.Artificial) 2265 continue; 2266 // Topological shortcut: SubRC members have the wrong shape. 2267 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2268 continue; 2269 // Compute the subset of RC that maps into SubRC. 2270 CodeGenRegister::Vec SubSetVec; 2271 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2272 if (SubRC.contains(SSPairs[i].second)) 2273 SubSetVec.push_back(SSPairs[i].first); 2274 2275 if (SubSetVec.empty()) 2276 continue; 2277 2278 // RC injects completely into SubRC. 2279 sortAndUniqueRegisters(SubSetVec); 2280 if (SubSetVec.size() == SSPairs.size()) { 2281 SubRC.addSuperRegClass(&SubIdx, RC); 2282 continue; 2283 } 2284 2285 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2286 // class. 2287 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2288 SubIdx.getName() + "_in_" + 2289 SubRC.getName()); 2290 } 2291 } 2292 } 2293 2294 // 2295 // Infer missing register classes. 2296 // 2297 void CodeGenRegBank::computeInferredRegisterClasses() { 2298 assert(!RegClasses.empty()); 2299 // When this function is called, the register classes have not been sorted 2300 // and assigned EnumValues yet. That means getSubClasses(), 2301 // getSuperClasses(), and hasSubClass() functions are defunct. 2302 2303 // Use one-before-the-end so it doesn't move forward when new elements are 2304 // added. 2305 auto FirstNewRC = std::prev(RegClasses.end()); 2306 2307 // Visit all register classes, including the ones being added by the loop. 2308 // Watch out for iterator invalidation here. 2309 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2310 CodeGenRegisterClass *RC = &*I; 2311 if (RC->Artificial) 2312 continue; 2313 2314 // Synthesize answers for getSubClassWithSubReg(). 2315 inferSubClassWithSubReg(RC); 2316 2317 // Synthesize answers for getCommonSubClass(). 2318 inferCommonSubClass(RC); 2319 2320 // Synthesize answers for getMatchingSuperRegClass(). 2321 inferMatchingSuperRegClass(RC); 2322 2323 // New register classes are created while this loop is running, and we need 2324 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2325 // to match old super-register classes with sub-register classes created 2326 // after inferMatchingSuperRegClass was called. At this point, 2327 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2328 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2329 if (I == FirstNewRC) { 2330 auto NextNewRC = std::prev(RegClasses.end()); 2331 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2332 ++I2) 2333 inferMatchingSuperRegClass(&*I2, E2); 2334 FirstNewRC = NextNewRC; 2335 } 2336 } 2337 } 2338 2339 /// getRegisterClassForRegister - Find the register class that contains the 2340 /// specified physical register. If the register is not in a register class, 2341 /// return null. If the register is in multiple classes, and the classes have a 2342 /// superset-subset relationship and the same set of types, return the 2343 /// superclass. Otherwise return null. 2344 const CodeGenRegisterClass* 2345 CodeGenRegBank::getRegClassForRegister(Record *R) { 2346 const CodeGenRegister *Reg = getReg(R); 2347 const CodeGenRegisterClass *FoundRC = nullptr; 2348 for (const auto &RC : getRegClasses()) { 2349 if (!RC.contains(Reg)) 2350 continue; 2351 2352 // If this is the first class that contains the register, 2353 // make a note of it and go on to the next class. 2354 if (!FoundRC) { 2355 FoundRC = &RC; 2356 continue; 2357 } 2358 2359 // If a register's classes have different types, return null. 2360 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2361 return nullptr; 2362 2363 // Check to see if the previously found class that contains 2364 // the register is a subclass of the current class. If so, 2365 // prefer the superclass. 2366 if (RC.hasSubClass(FoundRC)) { 2367 FoundRC = &RC; 2368 continue; 2369 } 2370 2371 // Check to see if the previously found class that contains 2372 // the register is a superclass of the current class. If so, 2373 // prefer the superclass. 2374 if (FoundRC->hasSubClass(&RC)) 2375 continue; 2376 2377 // Multiple classes, and neither is a superclass of the other. 2378 // Return null. 2379 return nullptr; 2380 } 2381 return FoundRC; 2382 } 2383 2384 const CodeGenRegisterClass * 2385 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord, 2386 ValueTypeByHwMode *VT) { 2387 const CodeGenRegister *Reg = getReg(RegRecord); 2388 const CodeGenRegisterClass *BestRC = nullptr; 2389 for (const auto &RC : getRegClasses()) { 2390 if ((!VT || RC.hasType(*VT)) && 2391 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC))) 2392 BestRC = &RC; 2393 } 2394 2395 assert(BestRC && "Couldn't find the register class"); 2396 return BestRC; 2397 } 2398 2399 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2400 SetVector<const CodeGenRegister*> Set; 2401 2402 // First add Regs with all sub-registers. 2403 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2404 CodeGenRegister *Reg = getReg(Regs[i]); 2405 if (Set.insert(Reg)) 2406 // Reg is new, add all sub-registers. 2407 // The pre-ordering is not important here. 2408 Reg->addSubRegsPreOrder(Set, *this); 2409 } 2410 2411 // Second, find all super-registers that are completely covered by the set. 2412 for (unsigned i = 0; i != Set.size(); ++i) { 2413 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2414 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2415 const CodeGenRegister *Super = SR[j]; 2416 if (!Super->CoveredBySubRegs || Set.count(Super)) 2417 continue; 2418 // This new super-register is covered by its sub-registers. 2419 bool AllSubsInSet = true; 2420 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2421 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2422 E = SRM.end(); I != E; ++I) 2423 if (!Set.count(I->second)) { 2424 AllSubsInSet = false; 2425 break; 2426 } 2427 // All sub-registers in Set, add Super as well. 2428 // We will visit Super later to recheck its super-registers. 2429 if (AllSubsInSet) 2430 Set.insert(Super); 2431 } 2432 } 2433 2434 // Convert to BitVector. 2435 BitVector BV(Registers.size() + 1); 2436 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2437 BV.set(Set[i]->EnumValue); 2438 return BV; 2439 } 2440 2441 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2442 if (Unit < NumNativeRegUnits) 2443 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2444 else 2445 dbgs() << " #" << Unit; 2446 } 2447